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1 Introduction
Let M < R3 be a surface, i.e.
M = {x e R% f(x) = 0}

with a smooth function f : R* — R, s.th. Vf(x) # 0 for x € M, e.g. a
sphere or a torus. in particular M is a metric space with the restriction of
the euclidean distance. But, unfortunately, though it induces the topology
of M, it doesn’t reflect the ”geometry” of M very well: The distance of two
points may be small, nevertheless it takes a lot of time to travel within M
from one of them to the other.

Take instead

. smooth
d(x,y) = inf{L(y);7 : T = [a,b] ™" M, ~(0) = x,7(1) = y},
where

Liy) = / 5(0)] .

with the euclidean norm ||| : R® — R.

Question: Given x,y € M, is there a (length-)minmizing path from x to y,
i.e. s.th.

d(X, Y) = L(’y)?

Example 1.1. 1. M = P C R3? a plane: Minimizing paths are line seg-
ments.

2. M = S? C R? the unit sphere. Minimizing paths are segments of great
circles = S? N P with planes P 3 0.

Strategy: Look for locally minimizing paths 7 : [a,b] — M, i.e. such that
for sufficiently small € > 0

d(y(t+¢),v(t)) = L(7|[t+s,t])
for all t € Z. Indeed

Theorem 1.2. Let
n: M — R® x+— ny,
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be s.th. ny L. M atx € M, a "normal vector field”, e.g.

Vi)

Ny = ————

IV

Then v : T — M C R? is locally minimizing if

A(t) € Ry + RY(1)

forallt € T.

Remark 1.3. If ||§(t)|| = const, then 7 is locally minimizing iff 4(¢) € Rn,
for all t € Z. Such a path is called a geodesic.

Program:

1. Consider not only surfaces M, but ”submanifolds” M C R™*¢ of arbi-
trary dimensions m = dim M and codimension c.

2. Replace M C R™*¢ with differentiable manifolds.

3. Introduce the concept of a Riemannian metric g on a differentiable
manifold.

4. Every M C R™*¢ inherits a Riemannian metric g from R™*¢

5. Study pairs (M, g) (Riemanian manifolds) instead of M C R™*.

We comment on 3): For a differentiable manifold M of dimension dim M =
m one has the notion of

1.
2.
3.

smooth paths v:Z — M,
smooth functions f : M — R,

for every a € M its tangent space T,M = R™ at a, s.th. ¥(t) € Ty M
is defined for smooth paths v:Z — M,

. of a Riemannian metric, a family g = (g4)aen of inner products g, :

T,M xT,M — R depending smoothly on a € M

Definition 1.4. 1. Riemannian manifold = a pair (M, ¢g) with a differen-

tiable manifold M and a Riemannian metric g on M.
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2. Length of smooth paths:

b
L0) = [ oot

In contrast to Jost’s book we define geodesics by the differential equation
they satisfy and then prove that they are locally minimizing. Further studies
of the global behaviour of geodesics are planned.

2 Differentiable Manifolds

Definition 2.1. An m-dimensional topological manifold M is a Hausdorff
topological space admitting an open cover

M= Ju;
el

with open subset U; C M homeomorphic to open subsets V; C R™.

Example 2.2. 1. Any open subset of R is an m-dimensional topological
manifold.
2. Denote ||z|| = /21 + ... + 22, the euclidean norm of a vector = €

R™*!. Then the sphere
8" :={z e R ||z]| = 1}
is an n-dimensional topological manifold: We have
S"=U; UUs
with U; := S™ \ {—eu11},Us := S™ \ {en11}, where U; = R". For

example the maps

xl

Ui — Rz = (2 opp) » —————

are homeomorphisms: For o € U; the point (o;(x), 0) is the intersection
of the line spanned by x and —e, ;1 (for i = 1) resp. e, (for i = 2)
with the hyperplane R™ x 0.



Now one could try to study a function f : M — R on a topological
manifold M by considering what one gets by composing f with inverse home-
omorphisms R™ D V Y5 U ¢ M and then apply analysis to the composite
foy : V. — R. But then it will depend on the choice of the homeomorphism
¥, whether f o is differentiable or not. One can avoid that difficulty by
restricting to a system, "atlas”, of "mutually compatible” homeomorphisms,
also called ”charts”:

Definition 2.3. Let M be an m-dimensional topological manifold.

