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Light Reading for the Professional

This article initiates a new section of the journal, devoted to what can be called “informal surveys”.
This genre, which is new for us, is well known and increasingly popular in other countries—one
need only recall the entertaining mathematical (and mathematics-related) “stories in pictures” in the
Mathematical Intelligencer, American Mathematical Monthly, and elsewhere. The editors hope that
you, the reader, will try your hand at this difficult genre, in order to facilitate greater understanding
between mathematicians, who are (alas') divided into narrow professional specialties.

Articles for this section will be treated as surveys (albeit informal ones), i.e., they must be agreed
upon with the editors at the planning stage.

The editors would like to thank S. G. Gindikin for proposing the idea of this section.

CONFIGURATIONS OF SKEW LINES
O. YA. VIRO AND YU. V. DROBOTUKHINA

ABSTRACT. This article is a survey of recent results on projective configurations
of subspaces in general position. It is written in the form of a popular introduc-
tion to the subject, with much of the material accessible to advanced high school
students. However, in the part of the survey concerning configurations of lines
in general position in three-dimensional space we give a complete exposition.

The only new material here is the construction of a suspension for config-
urations of subspaces in projective space which increases the dimension of the
ambient space by 4 and the dimension of the subspaces by 2 and preserves a
large part of the algebro-topological characteristics of the configuration (see the
penultimate page of the article)

We recently wrote an article for the journal “Kvant” in which we described
some recent research of a completely elementary nature. The article appeared
in the journal in the third issue of 1988, in a shortened form. But here we
would like to expand the article in order to encompass or at least mention some
related questions. Thus, the present paper is an expanded version of the article
that appeared in “Kvant”. It may be regarded as a survey of recent results in
the topology of configurations in general position. We decided to keep the style
of an article for “Kvant”, in the hope that it would also be appreciated by the
professional mathematician. If the reader finds the style irritating, we apologize,
and we mention that the material in the first two-thirds of the article (through
the section on “sets of five lines”) is announced in the note [1], and the final
third of the article is written in a more traditional style.

The article in “Kvant” was titled Interlacing of skew lines. This title sounds
a little strange, doesn’t it? The word “interlacing” suggests something flexible,
not straight lines! To be sure, the title refers not to be the process of interlacing,
but rather to the result. But is it possible to weave together skew lines which
are situated in some clever way with respect to one another? At first glance this
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may seem not to be possible. Yet where do we get this impression? In daily
life we never come across anything that really resembles a straight line. What
bothers us is not that there is not such thing as an infinitely thin object—we are
prepared to neglect the thickness—but rather that there is no such thing as an
infinitely long object. Even light rays—which are models of linearity—become
scattered and dispersed, and cannot be detected at a large distance. In practice
one deals only with line segments.

Any set of disjoint line segments can be moved around to any other rela-
tive location in such a way that they remain disjoint. This we can see from
experience, and it is also not hard to prove. We depict straight lines using line
segments, and so it seems to us that straight lines cannot be woven together.
But is that really the case?

First of all, let us give a more precise statement of the questions which con-
cern us. The first question is: Can a set of disjoint lines be rearranged? But
what do we mean by the term “rearrange™? Here we shall not be concerned with
the angles or distances between the lines. We shall consider the relative position
of the lines to be unchanged if we move them in such a way that they never
touch. But if one set of lines cannot be obtained from another set by such a
movement, then we shall say that the two sets of lines are arranged differently.

The simplest lines for us to visualize are parallel lines. Clearly, any two
sets of parallel lines with the same number of lines in each set have the same
arrangement. In fact, if we consider the lines of one set to be “frozen” in place
and then rotate the entire space, we can make them parallel to the lines of the
other set; then, moving the lines of the first set one by one in such a way that
they remain parallel and do not bump into one another, we can easily make
them coincide with the lines of the second set.

