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Abstract

We show that the American put option price is log-concave as a function of the log-price of the
underlying asset. Thus the elasticity of the price decreases with increasing stock value. We also con-
sider related contracts of American type, and we provide an example showing that not all American
option prices are log-concave in the stock log-price.
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1. Introduction

In the absence of an explicit formula for the value of an American put option, there is
a lot of interest in finding quantitative and qualitative properties of this price, in particular
in the most fundamental case of the underlying asset being modeled by geometric Brown-
ian motion. These questions are often, apart from their obvious relevance to applications,
mathematically interesting and challenging. The literature in this field is extensive. Early
references are [16] and [18] giving the first formulation of the price of the American style
options as the solution of free boundary problems. The equivalence between the stochastic
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formulation and the free boundary problem for a put option is shown in [9]. Let us also
mention the article [17] that gives an overview of early results in the area and contains
many references.

To be more specific, consider a market consisting of a bank account with deterministic
price process

B(u) =™ B(0)

and one risky asset with price process modeled, under a risk-neutral measure, by geometric
Brownian motion,

dSw)=rSdu+oSdWw, So=s.

Here the interest rate> 0 and the volatilityg > 0 are assumed to be constants &inds a
standard Brownian motion. The arbitrage free piicat timex of an American put option
with maturity 7 > u is given byV (S(u), u) where

V(s,u)= sup Ee V(K-S . 1)
O<y<T—u

Here the supremum is taken over random timélsat are stopping times with respect to the
filtration generated by the Brownian motidh, compare [11]. The function— (K —s)*
used here is called the contract function. The value of the American put option is thus the
maximal discounted pay-off with the pay-off given by the contract function. Recall that
a hedger who replicates a claim (for example, an American put option) at each instant
u should have a portfolio consisting &f (S(«), u) stocks, where/; denotes the partial
derivative with respect to the first variable. It is thus evident that convexity properties of
the price function are of great interest: the American put option price is indeed convex
in S(u), which thus in particular means that the number of stocks in the hedging portfolio
increases with increasing asset value. In fact, this convexity does not only hold in the case
of geometric Brownian motion, but for virtually any time- and level-dependent volatility
as long as the contract function is convex, compare [6—8]. To prove this one might approx-
imate the American option by so-called Bermudan options that can only be exercised at a
discrete set of times. On each subinterval between the times allowed for exercise, this op-
tion can be priced as a European option. The American option price can then be obtained
as the limit (as the set of possible exercise times gets denser) of European option prices
which are known to be convex if the contract function is convex.

Another such qualitative property of interest related to convexity is log-concavity. Re-
call that a non-negative functiandefined on the set of positive real numbers is said to be
log-concave in the log-variable if

v(sts37") = visp (st ()

forall 0 < A < 1 andsy, s2 > 0. If v is strictly positive, then (2) is equivalent to the func-
tion x — Inwv(e*) being concave. An elementary computation shows that log-concavity of
the price function in the log-variable, for each fixed timds equivalent to the so-called
elasticityof the option price being decreasing. The elasticity is defined to be

sVi(s, u)

.Q(S,M) = m

©)
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Perhaps not as well-known as= V; or I = Vj;, the elasticitys2, sometimes referred

to asn, is often included as one of the “Greeks” for option prices. We recall that the
hedger described above should hayéS (), u) stocks in his hedging portfolio and thus
the amounts, V(S (u), u) invested in the stock. Therefore the elastiagzyrepresents the
fraction of the hedging portfolio that should be invested in the stock. Roughly speaking,
this means that if the stock price increases one percent, the option price incHases
percent.

In Section 2 we show that at every fixed timéhe elasticity of the American put option
is decreasing as a function of the stock pricevhere the stock price is modeled by geo-
metric Brownian motion. This was previously known for European options with contract
functions that are log-concave in the stock log-price, see [2,3]. However, passing from the
result for European options to the corresponding result for American options is not imme-
diate as in the case of convexity, as discussed above, since the prices of Bermudan options
in general arenot log-concave. Instead we use the fact that the property of log-concavity
after a change of coordinates is equivalenfto f < 0, wheref is the option price in the
new coordinates and denotes a certain bilinear form defined below. We show by explicit
calculations thatf ¢ f < 0 along the “parabolic” boundary of the continuation region
(compare Lemmas 2.3, 2.5, 2.6), and we also provide a “maximum principle” (compare
Proposition 2.2) to conclude thgte f < 0 also in the interior of the continuation region.

