ADVANCES IN SOVIET MATHEMATICS
Volume 18, 1994

Classification of Links in RP3
with at Most Six Crossings

JULIA DROBOTUKHINA

§1. Introduction

A link in real projective space RP® is a one-dimensional closed smooth
submanifold L c RP®. By an (ambient) isotopy of L we mean a smooth
homotopy h,: L — RP® with ¢ € [0, 1], where A, is the inclusion L —
RP?. Two links L,, L, are (ambiently) isotopic if there exists an isotopy A,
(t€[0, 1]) of L, such that A,(L,) = L,. One of the first problems of link
theory in RP? is the problem of classiﬁcation of links in RP? up to isotopy.

Links in lRP3 as well as links in ]R can be presented by special plane
pictures, which are called diagrams. Dlagrams of links in RP® differ from
diagrams of links in R’ in that a diagram of a link in RP? is placed not in
the plane, but in a disk; arcs of the diagram meet the boundary of the disk
in pairs of antipodal points. The moves Q,- €, of diagrams (see Figure 1
on the next page) correspond to link isotopy. The moves Q,-€, coincide
with the classical Reidemeister moves. For details see [D1].

In this article links in RP® that can be presented by diagrams with at most
six crossings are classified up to isotopy and homeomorphism. Here, as in the
classification of links in R> , we exclude from consideration reducible links,
i.e., links which are (nontrivial) connected or disjoint sums. We exclude also
affine links, i.e., links that can be placed in an affine part on RP® by an
isotopy, since their classification c01nc1des with classification of links in R>.

For the classification of links in RP® one needs to enumerate diagrams that
represent all isotopic types of links in RP? with a given number of double
points, and to prove that links in the list obtained are pairwise nonisotopic.
The latter demands calculation of some link invariants. To obtain a com-
plete list of diagrams of links in RP we use an approach that was proposed
by Conway [C] for the enumeration of dlagrams of links in lR see §2. The
main invariant for nonoriented links in RP® isa polynomial generalizing the
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Jones polynomial (in Kauffman’s version) of classical links. This polynomial
slightly differs from the polynomial introduced in [D1]; for the definitions of
these polynomials see subsection 3.1. Apart from this, we use the results of
[D2], where projective Montesinos links are classified.

§2. Enumeration of diagrams

2.1. Tangles. By a tangle we mean a part of a link diagram placed in a disk
and intersecting (transversally) the boundary of the disk in four points lying
on orthogonal diameters. An example of a tangle is shown in Figure 2. Two
tangles are said to be equivalent if they can be transformed to one another
by a sequence of Reidemeister moves with the end points of tangles fixed.

FIGURE 2

By the sum t, + 1, of tangles ¢, and z,, we mean the tangle constructed
from ¢, and ¢, in the way shown in Figure 3.

By the product (t,t,) of tangles ¢, and #, we mean the tangle t; +1,,
where t'l is the tangle obtained from t, by reflection in the line passing
through the boundary points p, and p, (see Figure 4).

By integer tangles n, —n (n € N), and 0, we mean the tangles shown in
Figures 5a, 5b, and 5c respectively. The tangle shown in Figure 5d is denoted
by the symbol oc.
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A tangle obtained from the tangles 0, co, 1, —1 by summation and
multiplication is said to be algebraic.

The product (---(i,i,)iy---i,) of integer tangles i ,..., i, is called a

rational tangle i ---i, .
Conway [C] showed that two rational tangles i, ---i
equivalent if and only if the corresponding continued fractions
1 . 1

in+. i > I+

and j,---j, are

. 1

1 I F 1
have the same value (it is understood that 1/0 =00, 1/oo =0, k+ 00 =00
for k € Z). It follows that any rational tangle different from 0, oo, 1, —1
can be reduced to the following standard form: either i, ---i, or i ---i 0,
where |i,| >2 and all the i, ..., {, are nonzero integers of the same sign.
The rational tangle i, ---i, with

is called a p/q tangle.

2.2. Nets. A net is by definition the image in RP? of several circles under
an immersion in general position. In particular, a connected net is either a
circle embedded in RP? or a connected graph embedded in RP? , all vertices
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of which are 4-valent. To any diagram of a link in RP® corresponds a net in
the projective plane obtained from the disk of the diagram by identification
of antipodal points of the boundary circle.