1. A chart on M is a pair (U, ), where U C M is open and ¢ : U — V
is a homeomorphism between U and an open subset V' C R™. The
component functions ¢!, ..., ™ then are also called (local) coordinates

for M on U C M.

2. Two charts (U;,¢;),i = 1,2, on a topological manifold M are called
(C>°-)compatible if either U := Uy N Uy is empty or the transition
map (”coordinate change”)

@097 @1(Una) — pa(Una)

is a diffeomorphism between the open sets ¢;(U2) C Vi € R™ and
QOQ(UH) C ‘/2 C R™.

3. A differentiable atlas A on a topological manifold M is a system
A={(U;,¢i);i € I}
of mutually (C°°-)compatible charts, such that M = {J,.; U;.
Example 2.4. 1. The charts (U;,0;),i = 1,2 on S™, cf. 2.2.3, constitute

a differentiable atlas: Again we have S” = U; U Uy and the transition

map
x

oyo00; :R"\ {0} — R"\ {0}, T2l

2. Let W C R™ be an open subset and
F:W—R"™

a differentiable map, such that for all a € M := F~'(0) C W the
Jacobian map
DF(a) : R" — R™™
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is surjective. For every point a € M we shall construct a local chart
(Uay 9a). We may assume that m(a) # 0. Then the map
S (z1,..,xm, F1, o, Fumn) @ R™ — R™ induces, according to the
inverse function theorem, a diffeomorphism U — V between an open
neighborhood U € W of @ € R™ and an open neighborhood V of

(a,...,am,m,0) € R™. As a consequence the map
0o Up:=UNM —V,:={y e R™(y,0) € V C R™ x R" ™},

T (Ty, ooy Tpy)

is a homeomorphism. Then the collection A = {(U,, ¢q);a € M}
constitutes a differentiable atlas on M. Note that all local coordinates
are obtained by choosing m suitable restrictions x;, |as, ..., Z;,, |ar of the
coordinate functions z, ..., x,, i.e., with the choice of the set {i1, ..., 7}
depending on the point a € M.

The last example shows that a differentiable atlas may depend on a lot
of choices and can be unnecessarily big as well. So we need to say when two
atlases are "equivalent”:

Definition 2.5. 1. Two atlases A and A on an m-dimensional topological
manifold M are called equivalent if any chart in A is compatible with
any chart in A.

2. A differentiable structure on a topological manifold is an equivalence
class of differentiable atlases.

3. A differentiable manifold M is a topological manifold together with a
differentiable structure. We say that a differentiable atlas A is an at-
las for the differentiable manifold M, if A defines (or belongs to) the
differentiable structure of M.

If M is a differentiable manifold, then a ”chart (U, ¢) on M” means always
a chart compatible with all the charts of a (resp. all) atlases defining the
differentiable structure of M.

We leave the details of the following remark to the reader:

Remark 2.6. 1. Any open subset U C M of a differentiable manifold
inherits a natural differentiable structure.



2. The cartesian product M x N of differentiable manifolds M, N carries
a natural differentiable structure.

Definition 2.7. Let M, N be differentiable manifolds of dimension m,n re-
spectively.

1. A function f : M — R is differentiable if the functions f o o' :
V. — R are differentiable for all charts (U,p : U — V) € A in

a differentiable atlas for M. The same definition applies for maps
F: M — R". We denote

C*(M) :={f : M — R differentiable}

the set of all differentiable functions, indeed a real vector space which
18 even closed with respect to the multiplication of functions.

2. A continuous map F : M — N s called differentiable if all the maps
Yo (Flp-1wy) : F7HW) — R™ are differentiable, where (W,¢) € B
18 any chart in an atlas B defining the differentiable structure of N.

3. A diffeomorphism F : M — N between two differentiable manifolds
M and N is a bijective differentiable map, such that its inverse F~1 :
N — M is differentiable as well.

4. We say that M is diffeomorphic to N and write M = N if there is a
diffeomorphism F : M — N.

Note that differentiable functions are continuous, and that the definition
of differentiability is independent from the choice of the differentiable atlases
for M and N.

Remark 2.8. Given a topological manifold M there are a lot of distinct
differentiable structures, but the corresponding differentiable manifolds may
be diffeomorphic nevertheless: By a smooth type on M we mean the diffeo-
morphism class of the differentiable manifold defined by some differentiable
structure on M.

