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AN ANALOGUE OF THE JONES POLYNOMIAL
FOR LINKS IN RP® AND A GENERALIZATION
OF THE KAUFFMAN-MURASUGI THEOREM

YU. V. DROBOTUKHINA

ABsTRACT. We define analogues of the Jones polynomial for links in the pro-

jective space RP? . We prove corresponding generalizations of the Kauffman-
Murasugi theorem on the connection between the combinatorial properties of
the diagram of a link and the properties of the Jones polynomial. Finally, we

study criteria for isotopy of a link in the space RP* to a link lying in an affine
part of the space.

§1. Introduction

The polynomial invariant of a link in the 3-sphere discovered by Jones in
1985 has turned out to be closely related to the combinatorial properties of the
diagram of the link. In particular, Kauffman [1] and Murasugi [2] have used
it to verify two old conjectures of Tait concerning the diagrams of alternating
links. The question naturally arises of carrying over the Jones polynomial to
the case of links in 3-manifolds other than the sphere. In the present paper we
study links in real projective 3-space RP’ . The main results are listed below.

1.1. Diagrams. Links in RP? can be specified by diagrams that differ from
the usual diagrams of links in R® in that they are given not on a plane, but in
a disk, and the endpoints of arcs that go out to the boundary of the disk are di-
vided into pairs of diametrically opposite points. In §2.4 we define five diagram
transformations generalizing the Reidemeister transformations of diagrams of
ordinary links and having the property that two links in RP’ are isotopic if
and only if their diagrams can be joined by a sequence of such transformations.

1.2. Polynomials. By means of Kauffman’s approach [1], the bracket poly-
nomial of a framed link and the Jones polynomial of an oriented link are gen-
eralized from the case of a link in R’ to that of a link in RP®. (Here the word

“generalized” is understood in the sense that for a link lying in R’ c RP? , the
new polynomials coincide with the old.) The Jones polynomial of an oriented
link L in RP® will be denoted by V.

1.3. Bounds on the number of double points of a diagram. By a ner we mean
the image in RP? of a set of circles under a general-position immersion, i.e.,
an immersion for which the inverse image of any point consists of at most
two points and all double points are points of transversal intersection. Every
diagram determines a net in the projective plane obtained from the disk of the
diagram by identifying opposite points of the boundary. Let D be the diagram
of a link L. We denote by c¢(D) the number of double points in D, and by
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r(D) the number of connected components of the corresponding net. For a
Laurent polynomial ¥ in one variable, we denote by span(V) the difference
between the highest and lowest exponents of the terms of V.

THEOREM 1. Let D be the diagram of a link L in RP’. Then
4(c(D) + r(D) - 1) > span(}V}).

This generalizes the Kauffman-Murasugi inequality; see, €.g., [3], Theorem 1,
(i). For diagrams of a special form the inequality can be strengthened.

A net is said to be separating if it is the common boundary of two subsets of
its complement in RP2. It is called contractible if its imbedding into RP? is
homotopic to a constant mapping. Clearly, a net is contractible if and only if
its complement contains a one-sidedly imbedded circle in RP?. Furthermore,
obviously, every contractible net is separating. The net corresponding to a link
diagram separates RP? if and only if the link is homologous to zero in RP.
If the net corresponding to the diagram is contractible, then obviously the link
is contractible in RP> and, moreover, is isotopic to a link that lies in an affine
part of RP® (i.e., that fails to intersect some projective plane). The converse
is false.

THEOREM 2. For a diagram whose net is separating and noncontractible,
4(c(D) +r(D)) — 6 > span(}V;).

THEOREM 3. For a diagram whose net is nonseparating and contains 2p one-
sidedly imbedded circles without common edges (but of course with common
vertices),

4(c(D)+r(D)—1—p) > span(V;).

We note that the number span(V)) is always even (see §3.2).

1.4. Extremal properties of the bounds. We recall that the diagram of a link
in R? is said to be alternating if, along it, underpasses and overpasses alternate.
For a link in RP?, the diagram is called alternating if, along it, underpasses
and overpasses alternate when and only when the arc between successive dou-
ble points either fails to intersect the boundary of the disk of the diagram or
intersects it in 4k points, Kk = 1,2, 3,.... As shown below in §4.1, the net
of an alternating diagram is separating.

A diagram with a separating net is called weakly alternating if it is the con-
nected sum (in the sense explained in §3.3) of alternating diagrams. A diagram
with nonseparating net is called weakly alternating if it is the connected sum
of diagrams that are all alternating except one, and for this exceptional one the
alternating condition fails on exactly one edge.

A diagram is called reduced if there is no two-sidedly imbedded circle in RP?
that intersects the net of the diagram in exactly two points near a double point,
as in Figure 1.

FiGure 1
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The following Theorems 4 and 5 describe the extremal properties of the in-
equality of Theorem 1. Theorem 4 generalizes the Kauffman-Murasugi theorem;
see [3], Theorem 1, (ii).

THEOREM 4. For a diagram with a separating net, 4(c(D) + r(D) - 1) =
span(V;) if and only if D is a weakly alternating reduced diagram with a con-
tractible net.