We now consider arbitrary sets of lines. Can an arbitrary set of lines be
moved (“combed”) into a set of parallel lines? This question has a simple and
unexpected answer, which is hard to arrive at by considering concrete sets of
lines. If you take a specific set of lines and study it for a while, you can probably
find a way to make all of the lines parallel. But this does not give an answer
to the question in full generality, because you undoubtedly made use of some
specific features of your set of lines. Can one treat all possible sets of lines
at once? It turns out that one can, and this is how. Let us take an arbitrary
set of disjoint lines. We choose two parallel planes which are not parallel to
any of the lines in our set. We fix the points of intersection of the first plane
with the lines, fastening the lines at those points. We also fix the intersection
of the lines with the second plane, but only as a point on that plane, which we
allow to slide along the lines. In other words, we drill small holes in the second
plane where it intersects with the lines. We then move the second plane away
from the first one in the direction perpendicular to both planes. The lines are
pulled through the little holes, and the angles which they form with the planes
increase. If we move the second plane to infinity in a finite amount of time, then
these angles all reach 90°, i.e., the lines become parallel to one another. This
“combing” of our set of lines can be described as follows in a language which is
more customary for geometry: we expand the space away from the first plane
in a direction perpendicular to it, where the expansion factor increases rapidly
to infinity in a finite length of time. Here the straight lines rotate around their
points of intersection with the plane, and in the limit they become perpendicular
to the plane.
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Thus, one cannot have interlaced disjoint lines: all sets of disjoint lines have
the same arrangement. But our title refers to skew lines, and so sets of parallel
lines are excluded. There is a serious reason for this. Parallel lines are very
close to being intersecting lines: one can move one of two parallel lines by an
arbitrarily small amount so as to make them intersect. This is not the case for
skew lines.

Since we have decided not to allow parallel lines, we must reexamine the
question of which sets of lines have the same arrangement and which do not.
We shall say that the arrangement of a set of lines remains the same if it is moved
in such a way that the lines are always skew, never parallel. In what follows we
will often be considering such movements of lines, and so it is useful to have
a special word to refer to them. We shall use the word isotopy to denote such
a movement of lines. If one set of lines cannot be obtained from another by
means of an isotopy, then we say that the two sets have different arrangements.
We shall also say that such sets of lines are nonisotopic.

The amount of difficulty in determining whether two sets of lines are isotopic
depends most of all on the number of lines in the sets. In general, the more
lines, the more clever one must be to find an isotopy which transforms one set
into the other. We first treat the simplest case of the isotopy problem.

Two lines

We take any two pairs of skew lines, and try to decide whether they are
isotopic. In this case it is perhaps too pretentious to use the word “problem”,
because it is completely obvious that we have an isotopy. Nevertheless, we shall
make a detailed examination of the proof.

Using a rotation around a line which is perpendicular to both lines in one
of the pairs, we can make the angle between the lines the same in both pairs;
in fact, we can make both angles 90°. We note that the smallest line segment
joining the two lines in a pair is the segment of the common perpendicular
which is contained between them. We next bring the two lines closer together
(or move them farther apart) along this perpendicular, so that the segments
have the same length for the two pairs; after that we move one pair so that the
segment between the two lines coincides with the segment for the other pair.
We use a rotation around this segment to make one of the lines of the first
pair coincide with a line of the second pair (this can be done because all of the
lines are perpendicular to the segment). In the process the second lines of the
pairs also come together. In fact, they both pass through a common point—
an endpoint of the perpendicular segment—and are perpendicular to the same
plane—the plane determined by the perpendicular and the first lines of the pairs
(which now coincide). The proof is compliete.

At the end of the proof, after we made the distances between the two lines
the same for the two pairs, we moved a pair of lines in a rigid manner—without
changing either the distance or the angle between them. The question arises:
Suppose that both the distances and angles between the two lines are the same
for two pairs of skew lines. Is it always possible to find an isotopy between
the two pairs during which the distance and angle remain fixed? The previous
argument shows that this question has an affirmative answer if the angle is 90° .
However, if the angle is not 90° , then it may happen that after the isotopy in the
previous paragraph the second lines in the pairs do not coincide. This unlucky
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case is illustrated in Figure 1. The second lines in the pairs form an angle whose
bisector is parallel to the first (skew) lines, and the plane containing the second
lines is perpendicular to the plane containing the bisector and the first lines.
Thus, there was a good reason why we wanted to make the angles 90° in the
beginning of the above proof: for any other choice of the angle, the construction
would not give the desired result. But this was not simply an artifact of our
particular construction; it turns out that any two pairs of skew lines with equal
distance and angle which do not coincide after the above construction cannot
be made to coincide using any isotopy during which the distance and angle
remain fixed. This is connected with a remarkable phenomenon, which we shall
encounter often in the sequel. It merits a more detailed discussion.

