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Abstract

We show that the American put option price is log-concave as a function of the log-price
underlying asset. Thus the elasticity of the price decreases with increasing stock value. We a
sider related contracts of American type, and we provide an example showing that not all Am
option prices are log-concave in the stock log-price.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In the absence of an explicit formula for the value of an American put option, the
a lot of interest in finding quantitative and qualitative properties of this price, in parti
in the most fundamental case of the underlying asset being modeled by geometric B
ian motion. These questions are often, apart from their obvious relevance to applic
mathematically interesting and challenging. The literature in this field is extensive.
references are [16] and [18] giving the first formulation of the price of the American
options as the solution of free boundary problems. The equivalence between the sto
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formulation and the free boundary problem for a put option is shown in [9]. Let us
mention the article [17] that gives an overview of early results in the area and co
many references.

To be more specific, consider a market consisting of a bank account with determ
price process

B(u) = eruB(0)

and one risky asset with price process modeled, under a risk-neutral measure, by ge
Brownian motion,

dS(u) = rS du + σS dW, S0 = s.

Here the interest rater > 0 and the volatilityσ > 0 are assumed to be constants andW is a
standard Brownian motion. The arbitrage free priceV at timeu of an American put option
with maturityT > u is given byV (S(u),u) where

V (s,u) = sup
0�γ�T −u

Ee−rγ
(
K − S(γ )

)+
. (1)

Here the supremum is taken over random timesγ that are stopping times with respect to t
filtration generated by the Brownian motionW , compare [11]. The functions �→ (K − s)+
used here is called the contract function. The value of the American put option is th
maximal discounted pay-off with the pay-off given by the contract function. Recall
a hedger who replicates a claim (for example, an American put option) at each i
u should have a portfolio consisting ofVs(S(u),u) stocks, whereVs denotes the partia
derivative with respect to the first variable. It is thus evident that convexity properti
the price function are of great interest: the American put option price is indeed c
in S(u), which thus in particular means that the number of stocks in the hedging por
increases with increasing asset value. In fact, this convexity does not only hold in th
of geometric Brownian motion, but for virtually any time- and level-dependent vola
as long as the contract function is convex, compare [6–8]. To prove this one might a
imate the American option by so-called Bermudan options that can only be exercis
discrete set of times. On each subinterval between the times allowed for exercise, t
tion can be priced as a European option. The American option price can then be ob
as the limit (as the set of possible exercise times gets denser) of European option
which are known to be convex if the contract function is convex.

Another such qualitative property of interest related to convexity is log-concavity
call that a non-negative functionv defined on the set of positive real numbers is said to
log-concave in the log-variable if

v
(
sλ
1s1−λ

2

)
� v(s1)

λv(s2)
1−λ (2)

for all 0 < λ < 1 ands1, s2 > 0. If v is strictly positive, then (2) is equivalent to the fun
tion x �→ lnv(ex) being concave. An elementary computation shows that log-concav
the price function in the log-variable, for each fixed timeu, is equivalent to the so-calle
elasticityof the option price being decreasing. The elasticity is defined to be

Ω(s,u) = sVs(s, u)
. (3)
V (s,u)
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Perhaps not as well-known as∆ = Vs or Γ = Vss , the elasticityΩ , sometimes referre
to asη, is often included as one of the “Greeks” for option prices. We recall tha
hedger described above should haveVs(S(u),u) stocks in his hedging portfolio and thu
the amountSuVs(S(u),u) invested in the stock. Therefore the elasticityΩ represents the
fraction of the hedging portfolio that should be invested in the stock. Roughly spea
this means that if the stock price increases one percent, the option price increasesΩ(s,u)

percent.
In Section 2 we show that at every fixed timeu the elasticity of the American put optio

is decreasing as a function of the stock prices, where the stock price is modeled by ge
metric Brownian motion. This was previously known for European options with con
functions that are log-concave in the stock log-price, see [2,3]. However, passing fro
result for European options to the corresponding result for American options is not i
diate as in the case of convexity, as discussed above, since the prices of Bermudan
in general arenot log-concave. Instead we use the fact that the property of log-conc
after a change of coordinates is equivalent tof � f � 0, wheref is the option price in the
new coordinates and� denotes a certain bilinear form defined below. We show by exp
calculations thatf � f � 0 along the “parabolic” boundary of the continuation reg
(compare Lemmas 2.3, 2.5, 2.6), and we also provide a “maximum principle” (com
Proposition 2.2) to conclude thatf � f � 0 also in the interior of the continuation regio