THEOREM 5. For a diagram with a nonseparating net, 4(c(D)+r(D)-1) =
span(V,) if and only if D is a weakly alternating reduced diagram.

The extremal properties of the inequality of Theorem 2 are described by
Theorem 6:

THEOREM 6. For a diagram with a separating net, 4(c(D) + r(D)) — 6 =
span(V,) if and only if D is a weakly alternating reduced diagram with a non-
contractible net.

COROLLARY TO THE THEOREMS. Two weakly alternating reduced diagrams of
isotopic links in RP® have the same number of double points. This number is
the smallest number of double points for all diagrams of links of the given isotopy
type. Any diagram of a link of this isotopy type with this smallest number of
double points is weakly alternating and reduced.

However, the corollary is also easily derived from the Kauffman-Murasugi
theorem (cf., e.g., [3], p. 207) by passmg to the diagrams of the inverse images
of the links under the covering s* > RrP.

The Kauffman-Murasugi theorem, of which Theorem 4 is a generahzatxon
has also been generalized by Lickorish and Thistlethwaite {4], in the case of links
in $*,toa larger class of diagrams—that of the so-called adequate diagrams.
A similar generalization is given below in §6.6 for links in RP’.

1.5. Affine links. A link in RP® is called affine if it is isotopic to a link in an
affine part of RP’. In §7 we prove the following two theorems, which provide
affineness criteria in terms of the Jones polynomial.

THEOREM 7. Let L be a link in RP® with k components. If there is a term
in V, whose degree is not congruent to 2(k—1)mod 4, then the link is nonaffine.

THEOREM 8. A link L represented by an alternating diagram is affine if and
only if span(V;) = Omod 4.

COROLLARY. A link represented by an alternating diagram is affine if and only
if the net corresponding to the diagram is contractible in RP?.

In §7 we also discuss more elementary necessary conditions for affineness of
knots in RP’ (in terms of the coefficient of self-linking of such a knot).

1.6. Arrangement of subject matter. In §2 we define the diagrams of links
in RP®. In §3 we construct the polynomial of a framed link and the Jones
polynomial of an oriented link. In §4 we study the properties of alternating
diagrams. In §5 are collected the lemmas that form the basis of the proofs
of Theorems 1-6. These theorems are proved in §6. In §7 we examine the
affineness problem for links.

§2. Links in RP® and their diagrams

2.1. Links in RP® and their isotopies. A link in RP? is a 1-dimensional
smooth closed submanifold L ¢ RP®. An isotopy of a link L is a smooth
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homotopy H: L x I — RP? consisting of smooth imbeddings #,: L — RP?
with h,(x) = H(x, 1), t€[0, 1], and h, = in: L < RP’. Two links L , L,
are isotopic if there exists an isotopy #, (1€ [0, 1]) of L, with A (L,)=1L,.

2.2. Diagrams of links. As in the case of links in the sphere S3, a link
in RP® can be specified by pictures in the plane—diagrams. To construct a
diagram of a link, we make use of the standard model of RP?: its represen-
tation as a ball D® with diametrically opposite points of the bounding sphere
identified. We choose the corresponding mapping D® — RP® so that the image
of the poles of the ball does not belong to the link L. We denote by L' the
inverse image of L in the ball. Let p: L' — D’ be the projection onto the
equatorial disk D*c D’ given by the formula x — ¢(x) N D? , where c¢(x) is
the (metric) circle in D? passing through the point x € L’ and the poles of the
ball D*.

We assume that the link L satisfies the following conditions of general po-
sition: 1) the image p(L') contains no cusps, or 2) points of tangency, or 3)
triple points; 4) L' is a submanifold of the ball D? , intersecting transversally
the boundary oD? : 5) no two points in L’ lie on the same arc of a great circle
joining the poles of the ball in aD*.

Any link can be made to satisfy these conditions 1)-5) by an arbitrarily small
isotopy.

We orient compatibly the circular arcs along which the submanifold L' is
projected (for example, from north to south). This orientation determines an
order on each pair of points constituting the inverse image of a double point
under the projection p. The first (upper) point we call the overpass point; the
second (lower), the underpass. For each underpass point we choose a sufficiently
small connected neighborhood in L', and denote by U the union of these
neighborhoods for all underpass points. The image p(L'\ U) c D’ is then
called the diagram of the link L.

2.3. Connection with diagrams of links in the sphere S 3 . The diagram of a
link L in the projective space RP? is connected with the diagram of its inverse
image L” in the sphere S 3 under the covering S® — RP®. The latter diagram
is obtained by projecting the link L” from the poles of S 3 (these poles being
the inverse images under the covering 5% — RP? of the images of the poles
of the ball D under the factorization D*® — RP® ) onto the equatorial sphere
S?. This diagram may be constructed in the following way. Place on a plane
the diagram D of the original link L ; alongside it place its image under a slide
symmetry with respect to a line passing through the center of the disk of the
diagram D ; in this image replace all underpasses by overpasses (and vice versa),
and join by a simple arc every endpoint, on the bounding circle, of an arc of the
diagram D with the point obtained from it by applying, first, symmetry with
respect to the center of the disk of D and then the slide symmetry. The joining
arcs are chosen so as to be pairwise disjoint; see Figure 2.