Orientations and semi-orientations

To orient a set of lines means to give a direction to each line in the set. There
are 2" possible orientations of a set of n lines. A semi-orientation of a set of
lines is a pair of opposite orientations (Figure 2).

Any pair of nonperpendicular lines has a canonical semi-orientation which
is determined by the relative position of the two lines. Namely, we choose an
arbitrary orientation of one of the lines, and then we determine the orientation
of the second line by rotating the first line in the most economical way (i.e., with
the smallest angle of rotation) so as to make it parallel to the second line (see
Figure 3). We then give the second line the orientation pointing in the same
direction as the (now parallel) first line (Figure 4). Thus, choosing an orientation
of one of the lines determines an orientation of the pair. If we choose the
opposite orientation of the first line, then we obtain the opposite orientation
of the pair. If we were to use the other line to start with, we would obtain the
same pair of opposite orientations. These two opposite orientations are what we
meant by the canonical semi-orientation of the pair of nonperpendicular lines.



CONFIGURATIONS OF SKEW LINES 1031

An isotropy during which the angle between the lines remains fixed takes the
canonical semi-orientation to the canonical semi-orientation. This suggests the
idea of considering another type of isotopy—isotopies of semi-oriented pairs of
skew lines. Here we allow the angle and distance between the lines to change, but
we require that the semi-orientation be preserved. Such an isotopy occupies an
intermediate position between an arbitrary isotopy and an isotopy during which
the distance and angle (where we suppose that the angle is # 90° ) remain fixed.
That is, if there is no semi-oriented isotopy between two semi-oriented pairs
of lines, then there is certainly no isotopy between them which preserves the
distance and angle. What can stand in the way of an isotopy of semi-oriented
pairs of lines?

The linking coefficient

Any semi-oriented pair of lines has a characteristic which takes the value
+1 or —1. It is called the linking coefficient. This coefficient is preserved
under isotopies, and so if two semi-oriented pairs of lines have different linking
coefficients, then they are not isotopic. Here is the definition of the linking
coefficient. The most economical way of aligning an oriented line with a second
oriented line which is skew to it is to place it alongside a common perpendicular
to the two lines and then rotate it by the smallest angle that brings it to the
same direction as the second line. Here the line rotates either like the right
hand around the thumb, or like the left hand (Figure 5, next page). In the first
case the linking coefficient is —1, and in the second case it is +1 .

To help the reader familiar with algebraic topology make the right connection,
we give a second equivalent definition of the linking coefficient of a pair of
oriented skew lines. Through one of the lines we draw a plane which intersects
the other line. We place our right hand so that our thumb rests on the second
line and passes through the plane in the direction determined by the orientation
of the line, while rotating in the direction our fingers point. On the plane
we obtain an oriented circle which is traced by the tips of our fingers. The
orientation of the circle may be the same as the orientation of the first line
(Figure 6) or different (Figure 7). In the first case the linking coefficient is +1,
and in the second case it is —1. Figure 8 will enable the reader to see that the
two definitions of the linking coefficient are equivalent.

It is clear that changing the orientation of one of the lines of the pair changes
the linking coefficient. Hence, if the orientation of the pair is changed to the
opposite orientation (i.e., the orientation is reversed on both lines), then the
linking coefficient does not change. In other words, the linking coefficient is an
invariant of a semi-oriented pair: it depends only on the semi-orientation. If
we look at the reflection of our pair of oriented lines in the mirror (Figure 9),
the linking coefficient changes.