In Section 2 we also provide an example which proves the existence of contract
tions, in supremum norm arbitrarily close to the contract function of the put option
which log-concavity in the stock log-price is not preserved for the corresponding A
can contract even in the case when the underlying asset is modeled by geometric Br
motion. Thus there is no generalization of the results in [2,3] to general American
tracts. The log-concavity of the American put option price is therefore rather delica
Section 3 we extend our result on the American put option to the case of American
on a dividend paying stock.

The results about preservation of log-concavity for European options depend hea
the stock price being modelled by a geometric Brownian motion. In fact, geometric Br
ian motion is essentially the only model for which log-concavity of the contract func
always is preserved, compare Theorem 1.2 in [13]. In spite of this, it is, however, of c
still conceivable that log-concavity holds for the American put option for a more ge
class of models than geometric Brownian motion. We leave as an interesting prob
determine precisely which models that have this property. In an other direction, keep
underlying asset modeled by geometric Brownian motion, we might ask which Ame
options with log-concave contract functions have prices that are log-concave in the
log-price. From the example in Section 2, we know that not all log-concave contracts
this property. Determining which contracts that do have this property is also an inter
open problem.

Instead of defining American put options as optimal stopping problems, we view
as solutions of free boundary problems, compare [9,12]. We show that the log-conca
the stock log-price of the contract function is preserved by adapting techniques dev
in [10] and by studying the behavior of the solution near the free boundary and ne
singular point of the contract function.
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2. The American put option

The main result in this article is the following theorem.

Theorem 2.1. At each fixed timeu < T , the elasticityΩ(s,u) of an American put option
is decreasing as a function of the stock values, or, equivalently, the American put price
log-concave inln s.

This section mainly contains the proof of Theorem 2.1. Recall that there exists an
mal stopping timeγ ∗ in (1) defined as

γ ∗ := inf
{
v � 0:

(
S(v),u + v

)
/∈ D

}
,

where the continuation regionD is defined by

D := {
(s, u) ∈ (0,∞) × (−∞, T ]: V (s,u) > (K − s)+

}
.

The continuation region can also be described as

D = {
(s, u): s > a(u)

}
for some time-dependent functiona(u) > 0. This function defines the optimal stoppi
boundary

Ψ := {
(s, u): s = a(u)

}
.

It is well known that the functiona(u) is increasing and that

lim
u→T

a(u) = K and lim
u→−∞a(u) = 2rK

2r + σ 2
.

It is also known that this function is smooth, compare [4]. Moreover, the valueV and the
functiona together solve the free boundary problem



Vu + σ2s2

2 Vss + rsVs − rV = 0 if s > a(u),

V = K − s if s = a(u),

Vs = −1 if s = a(u),

V (s, T ) = (K − s)+,

compare for example [9,12] or [17]. The equationVs(a(u),u) = −1 is often referred to a
the condition of smooth fit. Instead of working withV (s,u), a(u), s andu we work below
with the dimensionless functionsf (x, t) andb(t) and the variablesx andt defined by

s = Kex, T − u = 2t/σ 2, a(u) = Keb(t) and V (s,u) = Kf (x, t). (4)

It follows thatf (x, t) andb(t) solve the free boundary problem


ft (x, t) = Lf (x, t) if x > b(t),

f (x, t) = 1− ex if x = b(t),

fx(x, t) = −ex if x = b(t),

x +

(5)
f (x,0) = (1− e ) ,
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whereLf = fxx + (C − 1)fx − Cf andC = 2r/σ 2. The functionb(t) representing the
free boundary in these coordinates is decreasing and satisfies

lim
t→0

b(t) = 0 and lim
t→∞b(t) = ln

C

C + 1
. (6)