In Section 2 we also provide an example which proves the existence of contract func-
tions, in supremum norm arbitrarily close to the contract function of the put option, for
which log-concavity in the stock log-price is not preserved for the corresponding Ameri-
can contract even in the case when the underlying asset is modeled by geometric Brownian
motion. Thus there is no generalization of the results in [2,3] to general American con-
tracts. The log-concavity of the American put option price is therefore rather delicate. In
Section 3 we extend our result on the American put option to the case of American calls
on a dividend paying stock.

The results about preservation of log-concavity for European options depend heavily on
the stock price being modelled by a geometric Brownian motion. In fact, geometric Brown-
ian motion is essentially the only model for which log-concavity of the contract function
always is preserved, compare Theorem 1.2 in [13]. In spite of this, it is, however, of course
still conceivable that log-concavity holds for the American put option for a more general
class of models than geometric Brownian motion. We leave as an interesting problem to
determine precisely which models that have this property. In an other direction, keeping the
underlying asset modeled by geometric Brownian motion, we might ask which American
options with log-concave contract functions have prices that are log-concave in the stock
log-price. From the example in Section 2, we know that not all log-concave contracts have
this property. Determining which contracts that do have this property is also an interesting
open problem.

Instead of defining American put options as optimal stopping problems, we view them
as solutions of free boundary problems, compare [9,12]. We show that the log-concavity in
the stock log-price of the contract function is preserved by adapting techniques developed
in [10] and by studying the behavior of the solution near the free boundary and near the
singular point of the contract function.
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2. The American put option
The main result in this article is the following theorem.

Theorem 2.1. At each fixed tima < T, the elasticitys2 (s, u) of an American put option
is decreasing as a function of the stock vatuer, equivalently, the American put price is
log-concave irns.

This section mainly contains the proof of Theorem 2.1. Recall that there exists an opti-
mal stopping timey* in (1) defined as
y*:=inflv >0: (S(),u +v) ¢ D},
where the continuation regidh is defined by
D:={(s,u) € (0,00) x (—o0, T]: V(s,u) > (K —s)*}.
The continuation region can also be described as
D= {(s, u). s > a(u)}
for some time-dependent functier(u) > 0. This function defines the optimal stopping
boundary
V.= {(s, u). s =a(u)}.
It is well known that the functiom («) is increasing and that
lima(u)=K and lim a(u) = i
u—T U—>—00 2r + o2

It is also known that this function is smooth, compare [4]. Moreover, the Vélaad the
functiona together solve the free boundary problem

Vu—i—izssz—i—rsVs—rV:O if s >a(u),
V=K-—s if s =au),
Vi=-1 ifs=au),
Vs, T)=(K —s)T,
compare for example [9,12] or [17]. The equatidgia(u), u) = —1 is often referred to as

the condition of smooth fit. Instead of working with(s, u), a(u), s andu we work below
with the dimensionless function&(x, r) andb(¢) and the variables andr defined by

s=Ke", T —u=2t/c? aw)=Ke’® and V(s,u)=Kf(x,1). (4)
It follows that f (x, r) andb(¢) solve the free boundary problem
fix,t)=Lf(x,1) if x> b(1),
fx,y=1—¢" if x=0(),
fr(x, 1) =—e* if x =b(),
fx,00=1—-eH"t,

(5)
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whereL f = fi + (C — 1) f, — Cf andC = 2r/o2. The functionb(r) representing the
free boundary in these coordinates is decreasing and satisfies

C

li = li =1 .

tl_r)%b(t) 0 and t_lrcpob(t) n cr1 (6)
The value functiory’ can be expressed in terms of the free boundiaayd the fundamental
solution

1 (x +(C=Dn)? }
I'(x,t)= ex—— — Ct
1) 2\ /mt p{ 4¢

to the equatiory; = L f. Indeed, at pointgx, r) in the continuation region we have
t b(t—r1)

0
flx,t)= f(l—ey)F(x—y,t)dy—i—C/ / I'x—y,7)dydr. (7
—00 0 —

Here the firstintegral is the price of the European put option (given in our new coordinates),
whereas the second integral represents the extra value of the American option.