We now return to the unfortunate situation we encountered when looking
for an isotopy between two pairs of skew lines which preserves the distance and
angle between the lines (see Figure 10). At the time we could not answer the
question of whether the sets are isotopic (Figure 11). Now, however, we see
that these pairs (with their canonical semi-orientation) are obtained from one
another by a mirror reflection, and so they have different linking coefficients.
Thus, they cannot be connected by an isotopy which preserves the distance and
angle between the lines. But if two pairs have the same distance and angle and
also the same linking coefficient, then they can be connected by such an isotopy.
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By the way, it is possible to modify the notion of the angle between two
skew lines in such a way as to incorporate the linking coefficient and thereby
make it unnecessary to work with the linking coeflicient separately. The angle
between two lines was defined above so as to be in the interval (0°, 90°). We
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define the modified angle between two lines to be the product of the angle in
the earlier sense and the linking coefficient, if the latter is defined (i.e., if the
angle is not 90°), and to be the angle in the earlier sense (i.e., 90°) if the
linking coefficient is not defined. The modified angle is in one of the intervals
(=90°, 0°), (0°, +90°]. The sign can be determined from the right hand rule,
without saying anything about the linking coefficient.

We have thereby completely analyzed the situation with sets of two skew
lines.

Triples of lines

When we studied pairs of lines, an important role was played by the common
perpendicular to the two skew lines. Strictly speaking, we could have avoided
using it; but it seemed to be connected to the lines in such a natural way,
providing a tangible tie between them, that it would have been strange not to
make use of it. Now it would be good to find something equally natural for a
triple of skew lines. There are two objects that are capable of playing this role.
We shall discuss one of them now, and postpone consideration of the second
one. Jumping ahead, suffice it to say that the second object is a hyperboloid.

These objects will not be associated to every triple of pairwise skew lines. We
will have to disallow triples whose lines lie in three parallel planes. But notice
that such an arrangement is unstable: by nudging one of the lines a little, we
obtain an isotopic triple to which our constructions can be applied.

Thus, we consider an arbitrary triple of pairwise skew lines which do not lie
in three parallel planes. For each line we draw two planes containing the line,
each parallel to one of the other two lines. In this way we obtain six planes, i.e.,
three pairs of parallel planes. These planes intersect to form a parallelepiped.
Our lines are the extensions of three of its skew edges (Figure 12). Thus, any
three pair-wise skew lines which do not lie in three parallel planes are extensions
of the edges of a certain parallelepiped. This parallelepiped is the first object
which we associate to the triple of lines. What is special about it? In the first
place, it is unique. In fact, there is a unique plane parallel to a given line that
contains a second skew line; and if these lines are the extensions of edges of
a parallelepiped, then this plane contains one of its faces. Consequently, the
six planes are uniquely determined by the original triple of lines; since any
parallelepiped whose edges lie on these lines is bounded by those planes, it is
also uniquely determined.

We see that the parallelepiped joins together the lines of the triple just as
nicely as the common perpendicular joined together the lines of the pair. Just
as in the case of the common perpendicular and the semi-oriented pair of non-
perpendicular lines, the original geometry of the configuration naturally leads to

FIGURE 12 FiGure 13
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something more, though still something which is connected with it in a canonical
way and so merits our further consideration when we study the original object.

A RIDDLE. In Figure 13, despite what was proven above, we have drawn two
different parallelepipeds with edges lying on three pairwise skew lines. What is
going on?

We now look at the classification of triples up to isotopy. As shown above,
we may suppose that the lines in the triple are extensions of edges of a certain
parallelepiped. A parallelepiped is determined (up to translation) by the lengths
of its edges and the angles between them. Using a continuous deformation, we
can first make all of the angles into right angles (obtaining a rectangular par-
allelepiped), and then we can make all of the edges have the same length, for
example, length one (obtaining a cube) (Figure 14). This deformation induces
an isotopy of the triple of lines which are extensions of edges of the paral-
lelepiped. In this way we have managed to place the lines of our triple along
pairwise skew edges of a unit cube. This is a remarkable accomplishment. It
means that we now know that there are not very many possible nonisotopic sets
of three skew lines—there are at most the number of triples of skew edges on
a cube, and this number is 8. And even 8 is too many. We can use a rotation
of the cube to take any edge of the cube to any other edge, and this reduces the
number of possible nonisotopic configuration types to two. They are shown in
Figure 15.