2.4. Diagram transformations. In the course of an isotopy of a link, the
general-position conditions 1)-5) may be violated. The isotopy can always be
adjusted so that at each moment ¢ € (0, 1) at most one condition fails, and
the failure is of the simplest form, as indicated in Figure 3. The corresponding




AN ANALOGUE OF THE JONES POLYNOMIAL 617

—_ J—
FIGURE 2

Q1 SO = > Condition 1) fails

Q, - D . )( Condition 2) fails

Q, / - /\ Condition 3) fails

Q, - @ @ Condition 4) fails
: @ U @ Condition 5) fails

FIGURE 3

2y

transformations of the diagram will be denoted by the symbols € -£2,. The
transformations ,-Q, are the usual Reidemeister transformations.

Thus, two links in RP® are isotopic if and only if their diagrams can be joined
by a sequence of transformations Q,-Qg and diagram isotopies.

2.5. Diagrams and framed links. As in the case of links in the sphere s3,
there are constructions forming, from the diagram of a link in R, a framing
(up to isotopy) of this link. Recall that to a diagram of a link in S* one
assigns a “vertical” framing, all of whose vectors are directed vertically up (or
all vertically down). For links in RP? this procedure no longer applies, since
under the formation of RP’ by gluing together the ball, the vectors tangent to
meridians of the bounding sphere and directed north to south become identified
with vectors directed south to north. However, the procedure does assign to
a link in RP® a framing by normal /ines. It is easily seen that for every link
component contractible in RP? this line framing is induced by a vector framing,
determined uniquely up to isotopy. In the case of a noncontractible component,
if we want to obtain from the line framing a framing induced by a vector
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framing, we must change the former by a half-turn. For definiteness, let us
agree to make the change so that any needed half-turns are by a left-handed
screw.

Under all diagram transformations except £, , the framing determined by a
diagram as described above remains unchanged. Under a transformation Q
the framing changes by one full turn (just as in the case of links in a sphere).
Therefore, given a diagram and a framing for an arbitrary link in RP® we can
make the framing correspond to the diagram by means of several transforma-
tions £, . As in the case of links in s? , it is easily shown that if two framed
links with framings constructed in accordance with their diagrams are isotopic
(as framed links), then their diagrams can be obtained one from the other solely
by means of the transformations Q,-Q, .

§3. Polynomials of Kauffman type for links in RP?

3.1. States of a diagram and the polynomial of a framed link. A state of
a diagram is a choice of a pair of vertical angles at each double point. At
each point this choice can be made in two ways; see Figure 4. The two chosen
regions are usually indicated by joining them by a small line segment—a marker.
Markers are of two types: type 4 and type B (Figure 4).

Let s be a state of a diagram D . We denote by a(s) and b(s) the number
of markers of types 4 and B, respectively. At each double point we perform a
smoothing in accordance with its marker; see Figure 5. This turns the diagram
into a set of disjoint circles and arcs, and its image in the projective plane
(obtained from the disk by identifying diametrically opposite boundary points)
into a set of disjoint circles. The number of these circles we denote by |s|. We
now define a polynomial in three variables 4, B, d:

v(D) = A" B gHI
s

where the summation is over all states s of the diagram D . It is easily verified
that:

1) v(Oo)=1.

2) v(D1] o) = dv(D), where D]] o is the diagram obtained from D by
addition of one unknotted circle ¢, disjoint from D.

3) v(D) = Av(D )+ Bv(Dy), where D, and D, are the diagrams obtained
from D by a smoothing at any one double point in accordance with a marker
of type A or type B.

As in the case of links in the sphere s? , the requirement of invariance of
the polynomial v(D) with respect to the transformation Q, imposes on the

, %B >}<_._,
i 4 AV

T

FIGURE 4 FiGURE 5
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variables A, B, d the restrictions B = 4~ , d = —A72 - A2; see [1]. The
requirement of invariance of v(D) with respect to the transformations Q,-Q,
gives no new relations. For Q, this is obvious; for Q,, see [1]. To prove
invariance with respect to €2, we use the “calculation” in Figure 6.

From the invariance of the polynomial v(D) with respect to the transforma-
tions Q,-€2, it follows, in view of the observations in §2.5, that our construction
of the polynomial v gives an invariant for framed links.

3.2. The polynomial V' for oriented links. Let L be an oriented link in
RP? , and D its diagram. The orientation of L determines an orientation
of D, allowing us to define the number w(D) = }_ ¢, where ¢, =1 or —1
depending on the type of double point (see Figure 7), and where the summation
is over all double points. It is obvious that w(D) is invariant with respect to
the transformations €2,-€Q .

