Matematik för signalbehandling

Skrivtid: 15-20.
Tillåtna hjälpmedel: Writing materials, a calculator, the BETA-textbook.

LYCKA TILL!

1. The joint PDF of random variables X and Y is the function

$$
f_{X, Y}(x, y)=\left\{\begin{array}{lc}
3 / 4 & , \quad 0 \leq y \leq 1-x^{2} \\
0 & , \quad \text { otherwise }
\end{array}\right.
$$

Calculate the conditional expected value $E\left[X^{2} \mid Y=1 / 2\right]$.
2. Let X_{n} be a sequence of independent identically distributed random variables such that $E\left[X_{m}\right]=1$ and $\operatorname{Var}\left[X_{m}\right]=4$ for all m. Find the autocorrelation function $R_{Y}[m, k]$ and the autocovariance function $C_{Y}[m, k]$ for the sequence $Y_{m}=$ $2 X_{m}-X_{m-1}$.
3. Suppose that a wide sense stationary random sequence X_{n} with $\mu_{X}=1$ and with the autocorrelation function

$$
R_{X}[n]= \begin{cases}2 & \text { if } n=0 \text { or } n= \pm 1 \\ 0 & \text { otherwise }\end{cases}
$$

is the input of a linear time invariant filter with the unit impulse response $h[n]=$ $\delta[n]+\delta[n-1]+\delta[n-2]$. Calculate the autocorrelation function $R_{Y}[n]$ of the output Y_{n} of this filter.
4. Show that all zeros of the polynomial $P(z)=z^{5}-z+16$ are in the disk $|z|<2$.
5. Calculate the contour integral

$$
\int_{C_{\sqrt{2}}(1+i)} \frac{d z}{(z-1)^{2}\left(1+z^{2}\right)},
$$

where the circle $C_{\sqrt{2}}(1+i)$ (with center at $1+i$ and radius $\sqrt{2}$) is assumed to be positively oriented.
6. Find the discrete time signal $x[n]$ whose bilateral Z-transform is the function

$$
X(z)=\frac{4}{(2 z-1)(z+3)}
$$

with the region of convergence $\operatorname{ROC}=\{z \in \mathbb{C}: 1 / 2<|z|<3\}$.
7. Find the image of the strip

$$
\{z \in \mathbb{C}: 0<\operatorname{Im} z<1\}
$$

through the Möbius transformation

$$
T(z)=\frac{z-3}{z-1}
$$

8. A causal signal $x(t)$ is a solution of the following initial value problem:

$$
x^{\prime \prime}(t)+2 x^{\prime}(t)+5 x(t)=4 e^{-t}, \quad x(0)=1, x^{\prime}(0)=1 .
$$

Find the (unilateral) Laplace transform $X(s)$ of this signal.

GOOD LUCK!

