Sturm-Liouville problems

1. Describe the eigenvalues and eigenfunctions of the Sturm-Liouville problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}+\lambda y=0, \quad 0<x<1 \\
y^{\prime}(0)=0, \quad y(1)+y^{\prime}(1)=0
\end{array}\right.
$$

Obtain an asymptotic approximation of large eigenvalues.
2. Determine the eigenvalues and eigenfunctions of the periodic Sturm-Liouville problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}+\lambda y=0, \quad 0<x<L \\
y(0)=y(L), \quad y^{\prime}(0)=y^{\prime}(L)
\end{array}\right.
$$

3. Transverse vibrations of a drumhead $D=\left\{(x, y): x^{2}+y^{2}<a^{2}\right\}$ are governed by the twodimensional wave equation. Writing the Laplacian in polar coordinates, the problem becomes:

$$
\left\{\begin{aligned}
c^{-2} u_{t t} & =u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}, \quad \text { for } 0<r<a \\
u & =0, \quad \text { when } r=a, \\
u, u_{t} & \text { are given functions when } t=0
\end{aligned}\right.
$$

(a) Separating the variables as $u(r, \theta, t)=T(t) R(r) \Theta(\theta)$, show that

$$
\begin{aligned}
& T^{\prime \prime}+\lambda c^{2} T=0 \\
& \Theta^{\prime \prime}+\gamma \Theta=0 \\
& R^{\prime \prime}+\frac{1}{r} R^{\prime}+\left(\lambda-\frac{\gamma}{r^{2}}\right) R=0
\end{aligned}
$$

for some constants λ, γ.
(b) Since Θ must satisfy periodic boundary conditions, use the result of Problem 2 to deduce that $\gamma=n^{2}, n=0,1,2, \ldots$, so that

$$
R^{\prime \prime}+\frac{1}{r} R^{\prime}+\left(\lambda-\frac{n^{2}}{r^{2}}\right) R=0, \quad \text { where } n=0,1,2, \ldots
$$

(c) Let $\rho=\sqrt{\lambda} r$ and put $w(\rho)=R(r)$. Show that w satisfies the Bessel equation of order n :

$$
\rho^{2} w^{\prime \prime}+\rho w^{\prime}+\left(\rho^{2}-n^{2}\right) w=0
$$

Bounded solutions $w=w_{n}$ are given by $w_{n}(\rho)=J_{n}(\rho)$, the Bessel functions of order n.
(d) The function J_{n} has an infinite number of positive zeros $\alpha_{n, m}$ such that

$$
0<\alpha_{n, 1}<\alpha_{n, 2}<\alpha_{n, 3}<\cdots
$$

Show that the boundary condition at $r=a$ implies that the eigenvalues $\lambda=\lambda_{n, m}$ are given by

$$
\lambda_{n, m}=\left(\frac{\alpha_{n, m}}{a}\right)^{2}
$$

It follows that the natural frequencies that the drum can produce are given by $c \alpha_{n, m} / a$.

Answers or hints:

1. The eigenvalues and eigenfunctions are $\lambda_{n}=\omega_{n}^{2}$ respectively $y_{n}(x)=\cos \omega_{n} x, n=0,1,2, \ldots$, where ω_{n} are the positive solutions of the equation $\tan x=1 / x$. By drawing the graphs of these functions, one sees that $\omega_{n} \approx n \pi$, so that $\lambda_{n} \approx n^{2} \pi^{2}$, for large values of n.
2. The eigenvalues and eigenfunctions are:

$$
\begin{aligned}
& \lambda_{0}=0, \quad y_{0}(x)=1 \\
& \lambda_{n}=\left(\frac{2 n \pi}{L}\right)^{2}, \quad y_{n}(x)=A_{n} \cos \frac{2 n \pi x}{L}+B_{n} \sin \frac{2 n \pi x}{L}, \quad \text { for } n=1,2,3, \ldots
\end{aligned}
$$