A net is said to be contractible if its inclusion in RP? is homotopic to a
constant map.

A net s is said to be irreducible if for any circle embedded in RP? , inter-
secting s (transversally) at exactly two points, and dividing RP? into a disk
D and a Mobius strip M , either sN.D is a simple arc, or sNM is a simple
arc dividing M .

A net is said to be base if it is connected, noncontractible, irreducible, and
none of the regions into which it divides RP? has exactly two vertices on its
boundary.

A diagram of a link in RP? is said to be base if the corresponding net is
base.

By a base graph we mean a base diagram with overpasses and underpasses
ignored. Two base graphs determine the same base net if they are obtained
from one another by a series of moves Q Q corresponding to Q,, €
(see Figure 6).

FIGURE 6
2.3. Enumeration of links. A diagram is said to be reduced if there is no
circle whose embedding in RP? is two sided and intersects the net of the
diagram at two points exactly near a double point (see Figure 7).

Removing a small neighborhood of each vertex of the base graph and
inserting an algebraic tangle in its place gives a diagram of a link in RP®.

LEMMA (cf. [C)). Any reduced diagram of an irreducible nonaffine link in
RP® can be transformed by moves Q,, Q to a diagram that can be obtained
by inserting algebraic tangles distinct from 0 and oo in place of vertices of
some base graph. The corresponding base graph (considered up to Q,, ),
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FIGURE 7

the algebraic tangles, and the insertion process are determined by the original
diagram uniquely.

ProoFr. Here is the process of constructing the base graph from a link
diagram. Let T be the net of the diagram D. Since the link is irreducible
and nonaffine, I is connected and nondividing. Since the link is irreducible
and the diagram is reduced, I" is irreducible. If I" divides RP? into regions
none of which has exactly two vertices in its boundary, then I" is a base
net. Assume now that among these regions there is one whose boundary
contains exactly two vertices (we call it a lune). Applying, if necessary, the
moves , and Q,, one can make the lune disjoint with the projective line
corresponding to the boundary of the disk of the diagram. Contract the lune
to a point. We obtain a new net I'| . Its vertices are in the complement of
the projective line. It is clear that I', is connected and noncontractible. T,
is irreducible since T is irreducible (see Figure 8). If among the regions into
which I'; divides RP? there are no lunes, then I'; is a base net. Otherwise
we contract one of the lunes, having applied, if necessary, Q,, g to the
diagram with net I, to put the lune in the complement of the projective line.
We obtain a new net I',. The contracting process is applied until all lunes
disappear. It is clear that the net obtained does not depend on the sequence
of contractions and is a base net.

FIGURE 8

The base net determines a base graph up to S~24 , ﬁs . We insert the cor-
responding algebraic tangles in place of its vertices obtained from contracted
regions and the tangles 1 or —1 on the other vertices to restore D. We
obtain a diagram that differs from D by a sequence of moves Q,, €. An
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example of the contracting process is shown in Figure 9 (near vertices, the
algebraic tangles to be inserted are shown).

FIGURE 9

The construction shows that the base graph (up to Q 4 £~25 ), the algebraic
tangles, and the insertion process are determined in a unique way.

THEOREM. To enumerate all irredicuble nonaffine links in RP> that can
be presented by diagrams with at most n double points, it is sufficient to
enumerate all base nets with at most n vertices, all algebraic tangles with
at most n double points, and for each of the enumerated base nets take the
corresponding base graph and enumerate all possible ways of inserting the
tangles in place of vertices of the graph so that the result is a diagram with at
most n double points.

ProoF. This theorem follows immediately from the lemma, because the
moves £Q,, €, do not change the number of double points of a diagram.

2.4. Enumeration of base nets. A region in RP? bounded by edges of a
net is called an n-gon if exactly n vertices lie on the boundary of this region.

LEMMA 1. Let v > 3 be the number of vertices of a base net T, e be the
number of its edges, and d be the number of regions into which T divides

RP?. Let dy, d,, ..., d, be the number of triangles, quadrangles, ...,
v-gons respectively among these d regions. Then

d=v+1,

d=dy+d,+---+d,, (*)

2e=3d,+4d,+---+vd,.

ProoF. First note that when v > 3, none of the regions into which the
net divides RP’ has exactly one vertex on its boundary (this follows from
the irreducibility of the net). Since v — e +d = y(RP? )=1 and 4v = 2e,
we have d = v + 1. The second and third equalities of (x) are obvious.
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LEMMA 2. If n is even, there is no base net with n vertices containing the
n-gon. If n is odd, there exists only one such net.