1. For dim M < 3 there is exactly one smooth type.

2. For dim M > 4 it may happen that there is no differentiable structure
on M at all.



3. A compact topological manifold of dimension at least 5 admits only
finitely many smooth types. E.g., the sphere S™ has the standard
smooth type as described above, but there may be other ones: For n =
D, ...,20 we obtain 1,1,28,2,8,6,992,1, 3,2,16256, 2,16, 16, 523264, 24
smooth types respectively. For n = 4 it is not known whether there
are exotic smooth types, i.e. smooth types different from the standard
smooth type.

4. For n # 4 there is only the standard smooth type on R", while on R*
there are uncountably many different smooth types; some of them are
obtained as follows: One considers an open subset U C R* with the
standard smooth type; if there is a homeomorphism U = R* one gets
an induced differentiable structure on R*.

Definition 2.9. Let M be an m-dimensional differentiable manifold. A
subset L. C M is called a submanifold of codimension £ iff for every point
a € L there is a chart (U, ), such that o(UNL) = {z = (z1,....,x,) € V :=

o(U);Tm_tr1 = oo = Ty = 0}
Note that a submanifold L C M inherits from M a unique differentiable
structure, such that the inclusion L «— M is differentiable.

3 Vector Fields
Imagine M = F~1(0) with F : R® — R"™™ where DF(a) € R"™™" has
rank n —m for all a € M = F~1(0). Then

T,M :=ker(DF(a)) — R".

and the affine subspace a + T, M is the intuitive idea behind the tangent
space. Here we describe the abstract notion:

Definition 3.1. A tangent vector X, (or derivation) at a point a € M of a
differentiable manifold M is a linear map X, : C°(M) — R satisfying the
following Leibniz rule:

Xa(fg) = fla)Xal(g) + Xa(f)g(a).

The set of all tangent vectors of M at a € M forms a vector space T, M,
called the tangent space of M at a € M.

Remark 3.2. (1) For R € (M), the constant functions, we have
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X,(R) = 0 for every tangent vector X, € T, M, since X,(1) = X,(1?) =
Xa(1) + Xa(1).

(2) Take a chart ¢ : U — V C R" with a € U and ¢(a) = 0. Then the
maps

Of o
O =07 f— —7"(0), i=1,...,n,
=00 f e ST (0)
are tangent vectors at a.

(3) Another, may be more geometric, construction that avoids the choice of
charts is the following: To any curve, i.e. differentiable map,y:Z — M
defined on an open interval Z C R with y(¢y) = a for some t, € T we
can associate the tangent vector 4(tg) € T,M defined by

Y(to) = f = (f o) (to) .

The vector (ty) is called the tangent vector of the curve v : Z — M
at to € 1.

Theorem 3.3. Using the notation of Remark 3.2.2 we have
.M = PR,
i=1

i.e. the tangent vectors 0f := 97" form a basis of the tangent space T, M.

For the proof we need

Lemma 3.4. 1. If f € C°°(M) vanishes in a neighborhood of a € M,
then X,(f) = 0 for all tangent vectors X, € T, M.

2. Let U C M be open. Denote o : C*(M) — C*(U), f — flu the
restriction from M to U. Then the map

T,.U — T,M, X, — X, 00,

s an isomorphism.
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Proof. 1.) If f vanishes near a, take a function g € C*°(M) with g = 1 near

a and fg=0. Then 0 = X,(fg) = g(a)Xa(f) + f(a)Xa(g) = Xa(f).
2.) Injectivity: Assume X, o p = 0. Take any function f € C*°(U). Choose

fec=M ) with f = f near a. Then, according to the first part, we have
X.(f) = (f|U) = 0. Now the function f € C°°(U) being arbitrary, we
obtain X, = 0.

Surjectivity: For Y, € T, M define X, € T,U by its value on f € C*(U) as
follows ~

Xa(f) =Ya(f),

where again f € C®(M) with f = f near a. Then X,(f) is well defined as
a consequence of the first part and obviously X, 0 0o =Y,. [

Proof of 3.3. As a consequence of 3.4 we may assume, with the notation of
Rem.3.2.2, M = U =V C R" and show that the tangent vectors 9 € T,V
with ao(f) = 2L 2-(0) form a basis of TV Since 9(x;) = d;; they are linearly
independent. On the other hand, for any Xy € TyV we have