The value functionf can be expressed in terms of the free boundaryb and the fundamenta
solution

Γ (x, t) = 1

2
√

πt
exp

{
− (x + (C − 1)t)2

4t
− Ct

}

to the equationft = Lf . Indeed, at points(x, t) in the continuation region we have

f (x, t) =
0∫

−∞
(1− ey)Γ (x − y, t) dy + C

t∫
0

b(t−τ)∫
−∞

Γ (x − y, τ ) dy dτ. (7)

Here the first integral is the price of the European put option (given in our new coordin
whereas the second integral represents the extra value of the American option.

We begin our analysis by introducing a bi-linear form appearing naturally in our c
lations. Let

f � g := (fgxx − 2fxgx + fxxg)/2.

Since the value of the American put option is smooth in the continuation region
straightforward to check that the elasticityΩ(s,u) defined in (3) is decreasing ins for
every fixed timeu if and only if f � f = ffxx − f 2

x � 0 at all points(x, t).
Before we prove Theorem 2.1, we need a couple of results.

Proposition 2.2. Letg ∈ C4(I ) for some open setI ⊆ R. Assume thatg � g = 0 at a point
x0 ∈ I , thatg � g � 0 in a neighborhood ofx0 and thatg(x0) 	= 0. Then

g �Lg � 0

at the pointx0.

Remark. Note that ifg = g(x, t) satisfiesgt = Lg and the conditions of Proposition 2
are satisfied at some point(x0, t0), then

∂t (g � g) = 2g � gt = 2g �Lg � 0

at this point. Thus, the inequality of Proposition 2.2 shows that geometric Brownian m
is a robust model for conservation of log-concavity. More precisely, if the log-concav
almost lost at some point, i.e.,g � g = 0, then the time-derivative of this expression satis
the inequality necessary for preserving log-concavity.

Proof. By assumption, the functiong � g = ggxx − g2
x has a local maximum 0 atx0.

Therefore

(g � g)x = 2g � gx = ggxxx − gxgxx = 0 (8)
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(g � g)xx = ggxxxx − g2
xx � 0

at x0. Now, assume thatgxx(x0) 	= 0. Then straightforward calculations yield that at
pointx0

g � (Lg) = g � (
gxx + (C − 1)gx − Cg

)
= g � gxx + (C − 1)g � gx − Cg � g

= g � gxx

= (
ggxxxx − 2gxgxxx + g2

xx

)
/2

� g2
xx − gxgxxx

= gxx

g

(
ggxx − ggxgxxx

gxx

)

= gxx

g

(
ggxx − g2

x

) = 0,

where we have used thatg(x0) 	= 0. Finally, if gxx(x0) = 0, then it follows from (8) tha
gxxx(x0) = 0. Using this, we find that

g � (Lg) � g2
xx − gxgxxx = 0,

which finishes the proof. �
Let C := {(x, t): x > b(t), t > 0} be the continuation region in the(x, t)-coordinates

In the proof of Theorem 2.1 we need to check thatf � f � 0 at the boundary

∂C = {
(x,0): x > 0

} ∪ {
(0,0)

} ∪ {
(x, t): x = b(t), t > 0

}
of the continuation region (strictly speakingf �f is not defined at the origin, so we inste
look at lim sup(x,t)→(0,0) f � f , compare Lemma 2.5 below). Dealing with the part of∂C
which consists of the optimal stopping boundary is easy.

Lemma 2.3. If f is the price of the American put option, then

f � f = C − (1+ C)eb(t) < 0

at points(b(t), t), t > 0, of the optimal stopping boundary.