We begin our analysis by introducing a bi-linear form appearing naturally in our calcu-
lations. Let

fog:=(fgxx—2fx&x+ frx8)/2

Since the value of the American put option is smooth in the continuation region it is
straightforward to check that the elastici®(s, u) defined in (3) is decreasing infor
every fixed timex ifand only if f o f = ffix — fx2 < 0 at all points(x, ).

Before we prove Theorem 2.1, we need a couple of results.

Proposition 2.2. Letg € C*(1) for some open sdtC R. Assume thag ¢ g = 0 at a point
xo € I, thatg ¢ g < 0in a neighborhood ofg and thatg (xg) # 0. Then

goLg<0
at the pointxo.
Remark. Note that ifg = g(x, t) satisfiesg, = Lg and the conditions of Proposition 2.2
are satisfied at some poi@ty, 1p), then

d(gog)=2808 =280Lg<0

at this point. Thus, the inequality of Proposition 2.2 shows that geometric Brownian motion
is a robust model for conservation of log-concavity. More precisely, if the log-concavity is
almost lost at some point, i.e.© g = 0, then the time-derivative of this expression satisfies
the inequality necessary for preserving log-concavity.

Proof. By assumption, the functiog ¢ ¢ = ggxx — g)% has a local maximum O afp.
Therefore

(808)x=2808x = 88xxx — &x&xx =0 8
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and

(89 8)xx = 88xrxx — 8oy <O
at xo. Now, assume thag, . (xg) # 0. Then straightforward calculations yield that at the
point xg
g0 (Lg) =g (gux +(C—1gy—Cg)
=808+ (C—1gog:—Cgog
=80 8xx
= (88rrxr — 28x&rrx +82,)/2
< g2y — &xunr

8xx < ggxgxxx>
=— |\ 88xx — —————
8 8xx

= % (g8xx — 82) =0,

where we have used thatxg) = 0. Finally, if g, (xo) = 0, then it follows from (8) that
Zxxx (x0) = 0. Using this, we find that

20 (Lg) < gl — &xgurx =0,
which finishes the proof. O

LetC :={(x,1): x > b(t), t > O} be the continuation region in the, r)-coordinates.
In the proof of Theorem 2.1 we need to check tliat f < 0 at the boundary

0C = {(x,O): X >0} U{(0,0)}U{(x,t): x =b(t), t>0}

of the continuation region (strictly speakirfg> f is not defined at the origin, so we instead
look at limsup, ,)_, 0.0) f © f, compare Lemma 2.5 below). Dealing with the part6f
which consists of the optimal stopping boundary is easy.

Lemma 2.3. If f is the price of the American put option, then
fof=C—1A+0C)" <0
at points(b(z), t), t > 0, of the optimal stopping boundary.

Proof. Differentiating the equalityf (b(1), 1) = K — ) with respect ta and using the
smooth fit condition one finds that (b(¢), t) = 0. Thus, from the equatiory = Lf itis
seen thatf,, (b(1)+,1) = C — e’® so

fof=ffu—f2=(1-e0)(C—0)— (V) =C— 1+ C)et®

at the optimal stopping boundary. Recall that the optimal stopping boundary is bounded

from below by the stopping boundary of the perpetual option, i.e., for each fixed
we havee?® > CL-H. compare (6). Plugging this in above we find thfat f < 0 at the

optimal stopping boundary. O
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To study the log-concavity at the singular point in the origin is a little bit harder. What
we need is Lemma 2.5, but first we consider the wedge

Cr:={(x,0: b(t1) <x<(1—-O)t, >0}

between the optimal stopping boundary and the line (1 — C)r for small timest. We
also letCo :=C\ (1.

Lemma 2.4. In the regionC; we havef,; > 0.

Proof. We first claim that for each time > O there exists a value =y (¢) such that
fxt = 0 at points(x, ) with b(¢) < x < y(¢) and f,; < 0 at points withx > y (7).

This statement follows from the approximation results of [5]. Indeed, in that paper a
sequence of functiong®, 8 > 0, is constructed so that’ — f asé — 0. Moreover, for
eachs there is a continuous curve= y°(t) so thatp®, <0 (> 0) if x < ¥°(t) (> y°(1)).
Sincep?® — f, it follows from standard interior estimates that, — f,, pointwise (use,
for example, Theorem 4.9 in [15] and the fact th#t), = L(fy)). Sincef;(b(t), 1) =0,
it follows from the boundary version of the strong maximum principle that- 0 at the
free boundary. Moreover, sing@(x, t) tends to 0 as grows to infinity for every fixed,
compare Lemma 2.6 below, there has to be points wijth>- O for every fixedt. Thus the
regions wherep?, are strictly positive and negative do not collapse asnds to 0. This
proves the existence f(z).