Xo = Z Xo(2:)0;
i=1

Take f € C(V). After, may be, a shrinking of V' we may, according to the
below lemma 3.5, assume f = f(0) + > ", z;f; with f; € C*°(V) and then

obtain Xo(f) = Zl 1 Xo(@) fi(0) = 3201, Xo(x:) 07 (f). O
Lemma 3.5. Let f € C*((—¢,e)™). Then we may write

0) + Z i fi
=1

with functions fi, ..., fm € C®((—e,)™).
Proof. We have

m—1

f L1y T

M

I‘l, S O, ey O) — f(xl, ey Tm—i—1, O, ey O))+f(0,

=0

m 1
= mefi ( af (xl,_..,mmi1,t$mi,0,..,0)dt> +f(0,,0)
=1

0 axmfi
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Remark 3.6. 1. Any finite dimensional vector space V' is a differentiable
manifold: Take an atlas containing one chart (V, ¢), where ¢ : V. —
R™ is a linear isomorphism. The resulting manifold does not depend
on the choice of .

2. For any a € V there is a natural isomorphism
V =5 TV, 0+ a0 (0)
with 7, (t) = a + tv.

Differentiable maps induce linear maps between tangent spaces:

Definition 3.7. Given a differentiable map F': M — N between the differ-
entiable manifolds M and N, there is an induced homomorphism of tangent

spaces:
T,F : T,M — Tp@)N

defined by
T.F(X,):C®(N) =R, fr= X (fo F) .

It is called the tangent map of F at a € M.

Obviously we have for a curve v : (—¢,e) — M with v(0) = a that
T,F(%(0)) = 6(0), where § := Fory .

For explicit computations we note that, if ' = (Fy,....F,) : U — W is a
differentiable map between the open sets U C R” and W C R™, and b = F'(a)
for a € U, then with respect to the bases 9¢,...,0% of T,U and 9, ...,d°, of
T,W the linear map T, F' has the matrix:

OF;
pF@ = (Gr) R,
O 1<i<m,1<j<n

S >

the Jacobi matrix of F' at a € U.

Furthermore it is immediate from the definition, that the tangent map
behaves functorially, i.e. if F': My — My and G : My — M3 are differentiable
maps, then G o F : My — M; is again differentiable and the chain rule

Ta(G ®) F) = TF(a)G o TaF

12



holds.

All the tangent vectors at points in a differentiable m-manifold M form a
differentiable m?-manifold TM = J,.,; TuM, the tangent bundle of M. For
example, for M = F71(0) — R™ as in the introduction we take

TM = {(a,€) € R" x R"; F(a) = 0, DF(a)¢ = 0}

= |J{a} x .M < R" x R".
aceM

We introduce first the notion of a vector bundle, a smooth family of vector
spaces, over M.

Definition 3.8. A vector bundle of rank n over M is a triple (E, 7, M),
where FE is a differentiable manifold and 7 : E — M a differentiable map,
such that

1. the fibers E, := 7 '(a) carry the structure of an n-dimensional vector
space,

2. there is an open covering M = |J._; U; together with diffeomorphisms

iel
7w H(U) — U x R™,
such that m = pry. o 73, and inducing vector space isomorphisms
prgs o 7; : B, — R" x {a} 2 R".
The 7; are called trivializations.

Remark 3.9. If E is a vector bundle, the comparison of two trivializations
7;, T; Tesults over U;; := U; N U; in the following transition function

T; O TZ-_I : Uz‘j x R" — Uij X Rn7 (X, y') — (X, Al](X)Y)
with a smooth function A;; : U;; — GL,(R).
Example 3.10. 1. £ := M x R", the trivial vector bundle of rank n.

2. Let M be a differentiable n-manifold. The tangent bundle T M is, as a
set, the disjoint union

TM = U .M

aeM
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of all tangent spaces at points a € M. Take a differentiable atlas
A ={(U;,;);i € I'}. Denote m: TM — M the map, which associates
to a tangent vector X, € T, M its “base point” a € M. We pick the
following trivialization

T; . 7T71(Ui) — Uz X Rm,Xa = Z)\ja}%ﬂ — (a, )\1, ceey >\m)
j=1

We endow T'M with a topology: A set W C T'M is open if 7;(WNU;) C
U; x R™ is open for all charts ¢ € I. in an atlas A for M. We obtain
a topological manifold TM with differentiable atlas {(7—(U;), ;). In-
deed the corresponding transition functions are

rjor iUy x R — Uy x R™ (x,y) — (x, DF;;(x)y)
with Fjj == g0 07" i(Uy) — ¢ (Uy)-

Now we can generalize Definition 3.7: given a differentiable map F' :
M — N the pointwise tangent maps T, F : ToM — Tp) N combine to a
differentiable map TF : TM — TN, i.e.

