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Dynamical systems problems

1. Find the general solution and sketch the phase portrait for each of the following systems.
Characterize the systems as to type (node etc.) and stability.

(a) {
x′ = −3x+ 4y
y′ = −2x+ 3y

(b) {
x′ = 7x+ 6y
y′ = 2x+ 6y

(c) {
x′ = −x+ y
y′ = −x− y

2. Determine the values of b ∈ R for which the system

x′ =

(
3 b
1 1

)
x

undergoes a bifurcation.

3. Determine the critical points of the system{
x′ = x− y
y′ = x2 + y2 − 2

and investigate their nature and stability properties.

4. Consider the system {
x′ = 4x+ 4y − x(x2 + y2),
y′ = −4x+ 4y − y(x2 + y2).

(a) Show that there is a closed orbit in the region 1 ≤ r ≤ 3, where r2 = x2 + y2.
(b) Find the general solution. (Hint: Use polar coordinates.)
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Answers or hints:

1. (a) The matrix has eigenvalues 1 and −1 with eigenvectors

(
1
1

)
respectively

(
2
1

)
.

So (0, 0) is an (unstable) saddle point.

(b) The matrix has eigenvalues 10 and 3 with eigenvectors

(
2
1

)
respectively

(
3
−2

)
.

So (0, 0) is an unstable node.

(c) The matrix has eigenvalues −1 + i and −1− i with eigenvectors

(
1
i

)
respectively

(
1
−i

)
.

So (0, 0) is an asymptotically stable spiral point.

2. The eigenvalues are 2±
√

1 + b. Thus, (0, 0) is an unstable spiral point if b < −1. If −1 < b < 3
both eigenvalues are positive, so in this case (0, 0) is an unstable node. If b > 3 one eigenvalue is
positive and one is negative, so in this case (0, 0) is saddle point. Hence, the system bifurcates at
b = −1 and b = 3.

3. The critical points are at (1, 1) and (−1,−1). At (1, 1) the linearized system has coefficient
matrix:

A =

(
1 −1
2 2

)
.

The eigenvalues are 3±
√
7i

2 . Thus, (1, 1) is an unstable spiral point.
At (−1,−1) the linearized system has coefficient matrix:

A =

(
1 −1
−2 −2

)
.

The eigenvalues are −1±
√
17

2 . Thus, (1, 1) is an (unstable) saddle point.

4. (a) Show: r′ > 0 when r = 1 and r′ < 0 when r = 3. Then use the Poincaré-Bendixson
theorem.
(b) In polar coordinates the system becomes:{

r′ = 4r − r3,
θ′ = −4.

This gives

r(t) =
2√

1 +
4−r20
r20

e−8t
,

θ(t) = −4t+ θ0.
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