A short tutorial on the basic usage of the package
FFTW3.

Tutorial version 1.0.

Jordi-Lluis Figueras

figueras@maia.ub.es

22th March 2010

About this document

This tutorial is designed as a short introduction to the basic usage of the library
FFTW3. The purpose of it is to save some time to the reader while he is introduced to
the basics of this library. By no means it is intended to substitute the great tutorial
that can be found in [3], so we encourage to go through it in order to master it.

For any suggestions, comments, remarks or whatever, you can send me an
email to the address that appears in the front page.

The author of this tutorial kindly aknowledge FFTW team and its authors.
Visit www.fftw.org or read [7] for more details.

CONTENTS

Contents

1 Introduction

1.1 Getting and installing FFTW3

2 Examples
2.1 Example 1: Basicusage
2.2 Example: Basic usage expanded
2.3 Example: Real trigonometric polynomial

2.4 Example: Product of two trigonometric polynomials
3 Arrived at this point...

A Planner flags

10

10

11

1 INTRODUCTION 4

1 Introduction

In this tutorial we will introduce the C-library FFTW3, [3], which is used in order to
compute Fast Fourier Transforms, FFT. Before that, let’s introduce some basic
facts and notations.

Let f: T — C, where T = R/Z, be a function. We define its Fourier series as

o0

(1) Z cr 627rki0’

k=—o00

where the coefficients ¢ are determined by the integrals
(2) cr = / e~ 20 £(0)dp.
T

Remark 1.1. If the function f is quite regular, for example C!(T), then the series
(1) converges uniformly, so (1) represents the function f. In this tutorial we will not
cover the wide area of convergence of these series. For a deeper exposition of these
facts the reader can consult [1] and [2].

In order to compute the coefficients ¢ of (1) in a fast way we use the algorithms
implemented in the library FFTW3. This library has implemented the computation
of these coefficients using Fast Fourier Transform (FFT) routines, so...

What is FFT?

Answer FFT is an algorithm to compute in a fast way Discrete Fourier Transforms,
DFT, so...

What is DFT?
Answer DFT is simply the computation of the coefficients ¢y, the integrals (2), using

the trapezoidal integration formula, that is, if zo, z1,...,zy_1 are N complex
numbers that represents f(n/N) = x,, then

L N2
—jk2mn
(3) Ck:ﬁ;xne RN

Remark 1.2. A quick reference of DFT and FFT can be found in Wikipedia, [4], [5].

Now that we know what we will compute, let’s see two applications of the

DFT:

1 INTRODUCTION 3

e Given N points xg, 1, ...,TN_1, compute the trigonometric polynomial
(4) co + Cle2ﬂi¢9 N CN,1€2(N71)7”;0
that interpolates the points (0,z0), (%, 1), (%, 22), ..., (B2, zn_1).

e Evaluate the trigonometric polynomial (4) in all the abscissae 0, %, ceey %

Now, a question comes in mind...

Now that I know what is a DFT, can you repeat, please, what is a
FFT?

Answer A FFT is a fast way to compute DFT. If we analyse the computational cost of
computing ¢, ¢y, .. .,cn_1, via the direct implementation of (3), we see that
it is O(N?) but the computational cost of FFT is, in the best cases, of order
O(NlogN) and, in the worst cases, the same as the previous one.

Remark 1.3. The rule of thumb about the computational time of the FFT is that
it works better when the number N is a power of 2 and it works bad when N is a
prime or it has as divisors big primes. For more details see [5].

One thing that the reader must have in mind is that the library FFTW3 does
not compute expressions like (3) but like the following ones:

e (No normalized) forward DFT:

N-1
21,210
(5) Xy = Z N
n=0
e (No normalized) backward DFT:
N—1
(6) mp =Y XV
n=0

Remark 1.4. Expression (5) differs from (3) by the constant +- and expression (6)
is the inverse of (5) up to constant .