TF|ra i=ToF : ToM — Ty N.

Indeed, the map TF fits into a commutative diagram

™ 5 TN
1 i,
F

M — N

ie. my oTF = F omy holds with the projections 7y, : TM — M and
mn : T'N — N of the respective tangent bundles.

Definition 3.11. The restriction of a vector bundle (E,m, M) to an open
subset U C M is

E|U = (W_1<U)a T, U)
Definition 3.12. Let E be a vector bundle over M.

14



1. A section of F is a differentiable map o : M — E with 7o o = idy,.
We denote
I'(E) :={o: M — E,section of E},

a C*°(M)-module with the scalar multiplication (fo)(a) := f(a)o(a).
2. Let U C M be open. A vector field on U is a section
X el(TM|y),a— X, € T, M.

We write as well
o) :=T(TM|y).

Remark 3.13. 1. Let (U, ) be a chart. Then
0; =07 U —TM,a— 0} fori=1,..,m,

with of .
oY
1) = (et
are vector fields on U, the ”coordinate vector fields” associated to the
local chart (or local coordinates) x; = ¢;(a),i = 1,...,m. Since T,M =
D", RO, any section X : U — T'M of m : TM — M can be written

X = zm: 9i0;,
i=1

with unique functions g; € C*(U).

2. Note that on an arbitrary differentiable manifold M it is in general not
possible to find vector fields X7, ..., X, € ©(M), such that (X1)a, ..., (Xin)a
is a frame at a, i.e., a basis of T, M, for all a € M. If such vector fields
exist, the manifold M is called parallelizable. In a more algebraic way:

M is parallelizable iff ©(M) = C*°(M)™.

3. The vector fields on M can be identified with derivations D : C*(M) —
C>(M), i.e. linear maps satisfying the Leibniz rule D(fg) = D(f)g +
fD(g) for all f,g € C®°(M). Given a vector field X € O(M) the
corresponding derivation X : C®°(M) — C*(M), f — X (f) is defined
by (X(f))(a) == X.(f). In fact, every derivation D : C®(M) —
C°°(M) is obtained from a vector field: Take X € ©(M) with

Xo:C®(M) =R, f— D(f)(a) .

15



4. For an open subset U C M the tangent bundle T'U is identified, in a
natural way, with the open subset 7#=1(U) C T M.

5. Let ' : M — N be a differentiable map. Given a vector field X €
O(M), we can consider TF o X : M — TN, but that map does not
in general factor through N, e.g. if F'is not injective. But it does if
F : M — N is a diffeomorphism: then we may define a map

F.:0(M) = O(N),X = F.(X)=TFoXoF'e€O(N),
the push forward of vector fields with respect to a diffeomorphism.

The vector space ©(M) carries further algebraic structure: Though the
compositions XY and Y X of two derivations (vector fields) X, Y : C*°(M) —
C>(M) are no longer derivations, their commutator is:

(XY -YX)fg = XY(fg9)-YX(fg)
= X(fYg+gY[)-Y(fXg+gX][)
= [XYg+(X)Yg+9XY [+ (Xg)Y [
- [YXg=(Yf)(Xg) =gV X[ = (Yg)(X[)
= fXYg—-fYXg+gXYf—-gYXSf
= f(XY -YX)g+g9(XY -YX)f.

Definition 3.14. The Lie bracket [X,Y] € ©(M) of two vector fields X, Y €
O©(M) is the commutator of the derivations X,Y : C°(M) — C>®(M), i.e.

[X,Y]:= XY — VX,
or, in other words, the vector field [X, Y] satisfying
(X, Ya(f) := Xa(Y(f)) = Ya(X(S))
for all differentiable functions f € C*°(M) at every point a € M.