ProoF. Let I' be a net with n vertices containing the n-gon N . Consider
an edge e of I' not belonging to N. Denote by « the cycle in I" formed
by e and the edges of N. Let us show that if o is a two-sided embedded
circle, then I" is not a base net. Denote by D the disk bounded by o. Put

_{D if N¢ D,
"l b~ N) if NcD.

The disk D, contains the graph ' = DyNT, all vertices of which lie in 6D, .
If the number of vertices of N is greater than two, there is a vertex v € I
not lying in e. An edge e, with Inte, C IntD, and a vertex v divides D,
into two parts. Denote by D, the closure of the part that does not contain
e. The boundary of D, consists of several edges of N and e, , and contains
less vertices than the boundary of D,,. Applying to D, the same argument
as to D, we obtain a new region D, having less vertices, and so on. It is
clear that at some step the next region D, (D, C D,_, C --- C D, C D)
will have in its boundary either one or two vertices. This means that T" is
not a base net.

Thus I'" can be a base net only in the case if for any edge e ¢ N the cycle
a formed by e and some edges of N is the image of a one-sided embedding
of the circle. The net satisfying this condition is unique (see Figure 10).
It is not a base net in the case of even n and is a base net in the case of
odd n. O

FIGURE 10

BASE NETS WITH NO MORE THAN FOUR VERTICES. Obviously, there exists
only one base net with one vertex, the corresponding base graph is shown in
Figure 11a.

Note that this net is the only one with a vertex to which only two compo-
nents of the complement are adjacent. In any other base net, at each vertex
there are four different adjacent components of the complement and each
component of the complement is a polygon embedded in RP?.
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FiGURE 11

Obviously, there are no base nets with two vertices. It follows from
Lemma 1 that if v = 3, then d; = 4. The corresponding base graph is
shown in Figure 11b. The base net with three vertices is unique by Lemma 2.

When v = 4 system (x) has only one solution d,=4,d,=1,but, by
Lemma 2, there are no base nets with such parameters.

BASE NETS WITH FIVE VERTICES. There are only two base nets with five
vertices; the corresponding base graphs are shown in Figures 11c and 11d.

PrOOF. When v =5, system (x) has two solutions: d,=5,d;=1 and
d, =4, d, = 2. The base net corresponding to the first solutlon 1s a pentagon
w1th ﬁve adjacent triangles. By Lemma 2, this net is unique (see Figure 11c).
Let us construct the base net corresponding to the second solution. By the
connectedness of RP2 , one of the edges of this net is adjacent to a quadrangle
and a triangle. This edge determines the net in a unique way (see Figure 11d).

BASE NETS WITH SIX VERTICES. There exist only two base nets with six
vertices; the corresponding base graphs are shown in Figures 18 and 20.

PrOOF. When v = 6, system (x) has three solutions: d, =6, d6 =1;
d,=5,d,=1, d;=1;and d; =4, d, = 3. By Lemma 2, there is no base
net corresponding to the first solution.

Assume that there is a base net I" corresponding to the solution d, =35,
d, =1, d; = 1. Let us show first that its pentagon P and quadrangle
Q have no common edges. Suppose P and Q have two common edges.
These edges, obviously, have no common vertices. The union PUQ is a
Mobius strip. Indeed, if this is not the case, then P U Q is an annulus. Its
boundary circle bounds a disk in RP? and intersects I" in two or three points
(see Figure 12). Thus this disk is divided by I' into regions among which,
despite the position of the sixth vertex of I', there are regions adjacent to
one or two vertices. But this contradicts the assumption that I" is a base net.
Denote by D the circle Cl(]RP2 N (PUQ)) (see Figure 13a). Let I’ =I'nD
(see Figure 13b). The graph I has six vertices, five of which lie in 9D,
and ten edges. Since five of these ten edges lie in dD and four edges are
adjacent to the single inner vertex, there is an edge of which two boundary
vertices lie in D . Therefore, this edge divides D into two regions, one of
which contains the inner vertex, and the other is a lune. But this contradicts
the assumption that T' is a base net.
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FIGURE 12