This success might prompt us to hope that we can similarly find an isotopy
between the two triples of lines in Figure 15, and thereby prove that all triples
of skew lines are isotopic. Try to do this!

You’re having trouble? Don’t blame yourself—it cannot be done! Just like
pairs of oriented lines, triples of (nonoriented) lines have an invariant, also
called the linking coefficient, which takes the value +1 or —1, is preserved
under isotopies, and changes when one takes a mirror reflection of the triple
of lines. Here is its definition. Suppose we have a set of three pairwise skew
lines. We orient the tree lines in an arbitrary way. Then each pair of lines in the
triple has a linking coefficient (equal to +1). If we multiply all of the linking
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coefficients, we obtain a number (also +1 ), which is what we call the linking
coefficient of the original triple of lines. This coefficient does not depend on the
orientation of the lines, since if we reverse the orientation of any line, the effect
is to change the linking coefficients of two of the pairs, and this does not change
the product. The fact that the linking coefficient of a triple is preserved under
isotopy and changes under mirror reflection follows from the corresponding
properties of the linking coefficients of pairs of oriented lines. Since the triples
of lines in Figure 15 are the mirror images of one another, they have different
linking coefficients, and hence they are not isotopic to one another.

Since any triple of pairwise skew lines is isotopic to one of the two triples
in Figure 15, it follows that two triples of lines are isotopic if and only if they
have the same linking coefficient.

Thus, as soon as we reach three lines we find that there are different possible
arrangements of triples of skew lines. This provides a justification for the title
of the paper, and for our subsequent use of the word interlacing for a set of
pairwise skew lines.

PrOBLEM. It is natural to expect that the linking coefficient of a triple of
nonoriented lines is equal to the linking coefficient of some pair of semi-oriented
lines which can be constructed from the triple in a canonical way. This is in
fact the case, except that rather than one such semi-oriented pair there are three.
Prove that for any triple of skew lines there is a unique semi-orientation such
that the linking coefficients of all three pairs of lines in the triple are equal.
Obviously, this value is also equal to the linking coefficient of the triple.

Mirror and nonmirror sets

We note that a triple of skew lines is never isotopic to its mirror image, while
a pair of lines is isotopic to its mirror image. In general, we say that a set of
pairwise skew lines has the mirror property if it is isotopic to its mirror image;
otherwise we say it is a nonmirror set. Thus, a triple is always a nonmirror set,
and a pair is a mirror set. The following questions arise:

1) Are there other values of p such that any interlacing of p lines is non-
mirror?

2) Are there other values of p such that any interlacing of p lines is mirror?

3) For what p do there exist nonmirror interlacings of p lines?

4) For what p do there exist mirror interlacings of p lines?

Although this does not take us very far in the direction of an answer to our
original question (of describing the set of interlacings of p lines up to isotopy),
it is worthwhile to take up these four questions. They are rough and somewhat
superficial questions, but at the same time they have a more qualitative char-
acter. Because of this roughness and superficiality we can be confident of early
success, and the result will undoubtedly be useful in our classification.

We do not yet have at our disposal very many tools for proving the nonmirror
property. But we do know that every triple is nonmirror, and this is already
a lot. After all, any set of more than three lines contains triples. Each triple
changes its linking coefficient in the course of a mirror reflection. Thus, if the
interlacing has the mirror property, then it must have the same number of triples
with linking coefficient +1 as with linking coefficient —1. In particular, the
total number of triples in the interlacing must be even. This simple argument
leads us to the following unexpected result.
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THEOREM 1. If p = 3mod4, then every interlacing of p lines is nonmirror.