Proof. Differentiating the equalityf (b(t), t) = K − eb(t) with respect tot and using the
smooth fit condition one finds thatft (b(t), t) = 0. Thus, from the equationft = Lf it is
seen thatfxx(b(t)+, t) = C − eb(t), so

f � f = ffxx − f 2
x = (

1− eb(t)
)(

C − eb(t)
) − (

eb(t)
)2 = C − (1+ C)eb(t)

at the optimal stopping boundary. Recall that the optimal stopping boundary is bo
from below by the stopping boundary of the perpetual option, i.e., for each fixedt > 0
we haveeb(t) > C

C+1, compare (6). Plugging this in above we find thatf � f < 0 at the
optimal stopping boundary.�
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To study the log-concavity at the singular point in the origin is a little bit harder. W
we need is Lemma 2.5, but first we consider the wedge

C1 := {
(x, t): b(t) � x � (1− C)t, t > 0

}
between the optimal stopping boundary and the linex = (1 − C)t for small timest . We
also letC2 := C \ C1.

Lemma 2.4. In the regionC1 we havefxt � 0.

Proof. We first claim that for each timet > 0 there exists a valuex = γ (t) such that
fxt � 0 at points(x, t) with b(t) � x � γ (t) andfxt � 0 at points withx � γ (t).

This statement follows from the approximation results of [5]. Indeed, in that pa
sequence of functionspδ , δ > 0, is constructed so thatpδ → f asδ → 0. Moreover, for
eachδ there is a continuous curvex = γ δ(t) so thatpδ

xt < 0 (> 0) if x < γ δ(t) (> γ δ(t)).
Sincepδ → f , it follows from standard interior estimates thatpδ

xt → fxt pointwise (use
for example, Theorem 4.9 in [15] and the fact that(fx)t = L(fx)). Sinceft (b(t), t) = 0,
it follows from the boundary version of the strong maximum principle thatfxt > 0 at the
free boundary. Moreover, sinceft (x, t) tends to 0 asx grows to infinity for every fixedt ,
compare Lemma 2.6 below, there has to be points withfxt > 0 for every fixedt . Thus the
regions wherepδ

xt are strictly positive and negative do not collapse asδ tends to 0. This
proves the existence ofγ (t).

Now, recall that the functionfxt can be expressed in terms of the fundamental solu
Γ as

fxt (x, t) = Γx(x, t) + C

t∫
0

Γx

(
x − b(t − τ), τ

)
ḃ(t − τ) dτ,

compare Lemma 3.1 in [4]. Insertingx = (1− C)t the first term is 0 and using the know
asymptoticsb(t) ∼ −√−2t ln t for small timest , compare [1,4] or [14], it is easily checke
that the second term is strictly positive. This finishes the proof of the lemma.�
Lemma 2.5. The American option price satisfies

lim sup
(x,t)→(0,0)

f � f � 0.

Proof. First note that since the contract function of the put option is log-concave i
stock log-price, we only need to consider the above limit superior for points in the co
uation region. We now claim that it suffices to check that

lim sup
C2�(x,t)→(0,0)

f � f � 0. (9)

To see this, note that

(f � f )x = ffxxx − fxfxx

= ffxt − ftfx − (C − 1)f � f

� ffxt − (C − 1)f � f,
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where we have used the equationsft = Lf , (fx)t = L(fx), ft � 0 andfx � 0. Now as-
sume that there exist a sequence of points(xn, tn) ∈ C1 converging to the origin such th
(f � f )(xn, tn) > ε for someε > 0. Since(f � f )x � −(C − 1)f � f in C1, we see that

(f � f )
(
(1− C)tn, tn

)
� εe−(C−1)((1−C)tn−xn)

for all n. As the sequence of points converges to the origin, the distance(1 − C)tn − xn

shrinks to 0, so it follows that the limit superior in (9) is at leastε. Thus, if the limit off � f

is positive along a sequence of points in the wedgeC1, then it is also positive along the lin
x = (1 − C)t , so it suffices to show (9), i.e., to check the limit superior for sequenc
points inC2.

To do this we decompose the American put pricef asf = f E + p where

f E(x, t) =
0∫

−∞
(1− ey)Γ (x − y, t) dy

and

p(x, t) = C

t∫
0

b(t−τ)∫
−∞

Γ (x − y, τ ) dy dτ,

compare Eq. (7). Then

f � f = f E � f E + 2f E � p + p � p

= f E � f E + f Epxx − 2f E
x px + f E

xxp + ppxx − p2
x.

