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CLASSIFICATION OF PROJECTIVE MONTESINOS LINKS

YU. V. DROBOTUKHINA

ABSTRACT. Links in the three-dimensional projective space analogous to Montesinos
links in the three-dimensional sphere are classified up to isotopy and up to homeo-
morphism.

§1. INTRODUCTION

1.1. Projective Montesinos links. The classification problem for links in the three-
dimensional sphere has been effectively solved for only some special classes of links.
One of such classes is the class of Montesinos links (which contains links with two
bridges, or four-braidings). In this paper we introduce an analogous class of links
in the projective space RP? and solve the classification problems up to isotopy and
homeomorphism for this class. Before stating the main results we give several defi-
nitions.

A tangle is a one-dimensional compact smooth submanifold ¢ of the standard ball
D3 with boundary 8¢ consisting of four distinct points p;, p>, p3, and ps in 8D.
Two tangles are isotopic if they are mapped onto each other by an isotopy of the ball
fixed on 9D?. We will consider only such tangles whose boundary consists of two
pairs of diametrically opposite points lying on orthogonal diameters. It is clear that
two tangles are isotopic if and only if their diagrams can be connected by a sequence
of Reidemeister transformations ;-3 (see, for example, [1], [2]).

The product (t1t;) of two tangles t; and f, is a tangle obtained as the union
Turut,, where I are the arcs in D3\(Int D, UInt D;) shown in Figure 1, #} is the
image of the tangle 7, under the obvious homothety D3 — D, and ¢} 1s the image
of the tangle ¢, under the composition of the symmetry with respect to the plane
orthogonal to the plane of the diagram and passing through the points p, and p;,
and the homothety D3 — D;. An example of product is shown in Figure 2.

Integer tangles n, —n (n € N), and 0 are the tangles shown in Figure 3, a-c,
respectively. The tangle shown in Figure 3,d, is denoted by o .

The product (---((iyi2)i3)--- i) of integer tangles iy, ..., i, is called the rational
tangle i, --- i, . Conway [3] has shown that two rational tangles i;---i, and j,--- jn
are isotopic if and only if the corresponding continued fractions

In+ l/i,,_l + l/i,,_2+'-'+ 1/i1
and
jm+ 1/jm—l + 1/jm—2+"'+ 1/jl
are equal (we set 1/0 =00, 1/oo =0, co+k = oo, where k € Z). Thus any rational

tangle different from 0, co, 1, and —1 can be reduced to the standard form which is
either i;---i, or i;---i,0, where [|i;| > 2, all the numbers i,, ..., i, are nonzero
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and have the same sign. A rational tangle i, ---i, with
in+ Vip1+ Vig_a+---+1/iy=p/q€Q

is called the rational p/q tangle. The rational p/q tangle will be denoted by /4 -

After identification of the diametrically opposite points of the boundary sphere
8D3 atangle ¢ C D? becomes a link L C RP3. Such links obtained from rational
tangles will be called projective four-braidings (see the explanation of this term in
Appendix).

The projective Montesinos link of type (e, p\/qi, .- Pr/4:) 1s the link shown in
Figure 4, where e € Z, t,, Is the rational pi/q; tangle, p; > 2, and p;, q; are
relatively prime forall i=1,...,r.

1.2. Classification of projective four-braidings.

Theorem 1. Two links in the real projective space RP* obtained from rational p/q
and r/s tangles (with relatively prime p, q and r, s) are isotopic if and only if either
plg=r/s or p/qg=—s/r.

Theorem 2. Two links in the real projective space RP3 obtained from rational p/q
and r/s tangles (with relatively prime p, q and r.s) are homeomorphic if and only
if either |p/q| = |r/s| or p/ql=s/r].
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FIGURE 4

Proof of Theorem 2. Sufficiency. It is easy to see that multiplication of the fraction
p/q by —1 corresponds to the symmetry of the tangle with respect to the projec-
tion plane, and inversion of the fraction p/g (i.e. changing places of p and gq)
corresponds to the symmetry with respect to the plane orthogonal to the projection
plane and lassing through the points p, and p; (Figure 1). Both of these symmetries
generate autohomeomorphisms of the space RP3.

Necessity of the condition follows from Theorem 3, which will be proved in §2,
and Theorem 4 on the topological classification of prism manifolds. @

Theorem 3. There are precisely two double coverings of the projective space RP3
branched over the link which is obtained from the rational p/q tangle. They are
homeomorphic to the prism manifolds Q(|p|, |q]|) and Q(lq|, |p|) (under assumption
that p and q are relatively prime).

