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Abstract
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In this talk I will introduce the (planetary) N-body problem and
briefly discuss its historical background: From Ptolemy,
Copernicus, Kepler and Tycho Brahe to Newton; from Laplace,
Euler and Lagrange, to Mittag-Leffler and Poincaré, ending up
with Kolmogorov, Arnold and Moser. Then I will move to discuss
the stability problem of our Solar system and, in particular, the
Sun-Jupiter-Saturn. Is it stable? Do the planets orbit around the
Sun in a (quasi)periodic fashion?

Disclaimer: I don’t plan to give a thorough history description but
just a few pointers that can help placing some ideas.
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The question I will try to answer

Let me be rude and insist in the question we want to tackle.

Do Jupiter and Saturn spin around the Sun
with (quasi)periodic motion?

Sun-Jupiter-Saturn 4 / 47



A History Snack
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Antiquity

Since the very beginnings of
history humankind has been
fascinated by looking at the sky.
All these bodies hanging there.
Some very big (Sun/Moon),
some very faint. Some moving,
some fixed, some falling...

Source: wikimedia
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Proposing a model: Ptolemy

Ptolemy (around 100 AD), a
roman astronomer, proposed in
his work The Planetary
Hypotheses laws governing the
celestial motion: A geocentric
model where the Sun and the
Planets (the known ones) move
around Earth in epicycles.

Source: wikimedia
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Measuring the sky: Tycho Brahe
And modelling: Johannes Kepler

Tycho Brahe (1546-1601) was a
very famous danish astronomer
for doing very “precise”
measurements of the cellestial
bodies (without telescope!1).
This measurements by him where
instrumental for Kepler
(1571-1630) for proposing his
three famous laws2.

Source: wikimedia

1: First telescope appeared in 1608!
2: Copernicus (1473-1543) proposed a heliocentric model. Galileo
Galilei (1564-1642) suported this theory.
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Kepler’s laws of planetary motion

The first two laws appeared in 1609 and the third in 1619.

1 The orbit of a planet is an ellipse with the Sun at one of the
two foci.

2 A line segment joining a planet and the Sun sweeps out equal
areas during equal intervals of time.

3 The square of a planet’s (orbital) period is proportional to the
cube of the length of the semi-major axis of its orbit.

Source: wikimedia
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Universal Gravitational Law

Newton (1643-1727) made a huge advance for
science and mathematics when he published his
Philosophiiæ Naturalis Principia Mathematica
in 1687.
Among other things, in this opera magna he
settled the foundations of mechanics and the
foundations of graviational mechanics:

Source: wikimedia

The force of attraction between two bodies is proportional to the
product of the masses and inversely proportional to the square of
the distance:

F ∝
M1M2

r 2
.

Source: wikimedia
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Newton can prove Kepler

With his gravitational law, Newton is successful in proving Kepler’s
three laws. By this we mean that he can prove the individual
interactions between the very massive Sun and each of the
planets1.
A follow up question is if it is possible to see what happens when
the planets start to influence each other.

Do they still lay on ellipses? Our goal in this talk aligns with this
question.

1The Sun and a planet spin around their common center of mass as the
focus of their elliptic trajectories. But! One can do a change of coordinates
and place the Sun at the origin. Then the planet has it as a focus and its
motion is an ellipse.
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Newton and the 3 Body Problem

In fact, already in Philosophiiæ Naturalis Principia
Mathematica Book 3, Proposition XIII, Theorem XIII, Newton
discusses the need to enlarge the study of his previous 2 Body
Problem (Kepler orbits) into the Jupiter and Saturn planets.

He says that these two planets perturb each other and this
perturbation must be taken into account2. He also says that the
perturbation of all other planets is too small and can be
disregarded.

2without doing anything else. Recall that Book 3 is the Wishful thinking
book of Newton
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The birth of scientific/mathematics field.