For an oriented link L in RP® we define the polynomial

(A) = (_A)—3w(D)v(D) - (_A)—3w(D)ZAa(s)-b(s)(_AZ 2, |s]-t
s

V. — A7) ,

where D is a diagram of the link. Repeating Kauffman’s argument [1], we can
show that the polynomial ¥, (A4) is invariant with respect to the transformation
Q, and that w(D) and v(D) are each invariant with respect to the transfor-
mations ,-Q;. Consequently, the polynomial V,(A4) is independent of the
choice of the diagram D and is invariant with respect to isotopy of the link L.

The polynomial V) (4) thus constructed generalizes the Jones polynomial (in
the Kauffman form) for links in R’: forlinksin R® c RP® the two polynomials
coincide.

Observe that the degrees of the terms of the polynomial V' are all even.
Indeed, let ¢ be the number of double points in a diagram D of the link. Then
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a(s) — b(s) = cmod2, w(D) = cmod?2, and therefore —3w(D) + a(s) — b(s)
=0mod2.
3.3. Behavior of V, under link addition. As analogues of the operations of

connected and disconnected addition of links in S we have the operations of
connected and disconnected addition of a link in RP> and a link in S° . These
operations are defined in the obvious fashion. To denote them we employ, as
usual, the symbols # and [].

Let V, be the polynomial of a link L in RP? ,and V, the Jones polynomial

(in the Kauffman form) of a link K in S°. Then the polynomials ¥ and
LUK

V, 4x can be expressed in terms of V, and V. as follows:

AW Ve, V=V, V.

To prove the first equality, it suffices to observe that every state s of a diagram
of the link L][K determines, in an obvious fashion, states s; and s, of
the diagrams of the links L and K. In turn, s; and s, determine s, with
Is| = [s,| + Isg|. Similarly, to prove the second equality we observe that every
state s of a diagram of the link L#K determines a pair Sy » 8 of states of the
diagrams of L and K, but now with |s| = Ispl+1sg| — 1.

VLLIK =(-4"

84. Alternating diagrams and nets

4.1. Alternating diagrams. If a link diagram is alternating, then the link has
an even number of noncontractible components.

ProoF. Consider a link with an odd number of noncontractible components.
The portion a of the net of the diagram that corresponds to a noncontractible
component of the link passes through double points an even number of times.
Indeed, through every point of self-intersection it passes twice; it intersects the
projection of every contractible component an even number of times, and the
projection of every noncontractible component an odd number, but the number
of these latter components is even. In addition, it intersects a projective line
an odd number of times. Consequently, in passage along o the alternating
condition cannot hold.

It follows from this that the net of an alternating diagram must be separating.

Any diagram of a link with an even number of noncontractible components
can be made alternating by changing certain underpasses to overpasses and vice
versa. Indeed, the projection of such a link into RP> separates RP? into two
parts with a common boundary. Color the two parts in different colors. Then the
underpasses and overpasses can be so chosen that all the markers joining regions
of the same color are of type 4. The diagram so obtained is alternating. This
argument also shows that there exist exactly two ways of turning a connected
projection of a link with an even number of noncontractible components into
an alternating diagram.
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Observe that if the diagram of a link in RP? is alternating, then the corre-
sponding diagram of the inverse image of the link under the covering S S rP?
(see §2.3) is also alternating (in the ordinary sense).

For this diagram of the inverse image of the link, the number w is clearly
equal to double the number w for the original diagram. By Little’s conjecture,
proved by Murasugi [2] and Thistlethwaite [5], the number w for an oriented
weakly alternating reduced diagram of a link in S3 isan isotopy invariant of the
link. Consequently, the same is true of the number w for an oriented weakly
alternating reduced diagram of a link in RP.

4.2. Nets. A state of a net is a choice at each vertex of a pair of vertical
angles. As in the case of diagrams, a state of the net is described by a collection
of markers, i.e., line segments joining the vertical angles selected.

If the net is separating, then by assigning two different colors to the two
subsets of its complement in RP? we obtain a checkerboard coloring of the
plane RP? . A state of a separating net is called alternating if all its markers lie
in regions of just one of the colors.

It is easily seen that a state of the net is alternating if and only if, for any
edge, the markers at the endpoints of the edge both enter into the same region
adjacent to the edge; see Figure 8.

To every state of a link diagram corresponds a state of the net of the diagram.
A state of a diagram is called an A-state if at every double point the marker is
of type A. Obviously, the diagram is alternating if and only if its A-state is
alternating.

§5. Preparation for the proofs of the theorems

5.1. The Turaev surface. (See [3], §2.) To every state s of a diagram we
assign a surface M, constructed as follows. To small rectangular neighbor-
hoods of the vertices of the net attach narrow bands, one for each edge: if the
markers at the endpoints of the edge both enter into the same region adjacent
to the edge, what is to be attached is simply a regular neighborhood of the edge
in RP? (Figure 9a); in the opposite case, what is attached is the band obtained
from a regular neighborhood by a half-turn twice (Figure 9b).

From the definition it is obvious that in the case of an alternating state s the

surface M, imbeds into RP?.

L \ Y Ve
7 S 7 7l

L VA 1 | <4 |

a b
FIGURE 9

5%. Lemmas on cycles on the surface M.

5.2.1. LEMMA. In the case of a separating net, the self-intersection index
(mod 2) of any cycle on the surface M is equal to the self-intersection index (in
RPZ) of the projection of the cycle.