Note that the tangent vector [X,Y], is not a function of the values
X.,Y, € T,M only, since the local behavior of the vector fields X,Y near
a € M also enters in the computation rule. If zq, ..., z,, are local coordinates
on U C M, and X,Y € O(U) have representations

X = ifi 0, Y = igi 0;,
i=1 i=1

16



then

n

X, Y] =) (X(g:) = Y () ;-

i=1
So, in particular, [0;,0;] = 0 for coordinate vector fields. On the other hand
we mention:

Theorem 3.15. (Frobenius Theorem) Let Xi,...,X,, € O(M) be pair-
wise commuting vector fields, i.e. [X;, X;] =0 for 1 <i,5 <n. Then every
point a € M, such that (X1)a, ..., (Xn)a i a frame at a (i.e. a basis of the
tangent space T,M ) admits a neighborhood U C M with local coordinates
T1,y ..., Ty € C°(U) such that

For the proof one needs the notion of an integral curve of a vector field:

Definition 3.16. Let X € ©(M) be a vector field. A smooth curve v : Z —
M is called an integral curve of the vector field X, if 4(t) = X, holds for
allt € 7.

Theorem 3.17. Let X € O(M) be a vector field.

1. Given a relatively compact open set U C M there is an € > 0 and a
smooth map
v:U X (—g,6) — M,

such that for all a € U the path t «— ~,(t) := ~y(a,t) is an integral curve
of the vector field X with v,(0) = a. The path ~, is unique.

2. If X, # 0, there is a local chart (U, ) around a, such that X|y = 0.
3. The set

D(X) :={(a,t) € MxR;3 X-integral curve vy, : T — M;0,t € Z,7,(0) = a}
1s open and the map

v:D(X) — M, (a,t) — v.(t),
s smooth.

4. If M is compact, we have D(X) = M x R.

17



Proof. The first statement follows from the fundamental theorem of ODE’s
including the fact, that solutions depend smoothly on initial conditions. For
the second one we may assume a = 0 € U C R™, Xy = 9). Take an open
subset V' C R™ !, such that {0} x V is relatively compact in U and note
that the map V xR — U, (x,t) — Y(x,0)(t) is a diffecomorphism near the
origin. For the third one we refer to Lang, Differential and Riemannian
manfolds, Th.2.6. Finally, if M is compact, choose £ > 0 as in the first point,
with U = M. Then, if v : (to,t1) — M is an integral curve of X, it can
be extended to (ty — €,t; + ¢€), since the corresponding statement holds for
[t27t3] with tg <ty < t3 < ty. ]

Remark 3.18. 1. An integral curve v : (0,t)) — M has a set of limit
points in M, the points of the form lim,,_,, v(¢,) with some sequence
t, — to. Then either v can be extended over ¢y or the limit point set
is empty.

2. If M is compact, t — pu; generates a one parameter group of diffeomor-
phisms p; : M — M, since po = idy and pg o pp = psyy, called the
flow of X.

3. The proof of Th.3.15 relies on the fact that given the flows (u;) and
(fir) of commuting vector fields X, X € ©(M ), one has js0 iy = fiz © fis
for all sufficiently small s,¢ € R.

4 Vector space constructions

The tangent space T, M at a point a € M of the manifold M has been defined
without referring to local coordinates, in particular there is no distinguished
basis. For the definition of an infinitesimal metric on M, which allows us
to measure the length of piecewise smooth curves and the study of the cor-
responding geometry we need Linear Algebra constructions applying to an
n-dimensional vector space V' without a distinguished basis. For explicit
calculations one needs of course a basis of V' (resp. local coordinates near
a € M in the case V = T, M), so it is important to understand how the in-
duced bases behave under a change of basis of V' (resp. a coordinate change).
This is most easily remembered when taking into account the "naturality”
(or ”functoriality”) of our constructions, and one need not know by heart a
lot of complicated formulae with many indices.
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We shall discuss

1. the space of (k, £)-tensors T**(V),
2. the tensor algebra T%(V),

3. the exterior algebra A*V.

The tensor product V @ W of two vector spaces V, W is characterized by
the following features:

1. There is a bilinear map
T:VXW—VW,
where one traditionally writes
VRW:=T1(V,W),
2. VoW =span{vew;v € V,w € W}, so any element in V@ W is of
the form vi ® u; + ... + v, ® u,,
3. dmVe@W =n-m.

Remark 4.1. 1. If eq,...,e, is a basis of V and fi, ..., f,, a basis of W,
then the e; ® f; form a basis of V @ W.

2. The universal mapping property (UMP): Given a bilinear map ¢ :
V x W — U there is a unique linear map ¢ : V@ W — U, s.th. the

diagram
VoW 2 A
T 1 S
V xW

is commutative. Indeed, define
ple; @ 1)) = p(e;, 1;).
3. Given f:V — V' g: W — W’ there is an induced linear map

fRg: VW —VaW veaw— f(v)®g(w).