FIGURE 13

Suppose that P and Q have only one common edge. Let v be a common
vertex of P and Q which does not lie in their common edge (such a vertex
exists because the number of vertices is six). Let T be a triangle adjacent to
v all of whose edges belong to P. Denote by D the disk Cl(RPZ\(PU QuTy)
(see Figure 14a). Let I' = TN D (see Figure 14b). The graph I" has six
vertices, five of which lie in 8D, and nine edges. Two of five boundary
vertices of I’ have three adjacent edges each, the other two vertices have two
adjacent edges, and the fifth one has four adjacent edges (see Figure 14b). It
is clear that in the decomposition of D by I' there are only lunes or regions
adjacent to one vertex. This contradicts the assumption that I" is a base net.
Thus, P and Q have no common edges.

Further, P and Q cannot have four common vertices. Indeed, each of
the four edges adjacent to a vertex w ¢ P is adjacent to P at its other end
point. If the intersection PNQ consists of these four points, then at least two
of these four edges are connected by w with one of the vertices of PNQ (see
Figure 15). Therefore, w € Q, which is impossible. Thus, P and Q have
three common vertices. Then Q and three different triangles are adjacent
to w ¢ P. Let T be the triangle among these three that is not adjacent to
Q (see Figure 16). It is clear that 7 and P have no common edge. Since



96 JULIA DROBOTUKHINA

~

\

N DoT”

FiGURE 14

the pentagon and the quadrangle have no common edge, each of the triangles
must have a common edge with the pentagon. This contradiction shows that
there is no base net corresponding to the solution d,=5,d,=1, d;=1.

| °]
w] | P

FIGURE 15

Now consider the solution d, =4, d,=3. Let I be a base net corre-
sponding to that solution. Denote by Q one of the quadrangles, and denote
by v, w the vertices of ' not belonging to Q. As it was noted, four dif-
ferent regions are adjacent to each vertex of I'. Since the number of regions
is equal to seven, for any two vertices there is a common region adjacent to
them. If v and w are connected by an edge of the net, then the common
region N adjacent to them is a triangle, otherwise N is a quadrangle. It is
clear that N and Q are not adjacent regions. Thus the fragment of the net
containing all vertices looks like Figure 17a or Figure 17b. It is not difficult
to see that there are only two 6-vertex base nets having the fragment shown
in Figure 17a; their base graphs are shown in Figures 18a and 18b. The
graphs of Figure 18a and 18b are transformed one to the other by the moves
Q,, €, , see Figure 19; thus they define the same net. There is only one 6-
vertex base net containing the fragment shown in Figure 17b, see Figure 20.
Thus, there are only two base nets corresponding to the solution d, = 4,
d=3. 0

All base graphs with six vertices or less are shown in Figures 21 (the graphs
of Figures 11c and 11d are represented in a more convenient form). Denote

these graphs by g', g°, g7, g, &°, &°.
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2.5. Enumeration of diagrams. The enumeration of diagrams is carried out
according to the outline described in subsection 2.3. It is too cumbersome to
reproduce the details here. Note that there are 126 rationally nonequivalent
tangles with at most six double points.
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§3. The table

THEOREM. Any nonaffine irredicuble link in RP® with at most six double
points is isotopic to one of the links of the table or to its mirror image; the
amphicheiral links (i.e., links isotopic to their mirror images) are listed at the
end of the table.

3.1. Codes of links. Denote by p/q the rational tangle —p/q with p/q >
0. In the notation (t,¢,) for the product of two tangles, we shall omit the

brackets. Denote by (t,ty, ..., t,) the algebraic tangle 1,0+£,04-- -+¢,0.
Denote by It,.t,.--- -4, the link whose diagram is obtained from the base
graph T (=g', g3, gls, g25, gf, g26) by inserting the tangles Ly oous 8,

(Figure 22 shows how they are inserted). We shall omit the symbol T in the
cases I' = g, or &; - For example, the link shown in Figure 9 is denoted by
3.12.

’ We also use another way of coding, similar to the one applied by Alexander
and Briggs in their table [AB] of links in R>. Denote by c1'v the link with
r components having ¢ double points which is the N th link in our table of
links with given number of double points and given number of components.
The superscript r = 1 will be omitted.