Now, recall that the functiorf,, can be expressed in terms of the fundamental solution
I' as

t

fax,t) =Te(x, 1) + C/ I(x —b(t — 1), 7)b(t — 7)dT,
0

compare Lemma 3.1 in [4]. Inserting= (1 — C)¢ the first term is 0 and using the known
asymptoticd () ~ —v/—2¢t Int for small times, compare [1,4] or [14], itis easily checked
that the second term is strictly positive. This finishes the proof of the lemma.

Lemma 2.5. The American option price satisfies
limsup fo f<0.
(x,t)—(0,0)

Proof. First note that since the contract function of the put option is log-concave in the
stock log-price, we only need to consider the above limit superior for points in the contin-
uation region. We now claim that it suffices to check that

limsup fo f<0. (9)
Co3(x,t)—(0,0)

To see this, note that
(fof)x = ffxxx - fxfxx
:ffxt_ftfx_(c_l)fof
Z ffu—(C=Lfof,
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where we have used the equatiofis= Lf, (fx)r = L(fx), f: =0 and f, <0. Now as-
sume that there exist a sequence of pointst,) € C1 converging to the origin such that
(f ¢ f)(xn, t,) > ¢ for somee > 0. Since(f o ), = —(C —1)f ¢ f inC1, we see that
(f 0 (A= Cty, ty) > g™ DA =)

for all n. As the sequence of points converges to the origin, the distdneeC)s, — x,
shrinks to 0, so it follows that the limit superior in (9) is at leasthus, if the limitof f ¢ f
is positive along a sequence of points in the wedgehen it is also positive along the line
x = (1— C)t, so it suffices to show (9), i.e., to check the limit superior for sequences of
points inCa.

To do this we decompose the American put pricas f = f£ + p where

0
FEG D) = /(1—ey)r<x—y,r)dy

and
t b(t—1)

px,t)= C/ [ I'x —y,t)dydr,
0 —oo
compare Eq. (7). Then
fof=rFofF42ffop+pop
= fF o fF 4 fFpax = 2fF pu + fEp + ppax — PE-
Recall thatf£ o f£ <0, see [2,3]. Moreoverff < 0 and

t

px(x,t):—C/F(x—b(t—r),r)drgo,

0
o)

fof < fEpax+ [Ep+ PPax. (10)
It is straightforward to check that

px,1) < Ct (11)
and

0
F(x,t)—feyf(x—y,l‘)dy

—00

£ 0] =

0

<|renl+ / e’ I'(x —y,t)dy
1
< ——=+1=0(1/1)

2Jnt



718 E. Ekstrom, J. Tysk / J. Math. Anal. Appl. 314 (2006) 710-723

for smallz, so the second term on the right-hand side of (10) certainly approaches O for
small. Moreover, fox > (1 — C)t we have

0
fEaJrzjkl—wuwx—»mdy

0
< /(1—ey)F((1—C)t—y,t)dy

0 1 )
) y
< 1—¢° ——td
f( 6)2 ?texp{ 4t}y
—00
o0
< 1 / ex{ yz}d vt/
< —F —— = .
2/t yexp 4 Y
0

Thus, considering (11), it suffices to show that = o(1/+/1) for (x, t) € C> close to the
origin. Now let

t

pastenn) = =C [ Ix = bt = 0).7)de

0
t/2 t

= —C/Fx(x—b(t—t),f)dr—C/Fx(x—b(t—r),r)dt
0 t/2

=11+ Db

We deal with/; andl, separately. First, note thatif< r andr is small, then the asymptotic
behavior ofb implies

x—1-C)t—bt—1)>A-C)t—1)—b(t—1)>0

for points inC,. Thus

2
4/, _t/ x—(1=C)t—bt—1)
?l_/< 73/2
_ _ _ _ 2
qu_u (1—C)r — bt ”)—cﬁ)w
4t
L= Clt - b1 (x — 1= Clt — b(t/2))?
x4+ |1—Clt — b(t x—|1—Clt —b(t
[frrtmgy o gy,
0
<2J7 x+11—-Clt —b(2)