Theorem 4 (see [4], [S]). The manifolds Q(m,, ny) and Q(m,, n,) are homeomor-
phic if and only if |m;| = |my| and |n,| = |n,|.

Theorem 1 is derived below in 2.7 from Theorem 2 and the well-known fact that
there is no orientation reversing autohomeomorphism of Q(m, n) for m # 1 and
n#0.

1.3. Classification of projective Montesinos links.

Theorem 5. Two projective Montesinos links L and L' of types

(e.pi/q,...,p/q:) and  (¢',pi/ay,...,pn/4)

respectively, with r, r' > 2 are isotopic if and only if

8; 6;1_ Z;=1Pi/qi =e' - Zzzlpll‘/ql( 5
t € sequences

(/g1 mod1l, ..., p,/qg, mod1) and (pi/qymod 1, ..., p,/q. mod1)

can be obtained one from the other by a cyclic permutation and (or) reversing the order.

Proof. Necessity. First we construct the preimage of the projective Montesinos link
L under the covering S* — RP3. To do this (see [2]) place the diagram D of the link
L on the plane. Right under D place its image under the slide symmetry with respect
to the line passing through the center of the disc of diagram D ; in this image replace
all undercrossings by overcrossings. Connect by a simple path each end of an arc in
diagram D lying on the boundary circle with the point obtained from this end via the
composition of the symmetry about the center of the disc of diagram D and the slide
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symmetry. Choose pairwise disjoint connecting paths. It is easy to see that, under
the described slide symmetry and the subsequent replacement of undercrossings by
overcrossings, a rational tangle is mapped onto itself. Therefore, the preimage of
the projective Montesinos link L of type (e, pi/q, ..., p,/q,) under the covering
S3 — RP3 is the regular Montesinos link L of type

2e,pi/qr,....p /a0 /Gy, - D ]Gr);

see Figure 5. If the links L and L’ are isotopic, then their preimages L and L' in
S? are also isotopic. From the isotopy classification of Montesinos links in S3 (see,
for example, [6]) it follows that

r r'
2e — 221),‘/41 =2¢' — ZZ,D,/-/(],{

i=1 =1

and that the sequences

(pi/grmodl, ..., p,/q,modl, p/gimodl, ..., p,/g,mod 1)

and
(py/qimodl, ..., pl./q,modl, p;/qimodl, ..., p;/q, modl)

can be obtained from each other by a cyclic permutation and (or) reversing the order.
Therefore, conditions {1) and (2) of the theorem are satisfied.

Sufficiency. Suppose that conditions (1) and (2) are satisfied. It is clear that by the
isotopy of the link L generated by a cyclic permutation of tangles and (or) reversing

their order we can make p;/q; = pj/q; mod! forall i =1,...,r. The obvious
isotopy (Figure 6,a) allows us to move some of the e crossings into the space between
tangles.

Do it in such a way that there are ¢, = p;/q; — p;/q; crossings between the tangles
lpjq and 1, ., see Figure 6,b. Adjoining e; crossings to the tangle ¢, ,, (Figure
6,b) gives the tangle gl - Thus we get the Montesinos link of type

,
(e = (pi/ai - pi/9), P/} -, p;/q£> ;

i=1
ie. link L'. e
Corollary. Two projective Montesinos links L and L' of types
(e.pi/av,....p/qy) and  (¢',pi/qy,...,Dy]/a)
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with r, r' > 2 are homeomorphic if and only if there exists an € equal to either 1 or
~1, such that ,

(1) e =3 pifai = (e’ = T, pi/a});

(2) the sequences

(p1/qymod 1, ..., p/g-modl) and (ep;/qymodl, ..., ep./q, mod]l)
1 r

can be obtained one from the other by a cyclic permutation and (or) reversing the order.