Newton’s statement and question was simple: We understand the
2 Body Problem (elliptic/parabolic/hyperbolic motion) and we
desire to understand the 3 (or more) Body Problem.
This marked the starting point of a lot of mathematicians to get
into the game. Many names we know from the past where involved
in questions involving Celestial Mechanics: Euler (1707-1783),
Lagrange (1736-1813), Laplace (1749-1827), Gauss (1777-1855),
Jacobi (1804-1851), Weierstrass (1815-1897), Kovalevskaya
(1850-1891), Poincaré (1854-1912), Mittag-Leffler (1846-1927),
Lindstedt (1854-1939), Painlevé (1863-1933), Levi-Civita
(1873-1941), Sundman (1873-1949), Siegel (1896-1981)... The list
is endless and I can not make justice to all of them. Many
mathematical fields have tools and questions and answers related
to this field.
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Poincaré and Chaos
Sundman and series expansion.

One remarkable result was by Poincaré (who else!?) who proved
first that the (restricted) 3 Body Problem was integrable (wrong!)
and then he proved that it was not integrable and had chaos
(true!)3

Sundman proved that one can obtain series expansions of all
(noncolliding solutions) that converge for all time t.

3This is the famous Mittag-Leffler-Poincaré-King Oskar II affair (1885).
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Chaos and the 3 Body Problem

So, with Poincaré results we obtain that the (restricted) 3 Body
Problem is chaotic. Do we have, then, a solution to our problem?

No, we don’t have a solution to our problem. First, because it is a
simplified model but, most important: not because a system has
chaos means that all its orbits are chaotic or that chaos has full
measure! In fact, Poincaré chaos has zero measure. (This is a
claim that sometimes needs to be repeated, otherwise there are
assertions (weather models) that are blantly false).
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KAM Theory
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Jumping to KAM

Jumping ahead a lot of steps, we land on the creation in 1954 of
KAM theory (Kolmogorov (1903-1987) Arnold (1937-2010)
Moser (1928-1999)): A theory for proving the existence of
quasiperiodic motion in Hamiltonian Systems.
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What is KAM about?

Original KAM theory starts with the observation that Integrable
Hamiltonian systems H(I , ϕ) = h(I ), I ∈ Rn, ϕ ∈ Tn have very
simple dynamics: {

İ = 0
ϕ̇ = −∇h(I )

This implies that the phase space Rn × Tn is foliated by tori with
constant I0 with inner dynamics ϕ(t) = ϕ0 − t∇h(I0).
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What is KAM about?

What is proved in the original KAM results is that, under a small
perturbation of an integrable system, H(I , ϕ) = h(I ) + h1(I , ϕ)
with h1 small, there exists a positive measure Cantor foliation of
tori such that their are invariant and the inner dynamics is
conjugated to ϕ(t) = ϕ0 + tω (these ωs are Diophantine vectors!).
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What is KAM about?

More concretely, starting with the Hamiltonian H = H0, one
proposes an iterative method of canonical4 (symplectic) change of
coordinates Φk onto the Hamiltonian obtaining

Hk = Hk−1 ◦ Φk−1

such that
lim

k→+∞
Hk = H∞ = ω · I +O(I 2).

This Hamiltonian H∞ has the invariant torus I = 0 with inner
dynamics ϕ̇ = ω.

4These are the changes of coordinates (p, q)→ (P,Q) preserving the ODE
structure q̇ = ∇pH, ṗ = −∇qH.
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What is KAM about?

The proof is not trivial in nature and relies on a very advanced
fixed point scheme (something that, later on, will evolved to be
called Nash-Moser schemes).

Non-invertible linearization

All boils down that one wants to apply a Newton-scheme method
but the linerazation is not invertible into the same space but
analyticity (or derivatives) is lost. This comes from solving the
equation

ω1∂1f + ω2∂2f = g

with f , g periodic.

Sun-Jupiter-Saturn 21 / 47



Why Diophantine numbers appear here?

Diophantine numbers5 appear here because these are the most
irrational numbers that exist. They are the furthest from being
rational. And rational or close-to-rational are to be avoided. Why?
Due to ressonances6! It is hidden in the notation and synthesis of
the presentation, but a ressonance makes that stable motion is not
possible.