ProOF. The number of triples in an interlacing of p lines is equal to
p(p— 1)(p — 2)/6, and this is odd if and only if p =3 mod4. e

Theorem 1 gives an affirmative answer to the first of the four questions above.
The second question has a negative answer: for any p > 3 one can construct a
nonmirror interlacing of p lines. This also answers question 3). The simplest
nonmirror interlacings are shown in Figure 16 for p = 4,5, and 6. It is
easy to continue with this sequence of examples. All of the triples of lines in
the interlacings in this sequence have the same linking coefficient, and for this
reason we know that the interlacings are nonmirror.

It remains to answer Question 4). We do not yet know whether or not there
ae mirror interlacings of p lines when p # 3 mod4. It is convenient to consider
separately the two cases: p even, and p = | mod 4, although in both cases the
question turns out to have a positive answer. In Figure 17 (in which p = 4) we
show the simplest example of a mirror interlacing of p lines with p even. For
any even number p, we take two sets of p/2 lines, one behind the other. The
lines of the set nearest us are taken from the sequence of nonmirror interlacings
constructed above (see Figure 16). The other set of p/2 lines is obtained from
the first by rotating and then reflecting in a mirror. How do we see that the
interlacing in Figure 17 has the mirror property? We move the set that is
nearest us in such a way that the part of its projection which contains all of
the intersections (in the projection) passes over and above the projection of the
other set (Figure 18). If we then rotate Figure 18 by 90° clockwise, we see that
we obtain the mirror image of the original interlacing.

We now turn to the case p = 1 mod4, i.e., p =4k + 1. A mirror interlacing
with k =1 is shown in Figure 19. Four of the lines form two pairs which are
situated as in the mirror interlacing of four lines constructed above. The fifth
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line is placed so as to separate the two lines in each pair. An isotopy between
this interlacing and its mirror image can be constructed as follows. We rotate
the lines of the pair nearest us around the fifth line by almost 180°—until the
lines of the other pair are in the way (Figure 20). We then move the fifth line so
that its projection passes to the other side of the intersection (in the projection)
of the lines that we moved before (Figure 21). It remains simply to look at the
resulting interlacing from the opposite side. We do this by rotating it by 180°
around a vertical line (Figure 22). Now we sece that we have the mirror image
of the original interlacing.
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Using this example, it is easy to manufacture mirror interlacings of 4k + 1
lines for k > 1. Each line in Figure 19 except for the fifth is replaced by an
interlacing of k lines which either is taken from the sequence in Figure 16 or
else is the mirror reflection of an interlacing in that sequence. This must be
done in such a way that the interlacings which replace the lines of one of the
pairs form an interlacing of the same type. See Figure 23 for the case k = 2.
There is no work needed to prove that the final result is a mirror interlacing,
since the required isotopy can be obtained in the obvious way from the one in
the previous paragraph.

Four lines

At this point we have actually already encountered all of the types of inter-
lacings of four lines. There are three of them, and they are depicted in Figure
24. The interlacing in Figure 16 is on the left, its mirror image is in the center,
and the interlacing in Figure 17 is on the right. We have already proved that
these three sets are not isotopic to one another: the first one is not a mirror in-
terlacing, and so is not isotopic to the second one, and the third one is a mirror
interlacing, and so is not isotopic to either the first or the second.

In order to show that any interlacing of four lines is isotopic to one of the
interlacings in Figure 24, we shall have to make use of the second of the two
objects which, as mentioned above, are associated to a triple of lines. This is
a one-sheeted hyperboloid—a surface which is usually studied in analytic ge-
ometry. There one learns that a one-sheeted hyperboloid (henceforth referred
to simply as a hyperboloid) is made up of lines—its generatrices. Any two
generatrices in the same family are skew, while any two generatrices in differ-
ent families are either parallel or intersect. We list some other properties of
hyperboloids which we shall need:

(1) if a line has three points in common with a hyperboloid, then it is a
generatrix;

(2) a plane containing a generatrix of a hyperboloid intersects the hyperboloid
in two generatrices;

(3) there is a hyperboloid passing through any three pairwise skew lines which
do not lie in parallel planes.