x—|1=Clt—b(t/2)
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~ 21— Clt +b(1/2) — b(t)
Jﬁ(” “i-Ci-bG/2 )

where we in the last inequality have used that

t 00
k _k2 7)72/4
) expy — tdr=2 | e dy <2Jm
0 I

for some constank’; (use the coordinate change= k/./7). Thus it is straightforward,
using the known asymptoticsb(t) ~ «/—2tInt for the optimal stopping boundary, to
show that/; is uniformly bounded at points:, 7) € Ca close to the origin. Next,

x—(1-C)t—b(t—1)
_Iz—/< 2372

_ 1 _ _ _ 2
_(x A1-C)t—=b(t—1)) —Ct})dt

X ex
4t

t
X+ 11=Clt —b(t/2)
</ 13/2 dt
t/2

1
=(x+11-Clt —b(1/2))2(v2 - 1)$

so I, = o(1/4/t) for smallz. Consequentlyp,, = I + I> = 0(1/+/t) for smallt, which
finishes the proof. O

Next we deal with log-concavity of at infinity. Using the formulas foy, f, and f,
in terms ofb andI", compare Lemma 3.1 in [4], the next lemma is easily proved. We omit
the detalils.

Lemma 2.6. As xg tends to infinity, the suprema g¢f, f. and f,, in the region{(x, t):
x = xo} all tend exponentially to zero.

It is clear thatf o f = 0 for all points in{(x, 0): x > 0}. From Lemmas 2.3 and 2.5
it thus follows thatf ¢ f < O at the “parabolic boundary.” Therefore, if the function
(f¢ f)(x,t) satisfied some appropriate parabolic equation, then Theorem 2.1 would follow
from the maximum principle. However, it is not clear to us how to find such an equation.
Instead we introduce far > 0 the function

i, t) = f(x,t) —e(x + M)

for some constan¥/ large enough so thatx + CM + 1 — C > 0 for all points(x, ¢) in
the continuation region. We have

feoff=fof—2s(x+Mof+e2(x+M)ox+M)
=f<>f_8(x+M)fxx+25fx_8 . (12)
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We concentrate our study ¢F to the regiori/ defined as
Uu:.= {(x,t): frex(x,t) > 0} NC.

Note that ifC > 1, then it follows fromf; > 0 and f, < 0 that
fax=h—-(C=-Dfi+Cf =20

so the set/ = C. On the other hand, i€ < 1, thenC \ U is non-empty. This can be
seen from the equality,, = C — ¢* which holds for pointgx, r) at the optimal stopping
boundary. Also note thaf o f = ffix — f2 <0 if fix <0, so it remains to check that
f o f<0atpointsiri/.

Proposition 2.7. The functionf* satisfiesf® ¢ f¢ < 0 at all points at the boundary @f
at which f, . is well-defined. Moreover, at the origin

limsup f°o f°<0.
U>(x,1)—(0,0)

Proof. Boundary points can be of some different types. It suffices to check

(a) points in{(x,0): x > 0},

(b) points at the free boundary with., > 0,
(c) pointsinC with fy, =0, and

(d) the origin.

Points of type (a) are easy to handle. Indeed, sifice f, = f,x = 0 at these points it
follows from (12) thatf¢ o f¢ = —¢2. Similarly, points of type (b) and (d) are taken care

of by (12) and Lemmas 2.3 and 2.5, respectively. Finally, points of type (c) are handled
using thatf o f < —f2<0if fi, =0. O

Proof of Theorem 2.1. In the stopping region the option price equals the contract function,
so the price is clearly log-concave. Moreover, at point§ it/ we havef ¢ f <0 as
explained above, so it remains to show thfat f = ffyx — fx2 < 0 everywhere in the
regionl/. In order to do this we first show tha¥ ¢ f¢ < 0inl{. For somely > 0, define

the set

A®:={(x, 1) el: 1 < Toand(f* o f)(x, 1) >0},

and assume that® # (. From (12) and Lemma 2.6 it follows that we can find a conséant
such thatf* ¢ f¢ < O for all points(x, ) with x > N. Thus A® is bounded, so the closure
Af is compact. Let

to=inf{z: (x,1) € A® for somex}.