PRrOOF. Starting with an arbitrary cycle on M, displace it on M, so that
the points of intersection of the two cycles (the original and the displaced) lie

outside the bands of the surface. When the two cycles are projected onto RP? ,
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there appear new points of intersection: as many as there are twisted bands
traversed on M, by the original cycle (counting multiplicity of passage). But
the number of these bands is even.

Indeed the markers of the state s are separated by the checkerboard coloring
of RP? into two classes: those lying in regions of the one color, and those in
regions of the other. The twisted bands are precisely those that join markers
of different colors. In moving along the cycle, the total number of passages
from markers of the one color to markers of the other is even. This proves the
lemma. e®

COROLLARY. In the case of a separating net, the surface M_ is orientable if
and only if the net is contractible.

5.2.2. LEMMA. In the case of a nonseparating net, the self-intersection index
of any cycle on M is zero.

ProOF. Choose an arbitrary cycle z on M_. As in the proof of Lemma

5.2.1, the self-intersection index of the projection # of z on RP? is equal to
the sum (mod2) of the self-intersection index z o M, Z and the number N of

twisted bands on the surface M, along the cycle z:

ZORP22=Z°MSZ+Nf

We now form a new net, by adding to the old one an arbitrary one-sidedly
imbedded circle o that intersects the net at points on the edges, each edge being
intersected transversally and no more than once. The new net is separating, and
therefore determines a checkerboard coloring of the plane RP’. The markers
of a state are separated by the coloring into two classes: those lying in regions
of the one color, and those lying in regions of the other. A band on M is
twisted either when the markers at the endpoints of the corresponding edge lie
in regions of different colors and the edge fails to intersect the circle o, or when
the markers at the endpoints of the edge lie in regions of the same color and
the edge intersects o .

Thus, the number N of twisted bands of the surface along the cycle z is
equal to the number of color alternations of markers along those edges of z
that fail to intersect a plus the number of edges that intersect o and have at
their endpoints markers of the same color. Adding to this sum double the num-
ber of edges that intersect o and have at their endpoints markers of different
colors, we see that the number N(mod 2) is equal to the number of color alter-
nations of markers along z (= 0mod2, as in Lemma 5.2.1) plus the number
of points of intersection of the projection Z with the circle «, i.e., is equal to
the intersection index Zop,: a.

Thus N=: Op2 O On the other hand, Zopea = 2 ogp? Z. Therefore

opp? £ = Zoy Z+ Z opp2 2. This implies our assertion: Zoy z= 0. e

CoOROLLARY. In the case of a nonseparating net, the surface M is orientable.

5.3. Lemmas on dual states. To every state s of a net corresponds a dual
state §, obtained from s by changing all markers simultaneously.

Let ¢ be the number of double points of the net, and r the number of
components; denote by Q(F) the quadratic form of self-intersection indices in

the homology of a surface F with coefficients in Z, .
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5.3.1. LEMMA. |s|+ 8| = 2r+c—r1kQ(M,); in particular, |s|+|3| <2r+c.
Proor. The homology sequence
o H(M5 2,) S H(M,, 0M,; Z,) 2> H\(0M,; Z,) B H\(M,; Z,) — 0
of the pair (M_, 9M,) gives the relation
by(OM,) = by(M,) + b, (M, , dM) — 1k(rel).

The boundary dM_ is obviously the disjoint union of the nets obtained by
smoothing with respect to the states s and §, respectively. Hence b,(0M) =
Is| + 13} .

But clearly

by(M)=r, b(M;,0M)=b(M)=>by(M)-x(M)=r+c,
rk(rel) =tk Q(M) .
Therefore
Is|+8l=r+r+c—-tkQ(M)=2r+c—-1kQ(M,). ®

5.3.2. LEMMA. For a nonseparating net containing 2p one-sidedly imbedded

circles without common edges,
|s|+|5| <2r+c-2p.

ProoOF. We show that rk Q(M) > 2p, and then use Lemma 5.3.1.

For each of the 2p cycles on the surface M, the self-intersection index
is equal to zero (by Lemma 5.2.2). By assumption, any two of these cycles
intersect only at vertices of the net; therefore their intersection index in M is

equal to the intersection index of their projections in RP? , i.e., to one. Thus,
the value of the form Q(M,) on these cycles is given by the 2p x 2p-matrix

01 - 1
1 0 - 11
1 1 10

whose rank is 2p. This implies our assertion. ©

A net will be called prime if for any circle imbedded in RP? that intersects
the net (transversally) in exactly two points and separates RP? into a disk and
a Mobius band, either the disk or the Mobius band intersects the net in a simple
arc.

5.3.3. LEMMA. In the case of a prime connected separating net, |s|+|3| = c+2
if and only if the net is contractible and the state s is alternating.

PROOF. Suppose the net is noncontractible. Choose in it a cycle z deter-
mined by a one-sidedly imbedded circle. By Lemma 5.2.1, zo M Z=Z0p 2
= 1. Consequently, tkQ(M) > 1, and by Lemma 5.3.1, |s|+|§|<2+c—-1=
c+ 1. Thus, [s|+ 5] #c+2.

