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Basic properties of the Wright-Fisher diffusion process

Let (Wt)t≥0 be a standard Brownian motion. The Markov diffusion process (ξt)t≥0 defined as the unique
strong solution of the stochastic differential equation

dξt = µ(ξt) dt+ σ(ξt) dWt, t ≥ 0,

starting at some point ξ0 = x of the open interval (0, 1) and with drift function µ(x) and variance function
σ2(x) given by

µ(x) = γx(1− x), σ2(x) = x(1− x),

is known as the Wright-Fisher diffusion process with selection. This process arises in the limit of weak
convergence as the diffusion approximation under time and space rescaling of the Wright-Fisher Markov
model of selective reproduction, as the population size tends to infinity. We write Pγx for the probability
measure and Eγx for the expectation of the process starting at x. The case γ = 0 is the neutral Wright-
Fisher diffusion process, γ > 0 corresponds to positive selection and γ < 0 to negative selection. This
and other versions of the Wright-Fisher diffusion process have become standard models in population
genetics. See e.g. Karlin and Taylor (1981); Breiman (1992); Ewens (2004); Etheridge (2011) for detailed
accounts of their mathematical properties. In the following we compile a listing of various properties
and formulae for the Wright-Fisher diffusion with selection, which were used to obtain the results in the
present article. These results are covered by the works already cited, with some exceptions for which we
give additional references in what follows.

The scale function Sγ(x) and speed function mγ(x) associated with the Wright-Fisher diffusion with
selection parameter γ are defined by

S0(x) = x, Sγ(x) =
1

2γ
(1− e−2γx), γ 6= 0, mγ(x) =

e2γx

x(1− x)
.

Since mγ is not integrable near 0 or 1 it follows that both points {0, 1} are classified as exit boundary
points, which are therefore accessible from the interior of the state space. Hence the diffusion can reach
either of these boundaries but will stay at the point reached first. We call the time τ0 required to reach
0 the extinction time and the time τ1 to reach 1 the fixation time and denote by τ = min(τ0, τ1) the
resulting time to absorption. The corresponding exit measure is the fixation probability

qγ(x) = Pγx(τ1 < τ0) =
1− e−2γx

1− e−2γ
, γ 6= 0, q0(x) = x,

where ξ0 = x is the initial state. By integration with respect to the Green function G(x, y) defined by

G(x, y) =

{
2qγ(x)(S(1)− S(y))m(y), 0 ≤ x ≤ y ≤ 1

2(1− qγ(x))(S(y)− S(0))m(y), 0 ≤ y ≤ x ≤ 1,

it is possible to compute functionals of the form

Eγx
[ ∫ τ

0

g(ξt) dt
]

=

∫ 1

0

G(x, y)g(y) dy.
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Hence

Eγx
[ ∫ τ

0

g(ξt) dt
]

=
1− e−2γx

1− e−2γ

∫ 1

x

1− e−2γ(1−y)

γy(1− y)
g(y) dy +

e−2γx − e−2γ

1− e−2γ

∫ x

0

e2γy − 1

γy(1− y)
g(y) dy, (1)

whenever the integrals on the right hand side are well-defined. In particular, for x = 1/N and N large,
if we first apply

qγ(1/N) =
1− e−2γ/N

1− e−2γ
∼ ωγ
N
, ωγ =

2γ

1− e−2γ
γ 6= 0, ω0 = 1, (2)

then after suitable integral approximations it follows for the case g(y) = 1 that

Eγ1/N [τ ] ∼ 2 lnN + 2

N
+

1

N

(
2γ − γ3

9

)
. (3)

Similarly, for the case g(y) = y we have the large N approximation

Eγ1/N
[ ∫ τ

0

ξt dt
]
≈ ωγ
N

∫ 1

0

1− e−2γ(1−y)

γ(1− y)
dy ≈ ωγ

N

e−2γ − 1 + 2γ + 2γ2

2γ2
, (4)

and for g(y) = y(1− y) an approximation based on (1) yields

Eγ1/N
[ ∫ τ

0

ξt(1− ξt) dt
]
≈ ωγ
N

∫ 1

0

1− e−2γ(1−y)

γ
dy ≈ ωγ

N

e−2γ − 1 + 2γ

2γ2
. (5)

The process conditioned on fixation. Let P∗γx and E∗γx be the distribution and expectation of the
Wright-Fisher diffusion conditioned on the event of fixation, τ1 <∞. Then

Pγx(τ < t) = Pγx(τ1 < t) + Pγx(τ0 < t) = P∗γx (τ1 < t)qγ(x) + P∗γx (τ0 < t)(1− qγ(x)). (6)

The drift and variance functions for the conditioned process are

µ∗(x) = µ(x) +
s(x)

S(x)
σ2(x) = γx(1− x)

1 + e−2γx

1− e−2γx

and
σ2∗(x) = σ2(x) = x(1− x).