Recall thatf E � f E � 0, see [2,3]. Moreover,f E
x � 0 and

px(x, t) = −C

t∫
0

Γ
(
x − b(t − τ), τ

)
dτ � 0,

so

f � f � f Epxx + f E
xxp + ppxx. (10)

It is straightforward to check that

p(x, t) � Ct (11)

and

∣∣f E
xx(x, t)

∣∣ =
∣∣∣∣∣Γ (x, t) −

0∫
−∞

eyΓ (x − y, t) dy

∣∣∣∣∣

�
∣∣Γ (x, t)

∣∣ +
∣∣∣∣∣

0∫
−∞

eyΓ (x − y, t) dy

∣∣∣∣∣
� 1√ + 1= O(1/

√
t )
2 πt



718 E. Ekström, J. Tysk / J. Math. Anal. Appl. 314 (2006) 710–723

for

ic
for small t , so the second term on the right-hand side of (10) certainly approaches 0t

small. Moreover, forx � (1− C)t we have

f E(x, t) =
0∫

−∞
(1− ey)Γ (x − y, t) dy

�
0∫

−∞
(1− ey)Γ

(
(1− C)t − y, t

)
dy

�
0∫

−∞
(1− ey)

1

2
√

πt
exp

{
−y2

4t

}
dy

� 1

2
√

πt

∞∫
0

y exp

{
−y2

4t

}
dy = √

t/π.

Thus, considering (11), it suffices to show thatpxx = o(1/
√

t ) for (x, t) ∈ C2 close to the
origin. Now let

pxx(x, t) = −C

t∫
0

Γx

(
x − b(t − τ), τ

)
dτ

= −C

t/2∫
0

Γx

(
x − b(t − τ), τ

)
dτ − C

t∫
t/2

Γx

(
x − b(t − τ), τ

)
dτ

=: I1 + I2.

We deal withI1 andI2 separately. First, note that ifτ � t andt is small, then the asymptot
behavior ofb implies

x − (1− C)τ − b(t − τ) � (1− C)(t − τ) − b(t − τ) � 0

for points inC2. Thus

4
√

π

C
I1 =

t/2∫
0

(
x − (1− C)τ − b(t − τ)

τ3/2

× exp

{
− (x − (1− C)τ − b(t − τ))2

4τ
− Cτ

})
dτ

�
t/2∫
0

x + |1− C|t − b(t)

τ3/2
exp

{
− (x − |1− C|t − b(t/2))2

4τ

}
dτ

� 2
√

π
x + |1− C|t − b(t)
x − |1− C|t − b(t/2)
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= 2
√

π

(
1+ 2|1− C|t + b(t/2) − b(t)

x − |1− C|t − b(t/2)

)
,

where we in the last inequality have used that

t∫
0

k

τ3/2
exp

{−k2

4τ

}
dτ = 2

∞∫

k/
√

t

e−y2/4 dy � 2
√

π

for some constantK1 (use the coordinate changey = k/
√

τ ). Thus it is straightforward
using the known asymptotics−b(t) ∼ √−2t ln t for the optimal stopping boundary,
show thatI1 is uniformly bounded at points(x, t) ∈ C2 close to the origin. Next,

4
√

π

C
I2 =

t∫
t/2

(
x − (1− C)τ − b(t − τ)

τ3/2

× exp

{
− (x − (1− C)τ − b(t − τ))2

4τ
− Cτ

})
dτ

�
t∫

t/2

x + |1− C|t − b(t/2)

τ3/2
dτ

= (
x + |1− C|t − b(t/2)

)
2(

√
2− 1)

1√
t

so I2 = o(1/
√

t ) for small t . Consequently,pxx = I1 + I2 = o(1/
√

t ) for small t , which
finishes the proof. �

Next we deal with log-concavity off at infinity. Using the formulas forf , fx andfxx

in terms ofb andΓ , compare Lemma 3.1 in [4], the next lemma is easily proved. We
the details.