1 INTRODUCTION 6

1.1 Getting and installing FFTW3

In the webpage www.fftw.org can be found the source code of FFTW3. There it is
explained how can be installed this package but, in most Linux environments, the
following works:

1. Download the source code fftw-X.X.X.tar.gz from
ftp://ftp.fftw.org/pub/fftw/fftw-X.X.X. tar.gz

2. Decompress it:
tar —xvvf fftw-X.X.X.tar.gz

3. Enter the directory fftw-X.X.X:
cd fftw-X.X.X

4. Now, proceed to configure, compile and install the package:
./configure && make && make install

If the above does not work, read carefully the documentation that is in www.fftw. org.

2 EXAMPLES 7

2 Examples

In this section we expose some example codes where I try to show the basic usage of
FFTW3 library. The text below and the codes associated to it are intimately related,
so in order to understand the text one needs to check the codes (sorry for this!). The
codes of the examples can be found in my webpage www.maia.ub.es/ figueras.
Feel free to download these codes.

2.1 Example 1: Basic usage

An example of a C code, EXAMPLE1_basicusage.c, that use the library £ftw3 must
be like

1 #include<fftw3.h>
int main(void)

{
2 int N;
3 fftw_complex *in, *out;
4 fftw_plan my_plan;
5 in = (fftw_complexx*) fftw_malloc(sizeof (fftw_complex)*N);
6 out = (fftw_complex*) fftw_malloc(sizeof (fftw_complex)*N) ;
7 my_plan = fftw_plan_dft_1d(N, in, out, FFTW_FORWARD, FFTW_ESTIMATE);
8 fftw_execute(my_plan);
10 fftw_destroy_plan(my_plan);
11 fftw_free(in);
12 fftw_free(out);
13 return O;
}

To compile this code with gcc we just type in a console
gcc EXAMPLE1l_basicusage.c -1fftw3 -o EXAMPLE1_basicusage
Let’s explain in detail the above code:

e Line 1 includes the header file fftw3.h needed in order to use the package.

2 EXAMPLES 8

e Line 2 contains an integer N which has the dimension of the input and output
data of the FFT.

e Line 3 declares two pointers of type fftw_complex, in and out, which will
contain the input and output of the FFT. Note that to allocate memory we
use the function fftw_malloc instead of the stdlib.h function malloc.

e Line 4 declares a variable of type fftw_plan, a plan, which will store the type
of FFT that we want to perform.

e Lines 5 and 6 allocates memory for the pointers in and out. Note that it must
be specified that they are of type fftw_complex.

e Line 7 declares the type of plan which we want to perform via the function
fftw_plan_dft_1d which has as arguments

1. int N: the dimension of the pointers in and out.

2. fftw_complex *in: the pointer that stores the input data.

3. fftw_complex *out: the pointer that stores the output data.
4

. int FFTW_FORWARD: FFTW_FORWARD is an integer constant of the package
that tells to the function that the FFT to perform must be the forward
one. To perform the bacward one, we will introduce FFTW_BACKWARD. To
see the differences between these two, the reader can refer to section 1.

5. unsigned FFTW_ESTIMATE: FFTW_ESTIMATE is a flag that tells to the func-
tion how well must be optimized, with respect to the computational time,
the FFT algorithm. If we are getting started to the package we will use
this flag. For other values of this flag the reader can consult appendix A.

e Line 8 performs the FFT stored in my_plan.

e Lines 10, 11 and 12 deallocate the memory stored by the plan and the pointers.
Note that for the pointers we use fftw_free and not the stdlib.h function
free.

2.2 Example: Basic usage expanded

This example, which can be found in the code EXAMPLE2_transform.c, performs
two explicit FFT of an input data of dimension 10 of the form z), = (k+1)+(3k—1)1,
0 < k < 10 for the first FFT and z; = e * for the second FFT. The code is very
similar to the one explained in section 2.1.

To compile EXAMPLE2_transform.c use

2 EXAMPLES 9

gcc EXAMPLE2_transform.c -Wall -1fftw3 -1m -o EXAMPLE2_transform

Remark 2.1. The gcc command has more libraries, -1m. Note that the order of
the flags -1fftw3 and -1m is intended: in some Unix systems, if we transpose this
two it can happen that the compilation produce an error and does not produce the
executable file.