3.2. A polynomial for nonoriented links in RP°. Polynomials v, for
framed links L c RP® and V, for oriented links L c RP? generalizing
respectively the Kauffman bracket for framed links in RP> and the Jones
polynomial (in Kauffman’s version) for oriented links in R* are defined in
[D1]. Here we define a related polynomial invariant for nonoriented links in
RP? » which is a Laurent polynomial on one variable.

This polynomial is calculated from any link diagram. By a state of a
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diagram we mean a choice of a pair of vertical angles at each double point.
At each double point this choice can be made in two ways (see Figure 23).
The chosen regions are shown by a marker (a segment connecting them).
There are two types of markers: A4-markers and 5-markers (see Figure 23).

AN \
AN \
A
FIGURE 23

Let D be a diagram of a link L and s be a state of D. Denote by
a(s) and b(s) the number of A-markers and B-markers respectively for the
state s. Smooth each double point according to its marker (see Figure 24).
The diagram turns into several disjoint arcs and circles and its image in the
projective plane obtained from the disk of the diagram by identification of
antipodal points of the boundary circle turns into several disjoint circles.
Denote the number of these circles by |s|. Define the polynomial

v (4) = ZAa(S)—b(S)(_A—z _A2)|s|——1 ,
§

where the sum is taken over all states s of D. As shown in [D1], v, (4)
is invariant under Q,-Q, and generalizes the Kauffman bracket for framed

links in S°.
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Orient L. Assign to each double point of the oriented diagram D a
number & equal to 1 or —1 depending on the type of the double point (see
Figure 25). Define the writhe w(D) = 3, ¢;, where the sum is taken over
all double points of D which are self-intersection points of the projection of
the same component of L. It is clear that the writhe does not depend on the
choice of orientation. Define the polynomial

() = (~4) 7Py (4).

It is clear that f;(4) is an (ambient isotopy) invariant under Q,-Q,. It
follows easily from properties of v,(A4) (see [D1]) that f;(4) is invariant

under Q, . Thus f,(A4) is an invariant of nonoriented links L C RP*.

e=1 e=-1

FIGURE 25

It is not difficult to define the corresponding polynomial invariant for
nonoriented links L C R®. For a link contained in R’ ¢ RP® , it coincides
with f, .

There is an obvious relationship between ¥, and f; :

£(4) = (4" @, (),

here w'(D) = >.;¢ and the sum is taken over all double points of the
diagram where the projections of distinct components intersect each other.

3.3. Irreducibility and nonaffinity of table links. Let f, and f, be the

polynomials of L C RP® and K c S° respectively. Let LII K and L#K
be the disjoint and the connected sum of L and K respectively. Then

fLUK = (_A_z - Az)foK ’ fL#K = foK' (*)
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It is not difficult to check that all but one of the links in the table have
polynomials not representable in the form (x). The only exception is the
link 637 (see Figure 26) with polynomial —-A72 - 4. This two-component
link is irredicuble because the linking number for the orientation shown is
two. Therefore all links of the table are irredicuble.

=

&
FIGURE 26

In the table there are two pairs of links with the same polynomials: the

link 52 and the affine link 4% , the link 6§ , and the mirror image of the affine
link 5? . The two-component links 52 , 4? , 654 R 5? oriented as shown in
Figure 27 have linking numbers 0, 2, 2, 0 respectively. Therefore 52 is not

isotopic to 43 and 624 is not isotopic to the mirror image of Sf . Thus all
the table links are nonaffine.

NN >0 —~
ARSI NS

5% 4 63 53
FIGURE 27

It is easy to see that each table link L with f,(4) = fL(A_l) (except

6%7 ) is amphicheiral. The link 6;7 is not amphicheiral: removing a noncon-
tractible component from it, we obtain the link 2, which is not amphicheiral
because its polynomial is not symmetric.
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Diagram of the link
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Table of links in RP>

Its notation

0,
(ampbhicheiral knot)

1y
1
(amphicheiral link)

3/2

The polynomial 1L

A+ 4!

A—4+A—6_A-10

A 11— g8

ArAa-a34 47
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Diagram of the link Its notation The polynomial f;

A —A4-2473

—

A—8+A—10_A—14+A—18_A—22

A g6 g
5/2 +24% - A¥ 4+ 4°
4, At g
4/3 +A—12+A—14_A—l8
4 Ara-a"-4a"
5/3 447042477 47!