These properties are simple consequences of the fact that a hyperboloid is a
surface of degree two. Of course, one could describe all of this without appealing
to analytic geometry, using the same language as the ancient Greeks, but we shall
not try the reader’s patience by proceeding in that way.

Thus, in order to complete the isotopy classification of four-tuples of lines, we
shall prove that any interlacing of four lines is isotopic to one of the interlacings
in Figure 24. We take an arbitrary interlacing of four lines. By moving it
slightly, if necessary, we can obtain a situation where three of the four lines (it
makes no difference which three) do not line in parallel planes. We construct
a hyperboloid through these three lines, and we observe how the fourth line is
situated relative to the hyperboloid. There are four possibilities:

(a) the line does not intersect the hyperboloid;

(b) the line intersects the hyperboloid in a single point;

(c) the line intersects the hyperboloid in two points;

(d) the line lies on the hyperboloid.

In case (d) the interlacing of four lines consists of four generatrices of the
hyperboloid, and is obviously isotopic to the left or the center interlacing in
Figure 24.
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FIGURE 25

If the fourth line does not intersect the hyperboloid, then it can be brought
in toward the hyperboloid until it is tangent to the hyperboloid, i.e., the first
case can easily be reduced to case (b).

Case (b), in turn, reduces to either (c) or (d). To see this, we draw a generatrix
[ through the point of intersection of the hyperboloid with the fourth line,
where [ is taken in the same family of generatrices as the first three lines of
the interlacing. By property (3), the plane a containing / and the fourth line
intersects the hyperboloid in two generatrices / and /. If /' intersects / and
the fourth line in the same point, then, rotating the fourth line around this point
of intersection in the plane a until it coincides with /, we find ourselves in
case (d) (Figure 25(a)). Otherwise, the fourth line of the interlacing is parallel
to I' (if this weren’t the case we would have case (c)) (see Figure 25(b)). But
if we perform a small rotation toward the fourth line around the intersection
point with / in the plane a, we see that the fourth line is no longer parallel to
!': it intersects /', and hence it intersects the hyperboloid in two points, giving
us case (c).

Now if the fourth line intersects the hyperboloid in two pints, then everything
depends on whether these points are in the same part of the hvperboloid into
which the first three lines divide it, or are in different parts (the hyperboloid is
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divided into three sections). If they are in the same part, then the fourth line
can be placed on the hyperboloid without the first three lines interfering. Then
the fourth line becomes a generatrix, and we are in case (d). If the fourth line
intersects the hyperboloid in different parts, then the interlacing is isotopic to
the right interlacing in Figure 24.

Isotopic lines of an interlacing

The next step—the classification of interlacings of five lines—requires a more
careful study of the inner structure of interlacings. The reader has undoubtedly
noticed the striking difference between mirror and nonmirror interlacings—
compare the sets of lines in Figure 24. The left and the center interlacings both
have the feature that any line of the interlacing can be taken to any other line
by means of an isotopy. This is not the case for a mirror interlacing (the right
one in Figure 24). We shall say that two lines of an interlacing are isotopic if
there exists an isotopy of the interlacing which takes one of the lines to the
other one. To be sure, strictly speaking this is not an isotopy, because at the last
moment the two lines come together. Instead of changing the meaning of the
word “isotopy”, we are better off leaving the meaning unchanged and adopting
the following definition of isotopic lines of an interlacing: there is an isotopy of
the entire interlacing which makes the two lines approach one another so that
one can separate them from the other lines of the interlacing by a hyperboloid
(in which case there is nothing to stop us from bringing the two lines together).

Isotopic lines have the same location relative to the other lines in the inter-
lacing. Hence, if a and b are isotopic lines and ¢ and d are two other lines
of the same interlacing, then the triples a, c,d and b, ¢, d have the same
linking coefficient. Using this necessary condition for lines to be isotopic, we
can easily show that in the interlacing on the right in Figure 24 the line / is not
isotopic to m . In fact, the triple /, n, k has linking coefficient +1, while the
triple m, n, k has linking coefficient —1.

