UPPSALA UNIVERSITET
Matematiska institutionen
M. Klimek

Prov i matematik
Matematik för signalbehandling 1IT080
Informationsteknologi IT3
2005-10-25

Solutions to Exam Problems from 2005-10-21

1. If $|x|,|y| \leq 1$, then

$$
f_{Y}(y)=\int_{\infty}^{\infty} f_{X, Y}(x, y) d x=\int_{-1}^{1} \frac{3}{8}\left(1-x^{2}\right) d x=\frac{1}{2},
$$

so Y has uniform distribution in the interval $[-1,1]$. Hence

$$
\begin{aligned}
\operatorname{Var}[X \mid Y=1 / 3] & =\mathrm{E}\left[X^{2} \mid Y=1 / 3\right]-\mathrm{E}[X \mid Y=1 / 3]^{2} \\
& =\int_{-1}^{1} x^{2} \frac{\frac{3}{8}\left(1-x^{2}\right)}{\frac{1}{2}} d x-\left(\int_{-1}^{1} x \frac{\frac{3}{8}\left(1-x^{2}\right)}{\frac{1}{2}} d x\right)^{2}= \\
& =\frac{1}{5}
\end{aligned}
$$

(The last integral is zero because the integrated function is odd.)
2. Since we are dealing with an IID sequence, it follows that $R_{X}[n]=\operatorname{Var}[X] \delta[n]+$ $\mathrm{E}[X]^{2}=5 \delta[n]+4$. Therefore

$$
\begin{aligned}
R_{Y}[n] & =\sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} h[i] h[j] R_{X}[n+i-j]=\sum_{i=0}^{2} \sum_{j=0}^{2} \frac{1}{3} \cdot \frac{1}{3} \cdot(5 \delta[n+i-j]+4) \\
& =4+\frac{5}{9}\left\{\begin{array}{ll}
3 & \text { if } n=0, \\
2 & \text { if }|n|=1, \\
1 & \text { if }|n|=2, \\
0 & \text { otherwise . }
\end{array}\right\}= \begin{cases}17 / 3 & \text { if } n=0, \\
46 / 9 & \text { if }|n|=1, \\
41 / 9 & \text { if }|n|=2, \\
4 & \text { otherwise } .\end{cases}
\end{aligned}
$$

3. Directly from the definition of convolutions we have

$$
\operatorname{rect} * \operatorname{rect}(t)=\int_{-1 / 2}^{1 / 2} \operatorname{rect}(t-\tau) d \tau= \begin{cases}1-|t| & \text { if }|t| \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Since the Fourier transform of $\operatorname{rect}(t)$ if $\operatorname{sinc}(f)$, the convolution property implies that the Fourier transform of rect $* \operatorname{rect}(t)$ is $\operatorname{sinc}^{2}(f)$.
4. If $f(z)=3 z^{3}-2 z^{2}-z-7$ and $g(z)=7$, then if $|z|=1$,

$$
|f(z)+g(z)|=\left|3 z^{3}-2 z^{2}-z\right| \leq 3+2+1=6<7=|g(z)| .
$$

By Rouche's theorem f has no zeros in $D_{1}(0)$ because g has no zeros there.
Now, if $h(z)=-3 z^{3}$, then if $|z|=2$,

$$
|f(z)+h(z)|=\left|-2 z^{2}-z-7\right| \leq 8+2+7=17<24=|h(z)|
$$

By Rouche's theorem f has 3 zeros in $D_{2}(0)$ because h has 3 zeros there.
5. Since $z^{4}+1=\left(z^{2}-i\right)\left(z^{2}+i\right)$ the roots of the equation $z^{4}+1=0$ are simply the square roots of i and $-i$, that is:

$$
\pm \frac{1+i}{\sqrt{2}}, \pm \frac{1-i}{\sqrt{2}}
$$

Only two of them are in the upper half-plane: $(\pm 1+i) / \sqrt{2}$. The function $f(z)=$ $z^{2} /\left(z^{4}+1\right)$ has poles of order 1 at these points. Hence

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) d x & =2 \pi i\{\operatorname{Res}[f(z),(1+i) / \sqrt{2}]+\operatorname{Res}[f(z),(-1+i) / \sqrt{2}]\} \\
& =2 \pi i\left(\frac{1-i}{2 \sqrt{2}}+\frac{-1-i}{2 \sqrt{2}}\right)=\frac{\pi}{\sqrt{2}}
\end{aligned}
$$

6. Since $|z|>1$, we have

$$
\begin{aligned}
X(z) & =\frac{3}{(2 z-i)(z+i)}=\frac{i}{z+i}-\frac{2 i}{2 z-i}=\frac{i}{z} \cdot \frac{1}{1-\frac{-i}{z}}-\frac{i}{z} \cdot \frac{1}{1-\frac{i}{2 z}} \\
& =-\sum_{n=1}^{\infty}(-i)^{n} z^{-n}-\sum_{n=1}^{\infty} 2\left(\frac{i}{2}\right)^{n} z^{-n}
\end{aligned}
$$

Therefore

$$
x[n]= \begin{cases}-(-i)^{n}-2^{1-n} i^{n} & \text { if } n \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

7. Let $S=\{z \in \mathbb{C}: \pi<\operatorname{Im} z<2 \pi\}$. Since

$$
T(z)=i+\frac{1}{e^{z}-i},
$$

finding of the image of S through T can be split into the following sequence of operations:

- $z=x+i y \mapsto e^{z}=e^{x} e^{i y}$ maps S onto $\{z \in \mathbb{C}: \operatorname{Im} z<0\} ;$
- $z \mapsto z-i$ maps $\{z \in \mathbb{C}: \operatorname{Im} z<0\}$ onto $\{z \in \mathbb{C}: \operatorname{Im} z<-1\}$;
- $z \mapsto 1 / z$ maps $\{z \in \mathbb{C}: \operatorname{Im} z<-1\}$ onto $D_{1 / 2}(i / 2)$;
- $z \mapsto z+i$ maps $D_{1 / 2}(i / 2)$ onto $D_{1 / 2}(3 i / 2)$.

8. Applying the unilateral Laplace transform to both sides of the differential equation gives:

$$
s^{2} X(s)-x^{\prime}(0)-s x(0)+s X(s)-x(0)-2 X(s)=0 .
$$

Substituting the values of x and x^{\prime} at 0 and solving for $X(s)$ gives

$$
X(s)=\frac{5+2 s}{s^{2}+s-2} .
$$