4 A®—24% - 24°
2,2) +1+472-4"°

BODEDDL
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Diagram of the link

OEDDDE
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Its notation

2
4
(2,2)

The polynomial f;

Lo, B e S

(amphicheiral link)

7/2

8/3

7/4

A 410 o2

A2 - A4t

A+ 48— 46
24%+2- 444 478

At v A2 122472
+47 442478
24710 414

A A 46 478
yA 0 0 12 1
247" 4 47
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Diagram of the link

DEEDEEE

Its notation

8/5

5/4

2.2.1

The polynomial f;

—A% A0 048 1248
—A* 244142472478

Ar1-a a4
PR Bes L e L

A 240 _ 44045
24— A1+ 47

g 42 420 424"
2A4Y 4 40+ 42

A% 4242+ 2-2471
2474+ 478
42478 4712

A2 g0
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Diagram of the link

BEDDEE
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Its notation The polynomial f;
510_ 247448 412
2.2.1 247184 470
Su_ —A 4244784712
1.2.2
52 5
J Ry Ly Ny LR S
52 A+ L -24+ 4
7/3 247 -4+ 470
;2 A+ra-at-4
775 +247°+2477 - 47°
/ 247" 447"
5 A% - 4" 1248 1245
(2,2/3) A 34+ 448
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Diagram of the link

DHEEDE

Its notation

1.1.2/3

2, 2)1

The polynomial f;

AP B At 12471

A A -4 - aC

L
A-24""-34"7
+247 47"

A A +4-2473-47

A Al a4

B, ) L, ) e R R
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Diagram of the link

HEDODOE
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Its notation

3
55
g 11111

The polynomial f,

A 34 243
+24+2471 2473
—3473447°

(amphicheiral link)

9/2

3
10/3

4
11/4

5
12/5

A—12+A—l4+A—22
4 40 4

_A26__A24+A22+2A20
24 424 _ A+ 4%

A8 g0y
247 476 134718
4R g

A% g% 422 0%
A8 416 41
+342 248+ 44

A g0 2 e
+24710 434718 _ 470
3472 42476 - 470
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Diagram of the link

SICICICIENES

Its notation The polynomial f,

9/4

6/5

A24 _ A22 _ 2A20 +A18
+24" — 42 4 AP

109

A v A2 —2-24724247*

3470 _ 48 _34710
4A 20 48

A8 —24% —24% 4 247
+3-24"2-347*
+A 43478 4712

A g0 40

—AT 2470 40718

__2A—20 _ 3A—22 +A—24
4247 47

—A" — A" 124" 424"
24" —24% 4 245
4344 A2+ 47

A a0

I L LR
dA0 R 4
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Diagram of the link

BEEEHEE

JULIA DROBOTUKHINA

Its notation The polynomial f;

; _ 430 48 g%

12 4242 4% _ 3420
(2, 3/4) 248316 412, 8
P —A‘fo+ 2A1: +A'26
13 349 _24% 434
2,5/2) 34 - A2 -2+47*
6 4 TAZ —1- 2,4‘2o
14 - - -1
- +A74 1347534
(2,5/2) —A'12++ A1y 416
6 —A® 4;3,42 +2- 3A_z
15 347" 4+247°+347
(2,5/3) =T IPt g
6 A —2478 434712
3.9 4247 24716 24718
, sAO 2 42
6 ARy L L I
3 ”3) +3-2474- 4t

44784 4710

(amphicheiral knot)
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Diagram of the link Its notation The polynomial f;

46 _ 9412 _9y"0
+34% +34% - 24°
3424 1+3472-4"°

618
(3/2,3/2)

16 12 4
A4t 42
1/2.2.2 A7 -4 +

—24% 412470 - 4"
+34"% 248 + 4°

6,, —A® 4247 24"
2/3.1/2.1 1242 - 248+ 24°

6,y A% 124" - 4
/3.1/2.1 yA 1447

|

N

6,5 A —24% 12
2/3.1/ Y e

|

N
Pk

QRDDDE



—

12

Diagram of the link

JULIA DROBOTUKHINA

Its notation The polynomial f,
620 _ Y A L
2/3.1/2.1
6, 24° - 4* 41
£1/21.1.1.1 24744+ 47"
6

2% _ 24 - A —14+47*
g’1/211.1.1 *

6, 244 —34% +2-247*
gLLTLLI 347047
6 A+ 4-4
s 247"+ 4343470
/ 247 4247 B - 47V
62 —A% 41 +23A9+3A7
2 _A45 -
135 A 342+ 4

4347 2243+ 470
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Diagram of the link