Due to compactness there existssuch that(xo, 7o) € A¢. By continuity, we have that
(f¢ ¢ f%)(x0,10) =0, so it follows from Proposition 2.7 that this point is in the interior
of U. Thus, by the definition ofy, the function

x> (ffo fx,10) forxeld
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attains a local maximum ap. Hence we have
foff=(fofx=0 and (f*o ) <0
at the point(xo, o). Note thatf? = f, — e < 0 since fy < 0. Therefore G= f¢ o f¢ =
fEfE — (f;f)2 at (xo, o) implies thatf¢ (xo, z9) # 0. Consequently Proposition 2.2 yields
ffoLf<0
at (xo, #p). At this point we also have, again by the definitiorgf
(ffo f): =20,
S0

O (fPo f) —2f o (LfF)
=2fC0 [ —2f o Lf+2ef° o L(x + M)
=2f°oL(x+ M)
=26Cfy —e(CM 4 Cx +1—C) fox — 26°C
<2eCfy —e(CM +Cx+1—0C)fer <O0.

To arrive at this contradiction we have usgd< 0 and f,, > 0 in /. From the contra-
diction it follows thatA® = ¢). SinceTy is arbitrary, ¢ ¢ f¢ < 0 in the regiori/. Letting
¢ — 0, we find thatf ¢ f < 0 in the regiori/{. This finishes the proof. O

We end this section with an example showing that log-concavity in the stock log-price is
not preserved in general for American options in the standard Black—Scholes model. Thus
there is no direct generalization of the results by Borell in [2,3].

Example. Consider the American option with contract function given in the transformed
coordinates by

hx)=1—e)" +¢

for some constard € (0, 1). Then it is straightforward to check that the optimal stopping
boundary consists of two curves, one of which has-aoordinate strictly larger than 0 and

the other one has antcoordinate strictly smaller than 0. At the boundary where 0 one

can show that the smooth fit conditigh = 0 holds (for example, methods similar to the
one used to prove Lemma 7.8 in [12] can be used). Moreover, since American option prices
increase in the time to maturity we hayg> 0 (actually, if the boundary i€, then the
smooth fit condition implies thaf, = 0 at the boundary). Thus, at the part of the boundary
wherex > 0we havef, = f; — (C = 1) fi + Cf > Cf,s0f o f > Cf?=Ce?> 0.

3. American calls on a dividend paying stock

In this section we consider call options written on a stock which pays a continuous
dividend yields > 0. The stock price is thus modeled as

dSw)=(r —8)Sdu+oSdw
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under the risk-neutral probability measure. Using the same change of coordinates (4) as in
Section 2, one finds that the prigeof the American call option then satisfies

fie,=LFf(x,t)  ifx>b@),

f,)y=e" -1 if x =b(1),
frlx, 1) =¢€" if x=0(),
fx.0)=("—D",
where
Lf=fu+(C—-D-1f —Cf (13)

and D = 2 (the functionsf andb are of course not the same here as in the previous

o

section).
We then have the following result for American call options.

Theorem 3.1. For any fixed time: < T, the price of an American call option written on a
dividend paying stock is log-concave as a function of the stock log-price.

Proof. Recall thatb is monotone increasing with

. C .
lime?® == and limet® =
t—0 D 1—>00 ‘}/ — 1

wherey is the positive solution to the equation
y24+(C—-D—-1y—C=0.

It is straightforward to check that
fof=De* —(1+C+D)e*+C

at the free boundary, and that (14) implies tifat f < 0 at the free boundary. Noting that
£ is %1 up to the point(n %, 0), no extra analysis (corresponding to Lemma 2.5) needs
to be performed in the vicinity of this point. Using

(14)

o0 t o0
f(x,0) =‘/(ey - DI (x —y,t)dy—l—f / (De” — C)I'(x — y,1)dydT,
0 0 b(t—71)
where

I'(x,t)=

_ _ 2
exp{_(x+(c 4tD 1)1) _Ct}’

1
2/t
it is straightforward to check that

limsup fo f<0.
(x,1)—(0,0)

It follows that f ¢ f < 0 at all boundary points of the continuation region. The proof is
then completed in the same way as in the proof of Theorem 2.1 but with the funttion
defined by

i, t) = f(x,t)+e(x— M)
for M large sothat — D —1— Cx + CM > 0 in the continuation region. O
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