Again one can find the speed and scale functions as well as the Green function, which gives in particular

E∗γx (τ1) =
(e−2γx − e−2γ)

γ(1− e−2γx)(1− e−2γ)

∫ x

0

(1− e−2γy)2

y(1− y)e−2γy
dy +

∫ 1

x

1− e−2γ(1−y)

γy(1− y)

1− e−2γy

1− e−2γ
dy,

see Karlin and Taylor (1981), Ch 15, (9.9).
For x = 1/N , the first term on the right side is of the order 2/N and vanishes asymptotically in

comparison with the second term, which yields the approximation

E∗γ1/N (τ1) ≈
∫ 1

0

(1− e−2γy)(1− e−2γ(1−y))
y(1− y)γ(1− e−2γ)

dy = 2− 1

9
γ2 +

7

675
γ4 +O(γ6). (7)
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The neutral model. For the neutral Wright-Fisher model with γ = 0 one has q0(x) = x,

E0
x

[ ∫ τ

0

g(ξt) dt
]

= x

∫ 1

x

2

y
g(y) dy + (1− x)

∫ x

0

2

1− y
g(y) dy, (8)

and
E0
x(τ) = −2x lnx− 2(1− x) ln(1− x), (9)

in agreement with (3). Conditional on fixation in 1 the process satisfies the stochastic differential equation

ξt = ξ0 +

∫ t

0

(1− ξs) ds+

∫ t

0

√
ξs(1− ξs) dWs.

Since the Ito integral has expectation zero the expected value mt(x) = Ex[ξt|τ1 < τ0] is the solution
mt(x) = 1 − (1 − x)e−t of the ordinary differential equation m′t(x) = 1 − mt(x), m0(x) = x. By
symmetry, we obtain

Ex[ξt|τ1 < τ0] = 1− (1− x)e−t, Ex[ξt|τ0 < τ1] = xe−t. (10)

By Kimura Kimura (1955, 1970), conditional on fixation,

P∗0x (τ1 > t) = (1− x)

∞∑
i=1

(1 + 2i)(−1)i−1H([i− 1, i+ 2], [2], x)e−i(i+1)t/2,

where H is the hypergeometric function. Taking x→ 0, H([i− 1, i+ 2], [2], 0) = 1 for all i ≥ 1. Hence,

P∗00 (τ1 > t) =

∞∑
i=1

(1 + 2i)(−1)i−1e−i(i+1)t/2, t ≥ 0, (11)

and

G0(t) = E∗00 (min(τ1, t)) =

∞∑
i=1

2(1 + 2i)(−1)i−1

i(i+ 1)
(1− e−i(i+1)t/2). (12)

Also, E∗00 (τ1) = limt→∞G0(t) = 2.

Wright-Fisher diffusion with returns from the boundary. Following Maruyama Maruyama
(1977), we now modify the boundary behavior of the diffusion process. When the process hits the
boundary point 0 then it remains in 0 during a random time which is exponentially distributed with rate
κ, after which it returns to the interior of the state space by a jump to a fixed point x0. From this time
on the process starts executing a new path of (ξt) with ξ0 = x0. If the process hits the upper boundary
point 1 it immediately jumps to the lower boundary 0 where it holds for an exponential duration and
then jumps to x0, as in the previous case. More general versions of this type of modified process have
been studied systematically in e.g. Peng and Li (2013), where it is called diffusion with holding and
jumping boundary. It is clear that the modified process no longer get trapped at exit points but rather
has a steady state on the semi closed interval [0, 1). The unique stationary distribution is given by

µ(0) =
1

1 + κ
∫ 1

0
G(x0, y) dy

, µ(y) dy =
κG(x0, y) dy

1 + κ
∫ 1

0
G(x0, y) dy

, 0 < y < 1. (13)
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The site frequency spectrum. In this paragraph we let L independent copies of the Wright-Fisher
diffusion process with return from the boundary represent the status of a sequence of L consecutive
codon sites. The state of each component is the frequency of a mutating derived allele at the site and the
boundary 0 is the clonal state that corresponds to a single ancestral allele throughout the population.

To comply with the choice of parameters in the main article, we take x0 = 1/N and κ = Nθ/L in
(13) and suppose that both N and L are large. Then by (2) and (3),

µ(0) =
1

1 + 2θ log(N)/L
, µ(y) dy ≈ θ/L

1 + 2θ log(N)/L
ωγ

1− e−2γ(1−y)

γy(1− y)
dy, 0 < y < 1.

For our application the measure µ(y) dy has the interpretation of a “site frequency spectrum” and µ(0)
is the probability that the site is clonal. This is in agreement with Eq. (31) of Evans et al. (2007) and
Eq. (9.23) of Ewens (2004). It follows that the number of polymorphic sites has a binomial distribution
Bin(L, 1− µ(0)), hence approximately a Poisson distribution with mean 2θ log(N). Thus,

the fraction of polymorphic sites in a sequence of length L ∼ 2θ logN

L
, (14)

and if this measure is sufficiently small then in a typical site the expected frequency is∫ 1

0

yµ(y) dy ≈ θ

L
ωγ

∫ 1

0

1− e−2γ(1−y)

γ(1− y)
dy (15)

and the expected heterozygosity∫ 1

0

2y(1− y)µ(y) dy ≈ θ

L
ωγ

∫ 1

0

1− e−2γ(1−y)

γ
dy, (16)

where the integrals in the above expressions are both finite.
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