Proof. Since every homeomorphism RP3? — RP3 is isotopic to either the identity
homeomorphism or the symmetry with respect to some plane, it suffices to note that
all the terms in the sequence (e, p1/4;, ..., p-/q,) are multiplied by -1 under the
symmetry of the link with respect to the projection plane. ®

§2. DOUBLE COVERINGS OF THE PROJECTIVE SPACE RP3
BRANCHED OVER A PROJECTIVE FOUR-BRAIDING

2.1. The number of double branched coverings. Recall the general classification theo-
rem for double branched coverings.

Theorem. Let X be an r-dimensional manifold, and let A C X be a submanifold
of codimension 2 with 84 C 8X. A double covering Y — X branched over A
exists if and only if in,[A]=0¢€ H, (X, 8X; Z,), where in,: H,_y(A, 0A4; Z;) —
H, »(X,8X; Z,) is the homomorphism induced by inclusion. Such coverings (consid-
ered up to equivalence) are in bijective correspondence with the classes w €
H, (X, AU 8X;Zy) such that dw = [A}, where & denotes the composition
H,_ (X, AU8X ; Zy) — H, ,(AUBX ,8X; Zy) — H,_»(A, 8A; Z,) of the boundary
homomorphism from the sequence of the triple (X, AU8X, 8X) and the excision
isomorphism. The covering corresponding to w is uniquely characterized by the fact
that it is trivial over the complement of a cycle realizing w . Thus, the covering can
be constructed by gluing together two copies of X split along such a cycle.

This theorem implies that for any projective four-braiding L ¢ RP3 (and, in gen-
eral, for any link in RP3) there are exactly two (up to equivalence) double coverings
ki: Nt > RP3, i=1, 2, branched over L.

2.2. Representation of the covering as a result of gluing the solid torus onto the Klein
bottle. Let 1 C D3 be a rational tangle, L C RP? be the corresponding projective
four-braiding. The general theorem for double branched coverings shows that there is
a unique double covering B — D3 of the ball D3 branched over ¢. It is well known
that the rational tangle ¢ can be obtained from a tangle 7y C D? of type O shown in
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Figure 7 via a homeomorphism f: D3 — D? with S(ty) = ¢. The total space B, of
the double covering By — D3 branched over 1y is obtained as the result of gluing
together two copies of the ball D3 with two excised discs bounded by the tangle f
and the arcs of the great circle connecting the boundary points p,, p,, p3, ps of the
tangle ty (Figure 7). Hence~ By is homeomorphic to the solid torus D? x S!'. The
map ¥: By — B covering B gives a homeomorphism B = D? x S!.

Let ¢ be the antipodal involution of the sphere D3 . Then we have a commutative
diagram

B N;
! s
tcD? Y LRPIDL

It is clear that the manifolds N; (i = 1, 2) are obtained from B by factoring its
boundary T = JB by the involutions covering ¢. Note that there are two such
involutions; they are related via composition with the nontrivial automorphism of
the covering 8B — D3 . As the involution ¢ itself, the involutions ¢; that cover ¢
(i =1, 2) act without fixed points and reverse orientation. Thus, the quotient space
X; = T/¢ 1s a closed nonorientable manifold. Moreover, by the Riemann-Hurwitz
formula x(X;) = x(fc,."'(ﬁr(aD3))) = (0, where y is the Euler characteristic. Hence
X; i1s homeomorphic to the Klein bottle K;. Thus we get N; as the result of gluing
the solid torus B by its boundary onto the Klein bottle X;.

2.3. Prism manifolds Q(m, n). Let S' = {z € C:|z|] = 1} be the circle, and
let ¢:S' x 5" - S' xS! be the involution of the torus defined by the formula
o(zy, z2) = (2, —z3), where (zy, z;) € S! x S'. Then the quotient space of the
torus S!' x S! by the involution ¢ is the Klein bottle K. Let n: S! x S' — K be
the natural projection.

Let D? x S! be the solid torus and ¢: 9(D? x S') = S! x ST — S! x S! be
some homeomorphism. Denote by [u], [A] € H,(S' x S'; Z) the homology classes
of the meridian u = S! x i and parallel 4 = i x S' of the torus S' x S! (here
i =+/—1). Clearly ¢.,[u] = m[u]+ n[A] for some relatively prime m, n € Z. The
numbers m, n define the map ¢ up to isotopy and composition (on the right) with a
homomorphism extending to a homeomorphism of the solid torus and so determine
(up to homeomorphism) the manifold Q(m, n) = D? x S!' U,, K . It was shown in
[7] that the result of giuing the solid torus D? x S! onto K depends only on |m|,
|n| and that manifolds Q(|m], |n|) corresponding to distinct pairs |m|, |n| arc not
homotopy equivalent.