19



Example 4.2. 1. There is a natural isomorphism
o:V*®@W — Hom(V, W)
induced by
0 :V*x W — Hom(V, W), (v*,w) — v*(..)w.

2. The space of k-tensors: We define T%(V), k € N, by
(V) =R, T"'(V):=THV)@ V
and obtain a k-linear map
VE—— TRV, (Vi o, Vi) = VI ® L @ Vg,
such that the UMP for k-linear (instead of bilinear) maps is satisfied.

3. A k-tensor is an expression of the form

o = E >\i1 77777 i Viy ® ... R Vi

(Zl ..... Zk)

4. Denote Mult* (V) the vector space of k-linear forms. There is a natural
isomorphism

T*(V*) = Mult®(V)
induced by the k-linear map

(VY — Mult* (V), (vi, ..., vi) = vi(.) ... v (...

In the sequel we identify elements in T%(V*) with k-multilinear forms,
such that

VI ® .. @ VE(VL, oy Vi) = VI(V]) - e Vi (V).
5. There is a natural isomorphism
THV) @ T(V) = T(V),
the ”concatenation”:

(Vi®.0Vvip)W®.0w)=vi®.QVv,u Q..Qu,.
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6. In particular
(V) =P THV)
k=0

carries the structure of a graded algebra, the product being the tensor
product. It is called the tensor algebra of V.

7. Any linear map f : V — W induces a ring homomorphism 7™ f :
(V) — T*(W).

8. If @ € Mult*(V) = T%(V*) and # € Mult’(V) = T*(V*), then a ® 3 €
Mult* (V) satisfies

A ® B(Viy ooy Vierr) = (V1 eoe; Vi) B(Vies1, ooy Viers)-
Definition 4.3. A (k,{) tensor « is an element in
TH(V) = THV) @ THV),
it can be written:

o= E NivoiigjiongeVie @ . Q Vi @ Vi 8. Qv

(11,0121 5---,5e)
Example 4.4. Here are some natural isomorphisms:
1. THY(V) = End(V).
2. TO2(V) = Mult?*(V).
3. The tensors in
TV =V VeV 2Mut* (V) V
may be understood as bilinear maps V' x V — V.
4. The tensors in
THV =VeV @V @ V* = Mult*(V) ® End(V)

may be understood as bilinear maps V' x V' — End (V).
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Definition 4.5. The exterior algebra is the factor algebra
ANV :=T*(V)/a,

with the two-sided homogeneous ideal a = @,-, ar C T*(V) generated by
the elements v ® v € T?(V). The induced product is denoted A.

Remark 4.6. 1. We have

VAv=0uAv=—-vAu

2. More generally, for « € A*V, 3 € A'V, we have

BAa=(=1D)anp.

3. If f: V — W is a linear map, there is an induced homomorphism
AN f ARV — APV

4. For an endomorphism f : V — V the induced homomorphism is
multiplication with the determinant:

A" f = et 1-
Proposition 4.7. Let A*V :=T*(V)/a;,. We have
APV = {0}, k > n.

In particular

AV = éA’“V.

k=0
dim APV = ("
im AV (kz)

€;, /\/\ezk,l < <...<ip <n,

Furthermore

and the elements

orm a basis of A*V .
J

We may identify A*V with a subspace of T*(V'). We start with:
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Remark 4.8. There is a natural action of Sy, on T*(V):
(T, V1I® .. ®VE) = T(Vi ® ... ® Vi) = Vr(1) @ ... @ Vi)
Definition 4.9. A k-tensor a € T*(V) is called alternating, if
7. (@) = sign(m)a
holds for all permutations m € Sy.

Proposition 4.10. The alternating k-tensors form a subspace
ARV c TH(V),

such that the quotient map T*(V) — A*V induces an isomorphism
AR(V) =5 APV

Remark 4.11. 1. Though the direct sum

A*(V) = éA’“(V) C T*(V)

k=0

is not a subring, we can describe the wedge product on A*(V') as follows:
There is a projection operator:

AltF - THV) — TH(V),

e AltF(TF(V)) = A*(V), Altk|Ak(V) = id 4k (v, namely

AltF(a) == % Z sign ()7, ().