One of the differences between this code and the one in section 2.1 is that in
the header files we have included the library complex.h. This is because, although
fftw3.h has implemented its own complex routines, if we declare complex.h before
it then we can use the, more common, syntax of it. So, for example, when we
introduce the input data in the pointer in, we do

in[i] = (i+1.)+(3.%i-1.)*I;
Remark 2.2. T is the imaginary part in the library complex.h.

Note that we have performed two FFT by simply executing the line

fftw_execute(plan);

Remark 2.3. This tell us that, if we do some other code, not this one, where we are
planning to do a lot of FFT of the same type with the same dimension and input
and output pointers, we will change the flag FFTW_ESTIMATE in the planning creator
function fftw_plan_dft_1d for a more appropiate one. See appendix A for more
details.

2.3 Example: Real trigonometric polynomial

This example, associated to the code EXAMPLE3_cosine_sine.c, generates aleatory
the real coefficients of a real a trigonometric polynomial

2 2
Ao + Z Ay cos(2mk0) + Z By, sin(27k0).

k=1 k=1

and, using the command-line input a positive integer Npoints, it evaluates this
polynomial (using non-FFT algorithm) in a Npoints equidistant grid of [0, 1]. This
evaluation is stored in a pointer and then performed a forward FFT. Then, the
ouput is transformed in order to obtain the coefficients of the polynomial in real
trigonometric form.

3 ARRIVED AT THIS POINT... 10

2.4 Example: Product of two trigonometric polynomials

This example, EXAMPLE4_product . c is the most ambitious of this tutorial. It creates
two N degree random polynomials and performs, via FFT, their product, obtaining
a 2N degree polynomial. To see the theoretical argument of this, the reader can
consult [6]. Basically, the program performs the 2N FFT of the two polynomials,
multiply the points obtained and recover the product polynomial by the inverse
FFT.

One thing to comment of the code of this program is that at the end of the it
it appears the function fftw_cleanup(). Although we have freed the memory using
the functions fftw_free and fftw_destroy_plan, at the end of the execution the
library has not freed all the memory. This function does this.

3 Arrived at this point...

Arrived at this point, this short tutorial ends. There ar a lot of things that the
author has not explained. Some of them are:

e Special FFT of real input, output or both data.
e Other fast algorithms that perform special transformations.
e FFT of d dimensional data.

e The usage of wisdom. A feature that helps to optimize the computation of
FFT by checking, via some tests, several FFT.

Nevertheless, thank you very much for reading this tutorial!!!

A PLANNER FLAGS 11

A Planner flags

There are different planner flags. For a full discussion of them the reader can consult
the documentation that appears in the website [3].

Basically, the planner flags tell to FFTW3 package how much we want to spend
computing the FFT. If we demand to omptimize the computational time, we must
pay the cost that the optimization takes some time so, in practice, we will demand
more optimization when we want to perform more FFT of the same time.

The flags are ordered in increasing optimization scale:

1. FFTW_ESTIMATE.
2. FFTW_MEASURE.
3. FFTW_PATIENT.

4. FFTW_EXHAUSTIVE.

REFERENCES 12

References

[1] Fourier series, Wikipedia
http://en.wikipedia.org/wiki/Fourier_series.

[2] Y. Katznelson, An introduction to harmonic analysis, Cambridge University
Press, 2004.

3] FFTW library ,
http://www.fftw.org.

[4] Discrete Fourier Transform, Wikipedia
http://en.wikipedia.org/wiki/Discrete_Fourier_transform.

[5] Fast Fourier Transform, Wikipedia
http://en.wikipedia.org/wiki/Fast_Fourier_transform.

[6] Convolution Theorem, Wikipedia
http://en.wikipedia.org/wiki/Convolution_theorem.

[7] Matteo Frigo and Steven G. Johnson, The design and implementation of
FFTWS, Proc. IEEE 93 (2), 216231 (2005).