5A vector ω is Diophantine if there exists γ, τ such that |〈ω, k〉| ≥ γ
|k|τ for

all k ∈ Zn nonzero.
6The same word ressonance as in a bridge falling down due to wind blowing

to it or soldiers stepping on it
Sun-Jupiter-Saturn 22 / 47



KAM and the 3 Body Problem

In principle, one has that the 3 Body Problem of Sun and two
planets looks like the previous setting. The Hamiltonian is a sum
of an integrable part (2 Kepler problems) plus a small interaction
between the planets. And this is true! But, the problem suffers of
a degeneracy that makes it even harder. At the integrable limit,
there are some variables missing: the angular momenta. The
system is too integrable (superintegrable).
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KAM and the 3 Body Problem

Nevertheless, KAM schemes where able to be applied by Arnold
and it was proven that, there exists quasiperiodic motions when
the perturbation is small.

However, as it was pointed by Hénon, applying KAM for realistic
problems (like ours) lead to very pessimistic results: For example,
the masses of Jupiter and Saturn are forced to be of order 10−333

(and not of order 10−3).
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Smallness and KAM

In fact, at some point there was the pessimistic idea in the
mathematics and physics community that KAM techniques only
apply to too very small values of the perturbations and were not
good enough for applications.
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Some more historical context on the planetary problem

As said, a crucial advancement was performed by Arnold in On the
classical perturbation theory and the stability problem of planetary
systems, Small denominators and problems of stability of motion in
classical and celestial mechanics where he proved the persistence
of quasiperiodic motion for the planar three body problem for a
ratio of the semi-major axis close to zero. The theory was later
completed for the spatial N body problem in remarkable works by
Herman and Féjoz Démonstration du ‘théorème d’Arnold’ sur la
stabilité du système planétaire (d’après Herman), and Chierchia
and Pinzari The planetary N -body problem: symplectic foliation,
reductions and invariant tori.
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Some more historical context. CAP

Then, trying to attack the realistic problem (with realistic data),
we encounter the works of Chierchia, Celletti and Locatelli,
Giorgilli. We stress that the work Invariant tori in the
Sun-Jupiter-Saturn system is remarkable by giving evidences that
the normal form approach seems to work in this setting.

Other remarkable works on the 3 Body Problem or variants along
these lines are by Celletti, Chierchia, Fejoz and Castan.
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Some more historical context. Chaos

There is also very strong numerics done by Laskar showing that the
Solar System with all its planets has a lot of chaos.
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KAM and the Parameterization Method

All this changed when more suitable tools/perspectives were
introduced. Among them we focus on the Parameterization
Method.7 This gives a new optic on how to do KAM: classic KAM
is applying (symplectic) changes of coordinates that converge to a
desired Hamiltonian system; the Parameterization Method is
parameterizing the wanted quasiperiodic orbit (the torus where it
lays) and perform successive corrections to this parameterization.

This last methodology has shown being successful in problems far
from integrable8: it was proven the existence of the golden curve in
the Standard map for values 10−4-close to breakdown (the proof
involves the use of Computer-Assisted Proofs).

7de la Llave, González, Jorba, Villanueva (2001)
8F., Haro, Luque (2016)
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Back to Sun-Jupiter-Saturn

What we have obtained is the application of all this accumulated
knowledge and obtained an approximated solution to the planar
Sun-Jupiter-Saturn that, when checking it against a (qualitative)
theorem we have9, we obtain10 that (up to interval arithmetics) we
have proven the existence of this solution. What we explain here is
how we obtain this solution and the numerical check. (In the near
future you will see the Computer validation).

9F., Haro, A modified parameterization method for invariant lagrangian tori
for partially integrable Hamiltonian systems (2024)

10F., Haro Sun-Jupiter-Saturn may exist: a verified computation of
quasiperiodic solutions for the planar three body problem (2024)
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The road for proving quasiperiodic solutions to
Sun-Jupiter-Saturn

The road that we follow is:

1 Write a qualitative theorem that, given the 3 Body Problem
Hamiltonian system and an approximation to the solution (a
parameterization to the torus), it produces some constants to
be checked with this input.

