Dynamical systems problems

1. Find the general solution and sketch the phase portrait for each of the following systems. Characterize the systems as to type (node etc.) and stability.
(a)

$$
\left\{\begin{array}{l}
x^{\prime}=-3 x+4 y \\
y^{\prime}=-2 x+3 y
\end{array}\right.
$$

(b)

$$
\left\{\begin{array}{l}
x^{\prime}=7 x+6 y \\
y^{\prime}=2 x+6 y
\end{array}\right.
$$

(c)

$$
\left\{\begin{array}{l}
x^{\prime}=-x+y \\
y^{\prime}=-x-y
\end{array}\right.
$$

2. Determine the values of $b \in \mathbb{R}$ for which the system

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}
3 & b \\
1 & 1
\end{array}\right) \mathbf{x}
$$

undergoes a bifurcation.
3. Determine the critical points of the system

$$
\left\{\begin{array}{l}
x^{\prime}=x-y \\
y^{\prime}=x^{2}+y^{2}-2
\end{array}\right.
$$

and investigate their nature and stability properties.
4. Consider the system

$$
\left\{\begin{array}{l}
x^{\prime}=4 x+4 y-x\left(x^{2}+y^{2}\right) \\
y^{\prime}=-4 x+4 y-y\left(x^{2}+y^{2}\right) .
\end{array}\right.
$$

(a) Show that there is a closed orbit in the region $1 \leq r \leq 3$, where $r^{2}=x^{2}+y^{2}$.
(b) Find the general solution. (Hint: Use polar coordinates.)

Answers or hints:

1. (a) The matrix has eigenvalues 1 and -1 with eigenvectors $\binom{1}{1}$ respectively $\binom{2}{1}$. So $(0,0)$ is an (unstable) saddle point.
(b) The matrix has eigenvalues 10 and 3 with eigenvectors $\binom{2}{1}$ respectively $\binom{3}{-2}$.

So $(0,0)$ is an unstable node.
(c) The matrix has eigenvalues $-1+i$ and $-1-i$ with eigenvectors $\binom{1}{i}$ respectively $\binom{1}{-i}$.

So $(0,0)$ is an asymptotically stable spiral point.
2. The eigenvalues are $2 \pm \sqrt{1+b}$. Thus, $(0,0)$ is an unstable spiral point if $b<-1$. If $-1<b<3$ both eigenvalues are positive, so in this case $(0,0)$ is an unstable node. If $b>3$ one eigenvalue is positive and one is negative, so in this case $(0,0)$ is saddle point. Hence, the system bifurcates at $b=-1$ and $b=3$.
3. The critical points are at $(1,1)$ and $(-1,-1)$. At $(1,1)$ the linearized system has coefficient matrix:

$$
A=\left(\begin{array}{cc}
1 & -1 \\
2 & 2
\end{array}\right)
$$

The eigenvalues are $\frac{3 \pm \sqrt{7} i}{2}$. Thus, $(1,1)$ is an unstable spiral point. At $(-1,-1)$ the linearized system has coefficient matrix:

$$
A=\left(\begin{array}{cc}
1 & -1 \\
-2 & -2
\end{array}\right)
$$

The eigenvalues are $\frac{-1 \pm \sqrt{17}}{2}$. Thus, $(1,1)$ is an (unstable) saddle point.
4. (a) Show: $r^{\prime}>0$ when $r=1$ and $r^{\prime}<0$ when $r=3$. Then use the Poincaré-Bendixson theorem.
(b) In polar coordinates the system becomes:

$$
\left\{\begin{array}{rlr}
r^{\prime} & =4 r-r^{3} \\
\theta^{\prime} & =-4
\end{array}\right.
$$

This gives

$$
\begin{aligned}
& r(t)=\frac{2}{\sqrt{1+\frac{4-r_{0}^{2}}{r_{0}^{2}} e^{-8 t}}}, \\
& \theta(t)=-4 t+\theta_{0}
\end{aligned}
$$