EIEIEUEHEIE)

Its notation

9/5

9/7

The polynomial f;

ArA-—a-—atya?
2475 472477
44 M2 B g7

A+ A" —24°-24%+24
4347 432470
+4774247°%° 478

ABra-at-a342473
42477 —247% 2471
447 B 4247 a7

A% 240 _ 48245
+4* 2422
+A42+474 478

A2 410, 48
+24°% — 4% — 247
4247248478

A0 248 —24°
2424224723474
447842478 4712



114

Diagram of the link

DHEOEEE

JULIA DROBOTUKHINA

Its notation The polynomial f;
62 Al6$Al4;2A126
9 -347+A4 +34
(2,2/5) 3424 4"t 48
62 A —12A5 - 43 +34,
10 +347 =247 -24"
(3,3/2) AT 240 4 4
6 A+ 4247
5 Al +347° 4477 - 247°
(3,3/2) Y BT
62 —A ~1+ A‘: + 2,4‘1“2
12 —247" =347 +34"
(2,2)2 94716 4720
62 A'6 - 2A126— 2A13
13 +34° + 34" - 24
(2, 2172 44> + 2472 - 478
6 —342 -1 -*_102A—4 12
14__ 3478 24" -
2, 2)1/2 +2A_2ﬁ1_At128A
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Diagram of the link Its notation The polynomial f;

A w4344
2470 4347 g3
34 o B

AV 47 Lot
4248 — 24" —34°
24" +44° 24+ 473

—A A 24742
62 347234744+ 47"
(2, 2)11 434784710

2474 471

_A—4_A—8_A—12+A-24

2 24782471
19
11.4 4248 g2 7
E;o _2A22 +A18 _2A14
1.1.4/3 +4°0 -4+ 42

HDIDEEE



116 JULIA DROBOTUKHINA

Diagram of the link Its notation The polynomial f;

NN

1 A g8 g
46 _

- O\
ES
w

247 - 24" + 4"
5/2 348+ A% -1

= on
NN
N

o —A%+ 47~ 247
1.1/3.2 4402470 4
625 —A*+1-247*
1.1/3.2 N
636 2447 -247°
1.1/3.2 +24712 2470 4 4770

DR
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Diagram of the link

BEEDEE

Its notation

The polynomial f;

—A*— 4

L A

A 34 +1-2471
42478 4712

A" +34%+24-347"
347343473 +4477
I VR

A a4
+2A—ll +A—l3
_47 4

A3 124732470
24784470
__A—17 _A—l9

117



118 JULIA DROBOTUKHINA

Diagram of the link Its notation The polynomial f;

e 2472 - A4 +10A‘6
33 - -
A% - 4
g251.1.2.1.1 j—A—12+A—16
62 -1~ 2A‘2146A*4 .
34 - - -
3 +247° 34710 _ 4
g251.1.2.1.1 $A8 418
635 —A2—1$A“‘ N
g11.21T A4

—A® 134" 424"
—44" _34% 1245
+34% 24 -3+ 47

—A% 1348 1345
-34* _34%+1
+4477 - 470 470

6 A+ 48 _34*
52 +3+ 334‘2 - {%‘4
—A "+ A4

5EOEE
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Diagram of the link

DIIDDE

Its notation

3
2,2, D1

._.
= N
(7.3 [T
\l
w

6
(2,2).1.1
(amphicheiral link)

—1

(2, 2).1.

6
(2, 2).1.1
(amphicheiral link)

The polynomial f,

A+ 4
+A4-347"1-3473
42473 +3477 - 47°
_3A—11+A—15

24°+4-3473
+A—7 _2A—11 +A—15

AP —24° — 24— 477

119

248 A2 a*42478

A%+ 34542472
—A 4470

A+ A8y 44 4710



120

Diagram of the link

DS

JULIA DROBOTUKHINA

Its notation

=
-

2, 2).

4
6, ~
gL11T11
(amplhicheiral link)

4
g 111111

Amphicheiral links: 0,, 1, 45, 55,

The polynomial f;

A%+ 24843
CA 4478

—AS—24* — A2

A2 247 478

243421
_A 8 _ 478

A% a4 _34*
+34%+3-4472
647443478 4712

3 3 4
6,,, 6, 63, 6,.
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