Publications

Publications and preprints

Submitted

  1. On parameter estimation for N(mu,sigma^2 I_3) based on projected data into S^2, Figueras, Jordi-Lluís; Persson, Aron; Viitasaari, Lauri
  2. Computer Validation of Open Gaps for the Almost Mathieu Operator with Critical Coupling, Figueras, Jordi-Lluís; Puig, Joaquim
  3. Self-Similar Singular Solutions to the Nonlinear Schrodinger and the Complex Ginzburg-Landau Equations, Dahne, Joel; Figueras, Jordi-Lluís
  4. A parametrization algorithm to compute lower dimensional elliptic tori in Hamiltonian systems, Caracciolo, Chiara; Figueras, Jordi-Lluís; Haro, Alex
  5. Sun-Jupiter-Saturn System may exist: A verified computation of quasiperiodic solutions for the planar three body problem, Figueras, Jordi-Lluís; Haro, Alex

Accepted

  1. Sun-Jupiter-Saturn System may exist: A verified computation of quasiperiodic solutions for the planar three body problem, Figueras, Jordi-Lluís; Haro, Alex. (Accepted in Journal of Nonlinear Science)
  2. The Number of Relative Equilibria in the PCR4BP, Figueras, Jordi-Lluís; Tucker, Warwick; Zgliczynski, Piotr, J. Dynam. Differential Equations 36 (2024), no.3, 2827-2877.
  3. A modified parameterization method for invariant Lagrangian tori for partially integrable Hamiltonian systems, Figueras, Jordi-Lluís; Haro, Alex, Phys. D 462 (2024), Paper No. 134127, 21 pp.
  4. Sharp 12-Hölder continuity of the Lyapunov exponent at the bottom of the spectrum for a class of Schrödinger cocycles, Figueras, Jordi-Lluís; Ohlson Timoudas, Thomas, Discrete Contin. Dyn. Syst. 40 (2020), no. 7, 4519-4531.
  5. Effective bounds for the measure of rotations, Figueras, Jordi-Lluís; Haro, Alex; Luque, Alejandro, Nonlinearity 33 (2020), no. 2, 700-741.
  6. Existence of non-smooth bifurcations of uniformly hyperbolic invariant manifolds in skew product systems, Figueras, Jordi-Lluís; Lilja, Dan, Nonlinearity 31 (2018), no. 12, 5573-5588.
  7. On the sharpness of the Russmann estimates, Figueras, Jordi-Lluís; Haro, Alex; Luque, Alejandro, Commun. Nonlinear Sci. Numer. Simul. 55 (2018), 42-55.
  8. Rigorous computer-assisted application of KAM theory: a modern approach, Figueras, J.-Ll.; Haro, A.; Luque, A., Found. Comput. Math. 17 (2017), no. 5, 1123-1193.
  9. A framework for the numerical computation and a posteriori verification of invariant objects of evolution equations, Figueras, Jordi-Lluís; Gameiro, Marcio; Lessard, Jean-Philippe; de la Llave, Rafael, SIAM J. Appl. Dyn. Syst. 16 (2017), no. 2, 1070-1088.
  10. Numerical computations and computer assisted proofs of periodic orbits of the Kuramoto-Sivashinsky equation, Figueras, Jordi-Lluís; de la Llave, Rafael, SIAM J. Appl. Dyn. Syst. 16 (2017), no. 2, 834-852.
  11. A note on the fractalization of saddle invariant curves in quasiperiodic systems, Figueras, Jordi-Lluís; Haro, Àlex, Discrete Contin. Dyn. Syst. Ser. S 9 (2016), no. 4, 1095-1107.
  12. The parameterization method for invariant manifolds, Haro, Àlex; Canadell, Marta; Figueras, Jordi-Lluís; Luque, Alejandro; Mondelo, Josep-Maria, Appl. Math. Sci., 195 Springer, [Cham], 2016, xvi+267 pp. ISBN: 978-3-319-29660-9; 978-3-319-29662-3
  13. Different scenarios for hyperbolicity breakdown in quasiperiodic area preserving twist maps, Figueras, Jordi-Lluís; Haro, Àlex, Chaos 25 (2015), no. 12, 123119, 16 pp.
  14. Triple collisions of invariant bundles, Figueras, Jordi-Lluís; Haro, Àlex, Discrete Contin. Dyn. Syst. Ser. B 18 (2013), no. 8, 2069-2082.
  15. Computer-assisted techniques for the verification of the Chebyshev property of Abelian integrals, Figueras, Jordi-Lluís; Tucker, Warwick; Villadelprat, Jordi, J. Differential Equations 254 (2013), no. 8, 3647-3663.
  16. Collision of invariant bundles of quasi-periodic attractors in the dissipative standard map, Calleja, Renato; Figueras, Jordi-Lluís, Chaos 22 (2012), no. 3, 033114, 10 pp.
  17. Reliable computation of robust response tori on the verge of breakdown, Figueras, Jordi-Lluís; Haro, Àlex, SIAM J. Appl. Dyn. Syst. 11 (2012), no. 2, 597-628.