Lemma 2.6. As x0 tends to infinity, the suprema off , fx and fxx in the region{(x, t):
x � x0} all tend exponentially to zero.

It is clear thatf � f = 0 for all points in{(x,0): x > 0}. From Lemmas 2.3 and 2.
it thus follows thatf � f � 0 at the “parabolic boundary.” Therefore, if the functi
(f �f )(x, t) satisfied some appropriate parabolic equation, then Theorem 2.1 would
from the maximum principle. However, it is not clear to us how to find such an equat

Instead we introduce forε > 0 the function

f ε(x, t) := f (x, t) − ε(x + M)

for some constantM large enough so thatCx + CM + 1 − C � 0 for all points(x, t) in
the continuation region. We have

f ε � f ε = f � f − 2ε(x + M) � f + ε2(x + M) � (x + M)

= f � f − ε(x + M)fxx + 2εfx − ε2. (12)
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We concentrate our study off ε to the regionU defined as

U := {
(x, t): fxx(x, t) > 0

} ∩ C.

Note that ifC � 1, then it follows fromft � 0 andfx � 0 that

fxx = ft − (C − 1)fx + Cf � 0

so the setU = C. On the other hand, ifC < 1, thenC \ U is non-empty. This can b
seen from the equalityfxx = C − ex which holds for points(x, t) at the optimal stopping
boundary. Also note thatf � f = ffxx − f 2

x � 0 if fxx � 0, so it remains to check tha
f � f � 0 at points inU .

Proposition 2.7. The functionf ε satisfiesf ε � f ε < 0 at all points at the boundary ofU
at whichfxx is well-defined. Moreover, at the origin

lim sup
U�(x,t)→(0,0)

f ε � f ε < 0.

Proof. Boundary points can be of some different types. It suffices to check

(a) points in{(x,0): x > 0},
(b) points at the free boundary withfxx � 0,
(c) points inC with fxx = 0, and
(d) the origin.

Points of type (a) are easy to handle. Indeed, sincef = fx = fxx = 0 at these points i
follows from (12) thatf ε � f ε = −ε2. Similarly, points of type (b) and (d) are taken ca
of by (12) and Lemmas 2.3 and 2.5, respectively. Finally, points of type (c) are ha
using thatf � f � −f 2

x � 0 if fxx = 0. �
Proof of Theorem 2.1. In the stopping region the option price equals the contract func
so the price is clearly log-concave. Moreover, at points inC \ U we havef � f � 0 as
explained above, so it remains to show thatf � f = ffxx − f 2

x � 0 everywhere in the
regionU . In order to do this we first show thatf ε � f ε � 0 in U . For someT0 > 0, define
the set

Λε := {
(x, t) ∈ U : t � T0 and(f ε � f ε)(x, t) > 0

}
,

and assume thatΛε 	= ∅. From (12) and Lemma 2.6 it follows that we can find a constanN

such thatf ε � f ε < 0 for all points(x, t) with x � N . ThusΛε is bounded, so the closu
Λ̄ε is compact. Let

t0 = inf
{
t : (x, t) ∈ Λ̄ε for somex

}
.

Due to compactness there existsx0 such that(x0, t0) ∈ Λ̄ε. By continuity, we have tha
(f ε � f ε)(x0, t0) = 0, so it follows from Proposition 2.7 that this point is in the inter
of U . Thus, by the definition oft0, the function

x �→ (f ε � f ε)(x, t0) for x ∈ U
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uous
attains a local maximum atx0. Hence we have

f ε � f ε = (f ε � f ε)x = 0 and (f ε � f ε)xx � 0

at the point(x0, t0). Note thatf ε
x = fx − ε < 0 sincefx � 0. Therefore 0= f ε � f ε =

f εf ε
xx − (f ε

x )2 at (x0, t0) implies thatf ε(x0, t0) 	= 0. Consequently Proposition 2.2 yiel

f ε �Lf ε � 0

at (x0, t0). At this point we also have, again by the definition oft0,

(f ε � f ε)t � 0,

so

0 � (f ε � f ε)t − 2f ε � (Lf ε)

= 2f ε � f ε
t − 2f ε �Lf + 2εf ε �L(x + M)

= 2εf ε �L(x + M)

= 2εCfx − ε(CM + Cx + 1− C)fxx − 2ε2C

< 2εCfx − ε(CM + Cx + 1− C)fxx � 0.