It is clear that, given any two isotopic lines in an interlacing, an isotopy can
be found which interchanges them and causes all of the other lines to end up
in the same place as before. Hence, isotopy of lines in an interfacing is an
equivalence relation, and the set of all lines in an interfacing is partitioned into
isotopy equivalence classes. The left and center interlacings in Figure 24 each
has only one equivalence class, while the right interlacing has two: the lines &
and / are in one class, and m and » are in another.

If we choose one line from each equivalence class in an interlacing, then the
isotopy type of the resulting interlacing does not depend on our choice of our
choice of line in each equivalence class. This interlacing is called the derived
interlacing.

It is useful to pass to the derived interlacing if it contains fewer lines than
the original interlacing. In order to recover the original interlacing from the
derived one, one needs a relatively small amount of additional information,
namely, how many lines were in each class and how they were linked to one
another. In fact, by means of an isotopy one can reduce the original interlacing
to a state in which the lines of each equivalence class are generatrices of the
same family on a one-sheeted hyperboloid, and the hyperboloids containing the
lines of the different equivalence classes do not intersect. We leave it as an
exercise to construct an isotopy that does this.

The derived interlacing determines the relative location of the hyperboloids.
To recover the original interlacing it remains only to specify one of the two
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families of generatrices on each hyperboloid. Here one does not have to do this
at all if the class has only one line or if there is only one class in all and it
has two lines. Otherwise the choice of a family of generatrices can be specified
by means of a numerical invariant ¢ = +1 for each isotopy class of lines in
the interlacing; this is defined to be the linking coefficient of the triple of lines
a,b,x, whee a and b are lines in the equivalence class and x is any line
distinct from a and b. We shall prove that this invariant depends only on the
class of lines isotopic to a and b. The proof will use certain formulas in which
we will use the following notation: the linking coefficient of lines a, b, ¢ will
be denoted by lk(a, b, ¢).

LeMMA. For any lines a, b, c, d one has
lk(a, b, c)lk(a, b, d)lk(a,c,d)lk(b,c,d)=1.

This identity follows immediately from the definition of the linking coefhi-
cient of a triple of lines as the product of the linking coefficients of the three
pairs of lines in the triple furnished with certain orientations. If we give ori-
entations to the lines a, b, ¢, d and then compute the left side of the above
equality, we obtain the product of the squares of the linking coefficients of all
possible pairs of lines a, b,c,d. ®

We now prove that /k(a, b, x) does not depend on x when a and b are
isotopic lines of the interlacing. Let y be any line of the interlacing which is
distinct from a, b, x. By the lemma we have

lk(a,b,x)=1Ik(a,b,y)lk(a, x,y)lkb, x,y).

Since the lines a and b are isotopic, we have lk(a, x,y)=1k(b, x,y), and
hence /k(a, b, x)=1lk(a,b,y).

It remains to show that /k(a, b, x) does not depend on the choice of rep-
resentatives a and b of the isotopy class of lines. In fact, if ¢ is a line which
is isotopic to a and distinct from b, then, as already proved, we have

lk(a,b,x)=1k(a,b,c)=1k(a,c,b)=1k(a,c,x). ®

A class of isotropic lines of an interlacing whose invariant is ¢ (= £1) will
be called an e-class.

Some interlacings can be brought to the form of an interlacing of one line
by successively taking the derived interlacing. Such an interlacing is said to
be completely decomposable. A completely decomposable interlacing can be
characterized up to isotopy by the invariants associated with each transition
from an interlacing to its derived interlacing. We shall introduce some notation
for this characterization. An interlacing of p generatrices of a hyperboloid
which form an e-class of isotopic lines will be denoted by (ep) .

We now consider p hyperboloids which encompass disjoint regions and
which have the lines of the interlacing (ep) as their axes. An interlacing made

up of p subinterlacings 4, ..., 4, each of which is in the region bounded by
the corresponding hyperboloid, will be denoted by (+4,, ..., Ap) if ¢ =+1
and (-4,,...,4,) if ¢ = —-1. In situations where the signs do not matter

to us, we shall omit them from the notation. For example, the interlacings in
Figure 24 are cha