2.4. Geometry of the covering 7n. Represent the torus S! x S! as the union of two
cylinders: S!' x S!' = C, uC_, where

C+={(zl,zz)€S‘ x S': Rez, >0},
C_:{(Zl,22)€SI x S': Rez, <0}.
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Since C, = C; UC; where

CH={(z1,z2) € S' xS': Rez; >0, Rez; > 0},
C; ={(z1,z2) € S' xS': Rez; >0, Rez; <0}

and o(Cf) = C;, we see that n(C,) = n(C}) is the Mobius band with boundary
A=n({(z1, z;) € S x S': Rez; = 0}) (Figure 8). Similarly, n(C_) is the Mobius
band with the same boundary A. Thus, the Klein bottle K = n(C,. U C_) can be
viewed as the result of gluing together two Mdbius bands n(C,) and n(C_-) along
their common boundary A. Since {(z;, z2) € S'xS!: Rez; = 0} = ixS'U(—i)xS!
and o(i x S') = (=i) x S, we have A = (i x S'). Note that the boundary A is
isotopic to the doubled center line of the Mobius band, i.e. the doubled parallel of
the Klein bottle K. The meridian of the Klein bottle is

n({(zy, z2) € S' x S': Rezy = 0}) = n(S! x i US! x (—i)) = n(S! x i).

Thus the image of the parallel i x S! of the torus S' x S! under the covering n
is the doubled parallel of the Klein bottle K, and the image of the meridian S' x i
is a meridian.

2.5. Simple closed curves on the Klein bottle. Consider a restriction of the diagram
we constructed in 2.2:

w;

r — K
3| L%
s? 2 Rp?

On the boundary sphere S2 = dD? there are four marked points: p;, p2, P3, Da
which are the boundary of the tangle ¢+ C D3. Denote by d|3, da3, d34, dis the
arcs of the great circles on the sphere S? connecting the points p; and p,, p» and
p3y, p3 and ps, py and p4, respectively (Figure 9). The total space T of the double
covering s branched over {pi, p2, p3, pa} can be constructed, according to the
general theorem for double branched coverings, by gluing together two copies of the
sphere S? split along the arcs d); and dss. Put & =57 (dsq) and { =5 (dp3).
The map k; is a double covering branched over the points g; = pr(p;)[= pr(p3)]
and ¢, = pr(p;)[= pr(ps)]. Let I) = pr(dss)[= pr(di2)] and I = pr(das)[= pr(dia)]
(Figure 10). Then one of the covering spaces K;, say K;, is obtained as the result
of gluing together two copies of the plane RP? split along the segment I, and the
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other covering space, Ky, as the result of gluing two copies of the plane RP? split
along the segment 7, . Clearly

wi(&) =k H(pr(s()) = k(1)
wi($) = k7 (pr(s(0))) = k7 (1).

From the two possible coverings k; choose the one with the Klein bottle K| as the
total space. Thus K| can be viewed as the result of gluing together two Mobius bands
along their common boundary k['(Z;). Then k[ '(I;) is obtained from the fibers
of the Mdbius bands fibered over the circle. Hence w,(£) = kl‘l(Il) is a meridian
of the Klein bottle K|, and w,({) = kl"(Iz) is its doubled parallel. This allows us
to construct a homeomorphism of the coverings n and w,

St x St T
ﬂl l«wl
K K,

under which the meridian S! x i and the parallel i x S' of the torus S' x S! are
mapped to the curves £ and {, respectively, on the torus 7.

2.6. The attaching map. Let f,, be the rational tangle with p/q = i, + 1/i,| +
1/i,_2+ - -+ 1/i; (all the numbers i, have the same sign and |ij] > 2). If r is
even, then decompose the quotient p/g again so that r becomes odd. It would
suffice to represent i in the form (i} — 1)+ 1/1. Note that such decomposition of
the quotient p/q is unique and allows us to represent the tangle #,,, by the diagram
shown in Figure 11,a.

pf pz

braid

1
T

Ly - 4
Ps Clay "t..op "

FiGURE 11

To the tangle t,,, corresponds a braid on four strings ol'oy gy -0y € By (Fig-
ure 11,b). It has been remarked (in 2.2) that the tangle 1,,, C D* can be obtained
from the standard tangle t, ¢ D3 shown in Figure 7 via some homeomorphism
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B with B(0ty) = 9tp,,. The homeomorphism S is constructed as the composi-
tion of homeomorphisms B3, 8,: S — S? as follows: B = B¥-.- f;2Bi', where
Brx (k =2, 3) is the twisting corresponding to the elementary braid o, € Bs. The
homeomorphisms f;3, f, can be chosen so that their supports are contained in small
neighborhoods of the arcs di4 and d,3. Thus, we can assume that the support of
the homeomorphism f is contained in some neighborhood of the arc ds4 U das .
Denote by p, some point of the sphere S? not contained in the support of the
homeomorphism g (so that S(py) = po).