To arrive at this contradiction we have usedfx � 0 andfxx � 0 in U . From the contra
diction it follows thatΛε = ∅. SinceT0 is arbitrary,f ε � f ε � 0 in the regionU . Letting
ε → 0, we find thatf � f � 0 in the regionU . This finishes the proof. �

We end this section with an example showing that log-concavity in the stock log-pr
not preserved in general for American options in the standard Black–Scholes mode
there is no direct generalization of the results by Borell in [2,3].

Example. Consider the American option with contract function given in the transfor
coordinates by

h(x) = (1− ex)+ + ε

for some constantε ∈ (0,1). Then it is straightforward to check that the optimal stopp
boundary consists of two curves, one of which has anx-coordinate strictly larger than 0 an
the other one has anx-coordinate strictly smaller than 0. At the boundary wherex > 0 one
can show that the smooth fit conditionfx = 0 holds (for example, methods similar to t
one used to prove Lemma 7.8 in [12] can be used). Moreover, since American option
increase in the time to maturity we haveft � 0 (actually, if the boundary isC1, then the
smooth fit condition implies thatft = 0 at the boundary). Thus, at the part of the bound
wherex > 0 we havefxx = ft − (C − 1)fx + Cf � Cf , sof � f � Cf 2 = Cε2 > 0.

3. American calls on a dividend paying stock

In this section we consider call options written on a stock which pays a contin
dividend yieldδ > 0. The stock price is thus modeled as

dS(u) = (r − δ)S du + σS dW
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4) as in

ious

a

at
eds

f is
n

under the risk-neutral probability measure. Using the same change of coordinates (
Section 2, one finds that the pricef of the American call option then satisfies



ft (x, t) = L̂f (x, t) if x > b(t),

f (x, t) = ex − 1 if x = b(t),

fx(x, t) = ex if x = b(t),

f (x,0) = (ex − 1)+,

where

L̂f = fxx + (C − D − 1)fx − Cf (13)

andD = 2δ

σ2 (the functionsf andb are of course not the same here as in the prev
section).

We then have the following result for American call options.

Theorem 3.1. For any fixed timeu < T , the price of an American call option written on
dividend paying stock is log-concave as a function of the stock log-price.

Proof. Recall thatb is monotone increasing with

lim
t→0

eb(t) = C

D
and lim

t→∞ eb(t) = γ

γ − 1
, (14)

whereγ is the positive solution to the equation

γ 2 + (C − D − 1)γ − C = 0.

It is straightforward to check that

f � f = De2x − (1+ C + D)ex + C

at the free boundary, and that (14) implies thatf � f � 0 at the free boundary. Noting th
f is C2,1 up to the point(ln C

D
,0), no extra analysis (corresponding to Lemma 2.5) ne

to be performed in the vicinity of this point. Using

f (x, t) =
∞∫

0

(ey − 1)Γ (x − y, t) dy +
t∫

0

∞∫
b(t−τ)

(Dey − C)Γ (x − y, τ ) dy dτ,

where

Γ (x, t) = 1

2
√

πt
exp

{
− (x + (C − D − 1)t)2

4t
− Ct

}
,

it is straightforward to check that

lim sup
(x,t)→(0,0)

f � f � 0.

It follows that f � f � 0 at all boundary points of the continuation region. The proo
then completed in the same way as in the proof of Theorem 2.1 but with the functiof ε

defined by

f ε(x, t) := f (x, t) + ε(x − M)

for M large so thatC − D − 1− Cx + CM � 0 in the continuation region.�
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