Now suppose the net is contractible and the state s is not alternating. Let e
be one of the edges on which the alternating condition fails. Adjoining this edge
e are two different (since the net is separating) components of the complement;
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FIGURE 10

their closures intersect only along e (since the net is prime). Hence M, contains
two cycles whose intersection index is 1; see Figure 10.

This means that tkQ(M,) > 1 and |s| + (5| #c+ 2.

As for the converse, suppose the net is contractible and s is alternating. Then
the surface M_ imbeds into an affine plane, and the intersection index form on
M is trivial. So by Lemma 5.3.1, |s|+|§|=c+2. e

5.3.4. LeMMA. If in a diagram with nonseparating net the alternating condi-
tion fails on exactly one edge, then this edge is adjoined on both sides by one and
the same component of the complement of the net.

Proor. Consider in the net an arbitrary one-sidedly imbedded circle o. We
show that one of the edges that make up the circle o fails to satisfy the al-
ternating condition. The net is a cycle modulo 2; since it is nonseparating, it
realizes a nontrivial class in H, (]R.P2 ; Z,) . If we delete from the net the cycle
a, which is not null-homologous, what remains is null-homologous. Hence the
number of transversal intersection points of this remaining part with the cycle
a is even. There may also be nontransversal intersection points; see Figure 11a.
If now along o the alternating condition were to hold, then in passage along
a the markers at the endpoints of each edge would enter into the same region
adjacent to that edge—Ileft or right (relative to direction of passage along «);
see Figure 11b. In the passage through a double point of transversal intersec-
tion the regions containing the markers switch (from right-hand to left, or vice
versa). Since the number of transversal intersection points, as already shown,
is even, this means that under a complete circuit of o the number of passings
from a left- or right-hand region to a right- or left-hand is even. On the other
hand, a neighborhood in RP? of this one-sided circle a is a Mobius band, so
that the number of such passings must be odd. This contradiction shows that
on one of the edges that make up « the alternating condition must break down.

Thus, any one-sidedly imbedded circle in the net contains an edge on which
the alternating condition fails. Hence, since the given state is alternating every-
where except on a single edge, all the one-sidedly imbedded circles in the net
pass through this edge. This means that, when the edge is removed, what re-
mains of the net is a contractible set, so that there exists a one-sidedly imbedded
circle in RP? that this set fails to intersect. Then obviously this circle intersects
the original net only in a point of the deleted edge. Consequently, this edge is
adjoined on both sides by one and the same component of the complement. ®

¥

FIGURE 1la FIGURE 11b
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5.3.5. LEMMA. In the case of a prime connected nonseparating net, |s|+[3| =
¢+ 2 ifand only if the state s is alternating everywhere except on a single edge.

Proor. If s is alternating everywhere except on a single edge, then the sur-
face M, imbeds in an annulus. Indeed, by Lemma 5.3.4, there exists a one-
sidedly imbedded circle o that intersects the net only in a point of the edge on
which the alternating condition fails; see Figure 12. Hence the part of M that
corresponds to the alternating part of the net imbeds into the complement of a
neighborhood of a, i.e., into a disk, and all of M, imbeds into a surface M ob-
tained from this disk by attaching a band appropriately. This M is orientable,
since M, is orientable (see the Corollary to Lemma 5.2.2) and the inclusion
homomorphism H,(M,; Z,) - H,(M; Z,) is surjective. Consequently, M is
an annulus, and rkQ(M) = 0. This means that tkQ(M) = 0, and by Lemma
5.3.1, |s|+15|=c+2.

To prove the converse, assume the alternating condition fails on at least two
edges ¢ and e¢'. Suppose the components of the complement of the net that
adjoin at least one of the edges are different. Then, as in the proof of Lemma
5.3.3, the surface M, contains two cycles with intersection index 1. In that
case, Tk Q(M,) > 2 and |s| + (5| # c + 2.

On the other hand, if each of the two edges has just one component adjoining
it, then the components in question are the same. Indeed, if we consider in each
component a one-sidedly imbedded circle intersecting the corresponding edge,
the two circles must have at least one point in common. That being the case,
there exists a two-sidedly imbedded circle intersecting the net in exactly two
points on different edges. Such a circle is obtained by perturbing the union of
the two one-sidedly imbedded circles; see Figure 13. But this contradicts the
assumption that the net is prime. ®

5.3.6. LEMMA. In the case of a noncontractible prime connected separating
net, |s|+|3| = c+ 1 if and only if the state s is alternating.

ProoF. If s is alternating, the surface M imbeds into RP? ; since on RP?
the intersection index form has rank 1, we have rk Q(M) < 1. Consequently,
by Lemma 5.3.1, c+2 > |s|+ (5| > c+ 1. By Lemma 5.3.2, |s| + 5| #c+ 2.
Therefore’|s| + 5| =c+ 1.