Let s: T — S? be a double covering branched over 91y = 0tp;q - Denote by y the
homeomorphism of the torus 7 identical on s~!(py) and covering homeomorphism
B:

T—2X T
sl ls

52t .52

Let Homeo(7T) be the set of all orientation preserving homeomorphisms of the
torus 7. The described construction of the isotopy class of homeomorphisms of the
torus using a braid on four strings gives the homeomorphism y: By — no(Homeo(T));
compare 8], 2.10. It is known that my(Homeo(7)) = SL(2; Z), and this isomor-
phism is given by the induced automorphism of the group H,(T) and the iso-
morphism H(T) — Z & Z. Choose the latter isomorphism so that the images
of the classes of curves ¢ and { on the torus T are respectively the elements
®, () € Ze®Z. Then on the generators gy, d;, g3 of the braid group B, the
homomorphism y is given as follows

7(01) = ¥(o3) = (_11 ?) , Y(o2) = ((1) i)

The homeomorphism y corresponding to the tangle #,,, defines the automorphism
of the homology group H;(T) with matrix

1 1\" 1 0\ 2/1 1\"
*=(o1) (4 8) (o 1)"

Since there is a homeomorphism : By — B covering E (see 2.2) and extending
w:0By = T — T = 9B, the covering space N; = B Uy, K; can be viewed as
BoUyu,y K| . The curve & = s7!(dy4) C T is the meridian of the solid torus By, since
it bounds a disc in By which is the preimage under the double branched covering

By — D3 of the segment bounded by the arc d34 and the tangle ¢, (Figure 7). Let
us compute V.[¢]:

q/,.[¢]=‘1’(?)=((1) ’1)(112 (1)) (é 111)((1)>

= (8) a1+ 121
Hence the manifold N, is homeomorphic to Q(g, p). It is not hard to see that the
manifold N, is homeomorphic to Q(p, ¢q).

2.7. Proof of Theorem 1. 1t is known that any homeomorphism of the space RP? is
isotopic to either the identity homeomorphism or the symmetry with respect to some
plane. Therefore, any two homeomorphic, but not isotopic, links are the reflections
of each other.
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Let L, be the projective four-braiding p/q, and L, be its reflection. (It has
been remarked above, in the proof of Theorem 2, that L, corresponds to either the
quotient —p/q or q/p.) If the links L, and L, are isotopic, then there exists an
orientation reversing homeomorphism Q(p, ¢) — Q(p, q). It is easy to show that
the manifold Q(p, q) is a Seifert fibration over RP? with one singular fiber. It
is known [9] that such manifolds admit an orientation reversing homeomorphism
only if p = 1 and ¢ = 0. The link obtained from the tangle oo = 1/0 is an
affine unknotted circle. Thus the projective four-braiding, considered up to isotopy,
determines the pair of quotients (p/q, —¢q/p).

APPENDIX: SPECIAL TYPES OF DIAGRAMS OF LINKS IN RP3

There is a number of special types of diagrams of links in the sphere: closed braids,
2n-braidings, diagrams with n bridges. It is known that any link can be represented
by a closed braid (Alexander’s theorem), a closed braid on n strings is a 2n-braiding,
any 2n-braiding is isotopic to a link with » bridges, and vice versa, any link with »
bridges is isotopic to a 2n-braiding.

FIGURE 12

For links in the projective space we can select analogous special types of diagrams-——
closed braids, 2n-braidings and links with n bridges. The general case of a closed
braid and a 2n-braiding is shown in Figure 12,a and b; an example of link with n
bridges in Figure 12,c (n =2).

Such a translation of terminology from the case of links in the sphere to the case of
links in RP? is explained by the fact that the preimage of a link with a special diagram
under the covering S3 — RP3? can be described by a diagram of the corresponding
type. It is easy to see that among the special types of diagrams of links in RP? there
are relations similar to the relations mentioned above among the special types of
diagrams of links in S3.
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