2 Compute a very good numerical approximation of the
parameterization to the torus.

3 Apply the qualitative theorem in step 1 for the torus in step 2.
Check if the output of the theorem asserts the existence of
the invariant torus.
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The (planar) (1 + n)-Body
Problem
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The Equations: cartesian

The planar (1 + n)-body problem (the Sun plus n planets) in
Poincaré heliocentric cartesian coordinates has Hamiltonian 11

HC : R2n × R2n → R given by

HC(x , y) =
n∑

i=1

(
‖yi‖2

2mi
− mi

‖xi‖

)

+ µ

 n∑
i=1

‖yi‖2

2
+

∑
1≤i<j≤n

(
yi · yj −

mi mj

‖xi − xj‖

)
= H0

C(x , y) + µ H1
C(x , y).

(The mass of Sun is fixed to 1 and the other masses mi are then relative to the former. µ plays the role of
capturing that the other masses are small compared to the Sun’s. So, think of the largest planet having m = 1 and
µ being its relative mass).

11The Sun is fixed at the origin because linear momentum is preserved (first
integral)
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The Equations: Delaunay

As it is customary in the planar (1 + n)-body problem, we change
to Delaunay coordinates: The Delaunay coordinates of the i-th
body are (`i , gi , Li ,Gi ) ∈ T2 × R2, with Gi < Li , where
T = R/2πZ, is mapped to the Cartesian coordinates
(xi ,1, xi ,2, yi ,1, yi ,2) ∈ R4 through the following steps:

ei =

√√√√1−
(

Gi

Li

)2

, ai =
(Li )2

m2
i

, bi =
m2

i

Li

, Ei = K(`i , ei ),

(
qi,1
qi,2

)
= ai

cos(Ei )− ei
Gi

Li

sin(Ei )

 , (
xi,1
xi,2

)
=

(
cos(gi ) − sin(gi )
sin(gi ) cos(gi )

)(
qi,1
qi,2

)

(
pi,1
pi,2

)
=

bi

1− ei cos(Ei )

 − sin(Ei )
Gi

Li

cos(Ei )

 , (
yi,1
yi,2

)
=

(
cos(gi ) − sin(gi )
sin(gi ) cos(gi )

)(
pi,1
pi,2

)

where E = K(`, e) denotes the solution of the Kepler equation ` = E − e sin(E).
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The Equations: Delaunay

The Hamiltonian is then written in Delaunay coordinates
(`, g , L,G ) as a function HD : T2n × R2n → R given by

HD(`, g , L,G ) =
n∑

i=1

−m3
i

2L2
i

+ µ H1
C◦D(`, g , L,G )

= H0
D(L) + µ H1

D(`, g , L,G ),

where D denotes the Delaunay map from Delaunay coordinates
(`, g , L,G ) to Cartesian coordinates (x , y) described above.

(Notice how clear it is in this expression the famous degeneracy in the
(1 + n)-body problem: the integrable part H0

D only depends on the
actions L and not on the G actions!)
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First integral: total angular momentum

The (1 + n)-body problem has a first integral: the total angular
momentum Ĝn =

∑
1≤k≤n Gk . This helps us to reduce even further

the number of coordinates of the system by 2 (the first integral
and its associated angular variable). We obtain then the reduced
Hamiltonian HĜn

: T2n−1 × R2n−1 → R given by

HĜn
(`, ĝ , L, Ĝ ) = H0

D(L) + µH1
Ĝn

(`, ĝ , L, Ĝ ),

with ĝ = (ĝ1, . . . , ĝn−1) and Ĝ = (Ĝ1, . . . , Ĝn−1). 12

(Evaluating H
Ĝn

is not “difficult”: From Cartesian to Delaunay requires only to solve on easy equation, composing

then is easy, and reducing Ĝn is explicit. Also, getting partial derivatives of it is also easy: Use automatic
differentiation or do it by hand if the order is small.)

12Ĝs :=
∑

1≤k≤s Gk , and gs is the symplectic conjugate to Ĝs
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The (planar)
Sun-Jupiter-Saturn
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Sun-Jupiter-Saturn system

In our case, we set n = 2 (the number of planets). Moreover, the
relative masses of Jupiter and Saturn we use are 0.9546 · 10−3 and
0.2856 · 10−3, so m1 = 0.9546,m2 = 0.2856, and µ = 10−3.
By using their orbital elements (semiaxes ai and excentricities ei )
we get that two of the frequencies are

ωl = (8.39549288702546301204·10−2, 3.38240117059304358259·10−2).