To prove the converse, suppose s is not alternating. Let e be an edge on
which the alternating condition fails. Adjoining this edge e are two different
components of the complement. Since the net is prime, their closures intersect
either only along the edge e or along two edges ¢ and ¢’ such that the union
of the components contains a noncontractible loop intersecting the net only in
these edges. In either case, consider on the surface M, two cycles ¢, and c,,
as in Figure 14. In the first case, c, oy € = 1, ¢c;o04 €¢; =C,opgp2¢C; =0 (see

5
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Lemma 5.2.1), where ¢; is the projection of ¢; on RPZ, i =1, 2. Therefore
tkQ(M,) > 2. By Lemma 5.3.1, |s|+ 5| <2+c~-2#c+1.

In the second case, c, op, 6 = 0, ¢ op, 6 = Ciogp & = 1, i =1,2.
Therefore, tkQ(M_) > 2 and |s|+[§| #c+1. @

§6. Proofs of the theorems

6.1. PrRooOr OF THEOREM 1. This is essentially a repetition of the proof
of the corresponding result for links in a sphere; see [3], §4. To each state
s of the diagram D corresponds the polynomial A%S~2)(_ 472 _ 43)lI-1
Denote by D, the maximal degree of its terms, and by d, the minimal. Clearly,
D, = a(s) - b(s)+2|s| - 2 and d_ = a(s) — b(s) — 2|s| + 2. For the A-state and
B-state, which we denote by s, and s, the maximal and minimal exponents
are

DSA=c+2|sA|-—2, a’SA=—c—2|sB|+2.

It is easily shown that for any state s,
D <D, and d >d
A

s — SB °
Hence
deg.., V. < =3w(D)+ DSA ) deg i, V1. = —3w(D) + dsB ,

where deg .V, and deg , V; are the maximal and minimal degrees of the
terms in V. Therefore

span(V,) < DSA - dSB = 2¢(D) + 2(|s ,| + |s5]) — 4. (%)
Using Lemma 5.3.1 (according to which |s |+ |sg| < 2r(D) + ¢(D)), we obtain:
span(V;) < 2¢(D) + 4r(D) + 2¢(D) — 4 =4(c(D)+r(D)~1). ®
6.2. PrROOF OF THEOREM 3. By Lemma 5.3.2, |s,|+|sp| < 2r+c—2p. Using
(*), we obtain:
span(V,) < 4(c(D)+r(D)—1-p). ®
6.3. PROOF OF THEOREM 4. If alink L is a disconnected sum of r links L,
(one of which is a link in RP? : the remainder, links in s? ), then

span(V,) =4r—-4 + Z span(V; ).

i=1




AN ANALOGUE OF THE JONES POLYNOMIAL 627

This is a consequence of the following property of the polynomial V; :
r
-2 2,r—1
Ve=Va =47 -4V,
i=1

Let D,,..., D, (r=r(D)) be diagrams of the links L, ..., L, . By The-
orem 1,

4c(D) =4 i c(D;) 2 },: span(V, ) = span(V;) — 4r + 4.

i=1 i=1

The equality 4(c(D) +r(D) — 1) = span(¥}) is possible if and only if 4¢(D,) =
span(¥, ) for each i. For a link in s3 , this latter equality is equivalent to
the diaéram being weakly alternating and reduced; see [3]. Hence it suffices to
prove the assertion of the theorem for a link in RP® , the net of whose diagram
is connected. Furthermore, in view of the additivity of the numbers ¢(D) and
span(¥,) with respect to connected addition, we can assume that the net is
prime. Thus, what remains to prove is that for a diagram D with a prime
connected separating net, 4c(D) = span(V;) if and only if D is alternating
reduced and its net is contractible. :

Suppose 4c(D) = span(V,). Then from [«) (which in the present case
becomes an equality) we find that |s,| + |sz| = c¢(D) + 2. By Lemma 5.3.3, the
net of the diagram is contractible, and the A-state is alternating. This means
that the diagram is alternating (see §4.2).

Furthermore, D is reduced, since every diagram with a prime net is reduced
except in two cases. The exceptions are indicated in Figure 15; but in these
cases, 4 = 4c(D) # span(V,) = 0.

Let us now prove the converse. Consider a diagram D that is contractible,
alternating and reduced. Its A-state is also alternating, and by Lemma 5.3.3,
Is |+ 1sgl = c(D) + 2. We prove that

deg .. V. = =3w(D) + DSA and deg,.. V; = —3w(D) + dsg .

min
This will show that
span(V,) = D, —d . = 2c(D)+ 2(|s,| + |sgl) — 4 = 4c(D).

Sa Sp
To prove the equalities, we show that any state s different from the A-state
satisfies the strict inequality D, < DJA , and any state s different from the
B-state, the strict inequality d > ds,, .
Suppose that all markers in a state s except for one are of type A4, and that
s, isthe A-state. Then a(s,)—b(sz) = a(s)—b(s)+2. Consider a checkerboard

coloring of RP? corresponding to the net of the diagram D . Since the diagram
is reduced, around each vertex any two regions of the same color are different.
Hence the number of regions of the same color that do not contain the markers
of the state s, is equal to |s,|. When a marker of type 4 is changed to one

CO CO

FIGURE 15
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of type B, under the corresponding smoothing two regions combine into one;
see Figure 16.
This means that |s,|=|s|+ 1. Thus, D, = DSA > D, . As already remarked

(see §6.1), for any state s whose number of markers of type A is 1 less than
that of s, D, < D,. Therefore for any state s different from the A-state,
D, <D,

A 51m11ar proof gives the inequality d, > d, .

