Partial differential equations problems

1. Solve the heat problem

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<\pi, \quad t>0 \\
u(0, t)=u(\pi, t)=0, \quad t>0 \\
u(x, 0)=x(\pi-x), \quad 0<x<\pi
\end{array}\right.
$$

2. Solve the following problem for a vibrating string:

$$
\left\{\begin{array}{l}
u_{t t}-u_{x x}=0, \quad 0<x<\pi, \quad t>0 \\
u(0, t)=u(\pi, t)=0, \quad t>0 \\
u(x, 0)=3 \sin 2 x, u_{t}(x, 0)=5 \sin 3 x, \quad 0<x<\pi
\end{array}\right.
$$

3. Solve the heat problem

$$
\left\{\begin{array}{l}
u_{t}-u_{x x}=0, \quad 0<x<\pi, \quad t>0 \\
u(0, t)=u_{x}(\pi, t)=0, \quad t>0 \\
u(x, 0)=\sin \frac{1}{2} x+3 \sin \frac{5}{2} x, \quad 0<x<\pi
\end{array}\right.
$$

4. Consider the following telegraph problem:

$$
\left\{\begin{array}{l}
u_{t t}+u_{t}-c^{2} u_{x x}=0, \quad a<x<b, \quad t>0 \\
u(a, t)=0, u_{x}(b, t)=0, \quad t \geq 0 \\
u(x, 0)=f(x), u_{t}(x, 0)=g(x), \quad a \leq x \leq b
\end{array}\right.
$$

Use the energy method to prove that the problem has at most one solution.
5. Consider the following Cauchy problem for the wave equation:

$$
\left\{\begin{array}{l}
u_{t t}-u_{x x}=0, \quad x \in \mathbb{R}, \quad t>0 \\
u(x, 0)=f(x)= \begin{cases}2, & |x| \leq 1 \\
0, & |x|>1\end{cases} \\
u_{t}(x, 0)=g(x)=0, \quad x \in \mathbb{R}
\end{array}\right.
$$

Draw the graphs of the solution $u(x, t)$ at times $t_{j}=j / 2$, where $j=0,1,2,3$.
6. Consider the equation

$$
x u_{x x}-y u_{y y}+\frac{1}{2}\left(u_{x}-u_{y}\right)=0
$$

Find the domain where the equation is elliptic, and the domain where the equation is hyperbolic.

Answers or hints:

1. $u(x, t)=\frac{8}{\pi} \sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{3}} e^{-(2 k+1)^{2} t} \sin (2 k+1) x$.
2. $u(x, t)=3 \cos 2 t \sin 2 x+\frac{5}{3} \sin 3 t \sin 3 x$.
3. $u(x, t)=e^{-\frac{1}{4} t} \sin \frac{1}{2} x+3 e^{-\frac{25}{4} t} \sin \frac{5}{2} x$.
4. Use the same energy function $E(t)$ as for the wave equation.
5. By d'Alemberts formula $u(x, t)=\frac{1}{2}[f(x+t)+f(x-t)]$.
6. The equation is elliptic when $x y<0$ and hyperbolic when $x y>0$. (It is parabolic when $x y=0$, but this is not a domain.)