The third frequency13, the relative precession14, is

ωĝ1 = −1.85007988077595000000 · 10−5.

These frequencies are almost Diophantine.15

13Recall that we are working on a 3 degrees of freedom problem
14obtained via frequency analysis
15Theorem: If ω = (ωl , ωĝ1 ), for any k 6= 0 it is satisfied |k · ω̃| ≥ γ

|k|τ1
for

some ω̃ satisfying |ω̃ − ω| < 10−80, γ = 1.69 · 10−6 and τ = 2.4.
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Sun-Jupiter-Saturn system

What we have done in this project is two things:

1 Obtain a good approximation of a parameterization
K : T3 → T3 × R3 that is (numerically) invariant. It satisfies
the equation

LωK (θ) + XHĜn
(K (θ)) = 0,

where LωK (θ) = −(DK (θ))> · ω and

XHĜn
=

(
0 Id
−Id 0

)
(DHĜn

)>.

2 Check that the given approximation fulfills all the hypotheses
of our quantitative KAM theorem16.

16F., Haro, A modified parameterization method for invariant lagrangian tori
for partially integrable Hamiltonian systems (2023)
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Obtaining the approximation
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Obtaining the good parameterization

The main obstacle we have is that for µ = 0 there exists a lot of
tori with our prescribed frequency: Any Ĝn works. Moreover, all
our numerical algorithms fail if we try to start from there.
Our strategy: First solve the problem of finding an invariant torus
K : T3 → T3 × R3 and λ ∈ R for the problem with Hamiltonian

H = HĜn
+ λGn

and with the constraint

〈ΠĜn
◦K 〉 − Ĝ0 = 0.
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Obtaining the good parameterization

This is equivalent to solving the system{
LωK (θ) + XHĜn

(K (θ)) + XĜn
(K (θ))λ = 0

〈ΠĜn
◦K 〉 − Ĝ0 = 0

,

for the pair (K , λ) doing homotopy from µ = 0 to µ = 10−3. If we
pick correctly the value Ĝ0 we get that for µ = 10−3 the value of λ
will be equal to zero17.
Second: Refine on our Hamiltonian itself: We do it and obtain
that the error of invariance is 10−54.

17And this happens!
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Obtaining the good parameterization: Refinment

The refinment is made on applying several Newton steps on the
equation

LωK (θ) + XHĜn
(K (θ)) = E (θ),

where E (θ) is the invariance error. This is done by doing a change
of coordinates,

P(θ) =
(
DK (θ) N(θ)

)
with N(θ) is the symplectic conjugated to DK (θ).
Under this change of coordinates the system is transformed into
the form {

Lωξ
L(θ) +T (θ)ξN(θ) = ηL(θ)

Lωξ
N(θ) = ηN(θ)
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Checking the KAM theorem
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Finally, checking if it works

We then need to check on our theorem that all the conditions
hold. The theorem is monstruous and I don’t plan to write it here,
but I can summarize the kind of inputs that needs: It needs control
on the size of parameterization, its derivatives, the size of the
Hamiltonian and its derivatives, the Diophantine constants, size of
a linear frame built from the parameterization, and a transversality
condition18 (from all this previous data). Finally, it needs to know
the error of invariance.

With all this information we obtain that for the theorem to
guarantee the existence of the torus it needs to have error of
invariance smaller than 10−47, but we got 10−54!!!.

18Called torsion
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Obstacles while computing

All this sounds nice and so, but we suffered quite a lot of obstacles.
These can be classified as: theoretical and computational. The first
ones are normal, problems are difficult to know how to solve. The
second ones are more severe. We were required to use Uppmax,
Uppsala’s supercomputer for several reasons: Our computations
need around half a TB of RAM and 4 TB of memory storage. A
step of computations is around 10 days in a node of 16 cores. All
this and add that the supercomputer gets frozen once every
month, and it takes around 3∼7 days to get your job starting on it.
Summary: it took us some good long years just to compute this
parameterization.
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Thank you very much!

Jordi-Llúıs Figueras figueras@math.uu.se
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