6.4. PROOF OF THEOREMS 6 AND 2. Observe that for an affine link, span(V})
= Omod4 (see [1]). Hence the equality 4(c(D) + r(D)) — 6 = span(}}) is
possible only for noncontractible diagrams.

It suffices now to prove the following (cf. §6.3): in the case of a diagram with
prime connected separating noncontractible net, 4c(D) — 2 = span(V}) if and
only if D is an alternating reduced diagram.

The proof is a repetition of that in §6.3, with the difference only that the
reference to Lemma 5.3.3 must be replaced by one to Lemma 5.3.6.

As for Theorem 2, it is an obvious consequence of Theorems 1 and 6. @

6.5. ProOF OoF THEOREM 5. It suffices to prove the following: in the case of
a diagram with a prime connected nonseparating net, 4c(D) = span(}V;) if and
only if D is reduced and the alternating condition fails on just one edge.

Suppose 4c(D) = span(V,). Then |s |+ |sz| = ¢(D) + 2, and by Lemma
5.3.5 the A-state is alternating everywhere except for one edge. That means that
the diagram is alternating everywhere except for that edge. That the diagram is
reduced follows from the primeness of the net.

The converse is proved in the same way as in §6.4, with the difference only
that the checkerboard coloring must be applied to a new net, obtained from
the old by addition of a one-sidedly imbedded circle intersecting the net only
at points of the edge on which the alternating condition fails. In counting the
regions that do not contain markers of type 4, we must observe that adjoining
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the one-sidedly imbedded circle there is exactly one such region; see Figure
17. e

6.6. Adequate diagrams. Recall (see [4]) that a diagram D of a link L in
$? is called adequate if Is | > |s| for any state s of D with b(s) = 1 and
Is| > |sp| for any state s of D with a(s) = 1. Lickorish and Thistlethwaite
have proved ([4], Proposition 1) that if D is an adequate diagram of a link

Lcs? , then
span(V,) = 2¢(D) + 2(|s ((D)| + |sg(D)]) — 4.

The definition of adequate diagrams, as well as this assertion about them,
carries over verbatim to the case of links in RP®. The proofs above of Theorems
4, 5, and 6 are essentially based on this assertion and the fact that the diagrams
involved in them are adequate.

§7. Affine links

7.1. Proofs of Theorems 7 and 8 and the Corollary. Theorem 7 follows from
the fact that for an affine link the generalized Jones polynomial coincides with
the original Jones polynomial (in the Kauffman form). For this polynomial it
is known that the degrees of all its terms are divisible by 4 if the number of
components of the link is odd, and congruent to 2mod4 in the opposite case.
See [6]. e

ProOF oF THEOREM 8. If L is affine, then span(V,) = Omod4; see [6].
Conversely, the net of an alternating diagram is always separating (as noted
in §4.1); hence if span(};) = Omod4, then by Theorems 4 and 6 the net is
contractible, and so the link is affine. @

ProoF oF THE COROLLARY. Suppose the net of an affine alternating dia-
gram is noncontractible. Then by Theorem 6, span(¥;) # Omod4 but this is
impossible in the case of an affine link. The converse is obvious. @

7.2. The self-linking coefficient. The inverse image in S 3 , under the map-
ping s - rP , of a homologically trivial oriented knot in RP® is an oriented
two-component link. The linking coefficient of its components is an invariant
of the original knot K in RP’ (and in fact independent of the orientation of
K). We call it the self-linking coefficient of K , and denote it by sl(K). It can
be computed directly from the diagram of the knot, in the following way. The
double points of the diagram of a homologically trivial oriented knot X divide
into two sets: those for which the two components obtained by smoothing in
accordance with the orientation are both homologically nontrivial, and those
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for which they are both trivial. Summing up the numbers g; (see §3.2) over all
the double points of the first set gives, it is easily seen, the number sl(K ).

For affine knots, clearly, the self-linking coefficient is zero.

7.3. An example of a non-affine knot K withsl(K) = 0 is exhibited in Figure
18. To give a simple proof that K is non-affine, we show that the highest degree
of the polynomial V} is not divisible by 4.

9
0

00

FIGURE 18 FIGURE 19

To each state s of the diagram D of the knot corresponds the polynomial
AP0 472 g381=1 Smooth the diagram in accordance with the markers
of the A-state; see Figure 19. It is easily seen that only under this smoothing
do we reach the maxima of the quantities a(s) — b(s) [= 6] and |s| [= 5].
(This follows from the adequateness of the diagram.) Hence the degree of
the polynomial V(4) = (-4)"**Ply(D) (for our diagram, w(D) = 0) is
6+2-(5-1)=14%#0mod4.

It is of interest to note that span(¥,) =20 = Omod 4.
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