TESE

If we define A on A¥(V) as the pull back of the wedge product w.r.t.
the isomorphism
A*(V) =AYV,
we obtain
(k+10)!
k0!

alf= Alt" ™ (a @ ).
for o € A¥(V), B € AYV).
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2. Under the isomorphism T*(V*) = Mult*(V) the alternating tensors
in A¥(V*) correspond to alternating k-linear forms o € Mult*(V), i.e.
such that

Ji#j:vi=v, = a(vi,..,v;) =0.

Euclidean vector spaces: Finally we consider the situation, where the
vector space V' is endowed with an inner product g : V xV — R. It
induces an isomorphism

vV =, Vv g(v,..),
such that, because of the symmetry of the inner product,
Y=y of:V —V" —V"

Here g : V. — V** is the biduality isomorphism. In the sequel we shall
simply identify V with V**, vectors v € V acting on V* by evaluation
v(v*) == v*(v).

We want to show that there is an induced inner product on T*(V). First
of all there is an isomorphism

TE(VH) = THV) @ THV) = TH (V)
induced by the multilinear map
(V9 x VE— TRV,
(V] oy Vi Vi, oy V) P V] ® . Q VER V] ® .. @V,

the RHS being the tensor product of the linear maps v} : V — R and
\ZR Vs —R.
Now the inner product on T**(V) correspond to the isomorphism

TH(V) — TRV = THV) @ TUV)(2 T (V)

Vi®.OVERV]®..0V, —

(V1) ® .. @P(vi) ®YTHV]) @ .. @ YT (V).
Thus the inner product on T*¢(V) is defined without referring to a basis of

V. For practical purposes we note that, given a g-orthonormal basis ey, ..., e,
of V', we have

¢ = (el
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for the dual basis e, ..., e of V*. Tt follows that the (k,¢)-tensors
e, ®..0e, ® e;l X ...® e;f{ c T’fvf(v)

form a g-orthonormal basis.
A similar discussion applies to the exterior product A*V .

5 Vector bundles and tensor fields

The above vector space constructions are of the following type: We have a
map

OV d(V),

which associates to a vector space V another one, ®(V'), and with any iso-
morphism f: V — W an isomorphism ®(f) : &(V) — &(W), such that

L. ®(go f)=2(g) o ®(f) and

2. (idy) = ideq),

3. finally, if f, € End(V') smoothly depends on a € U C M, so does ®(f,).
Example 5.1. 1. ®(V) =V with &(f) = f.

2. (V) = V* with &(f) = (f~1)*.

3. @(V) = TH(V) with &(f) =T*(f) @ T*((f 1))

4. B(V) = AR(V) with (f) := AF(f).

Now, given a vector bundle £ — M we can form a vector bundle ®(FE)
as follows: Take a covering
M= Ju;

icl
with trivializations

T - 7T_1(U7;) — Uz X V,

and transition functions:
T; 0 Ti_l Uiy x V— Uy x V, (x,y) — (x, F};(x)y)

with smooth F}; := U;; — End(V).
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Remark 5.2. Given smooth functions F}; := U;; — End(V), s.th. we have
the following ”cocycle relation”

Ek(X> = ij(X) o Ej(X),v X € Uijk = Uz N Uj N Uk

satisfied for all 4,5,k € I as well as Fj; = idy (s.th. Fj(x) € GL(V)), we
consider on the disjoint union

E = U Ul xV
the relation

U xV 3 (x,v)~(x Fjx)v)eU; xV,

in particular that implies x € U;;. Due to the cocycle relation ~ it is an
equivalence relation, and we can form the quotient space

E:=E/~,
which obviously is the total space of a vector bundle 7 : E — M.

Definition 5.3. Let E be a vector bundle over M with fiber V', obtained
as in Rem.5.2 from an open cover (U;);e; of M with F}; : U;; — End(V)
satisfying the cocycle relation. Then we define

O(E) = Ui x (V)/ ~

iel
with the equivalence relation
U x®(V)> (x,v) ~ (x,D(F;(x))v) € U; x &(V).

Example 5.4. 1. The dual bundle £E*. Indeed the sections in I'(E*) may
be regarded as smooth functions £ — R, which restrict to a linear
form on each fiber E,.

2. TH(E).

3. AM(E).
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Definition 5.5. 1. The dual bundle of the tangent bundle
"M = (TM)*.
is called the cotangent bundle of M. We use also the notation
QM) :=T(T"M)

and call sections w € Q(M) differential forms of degree 1 or simply
1-forms.

2. Given f € C®(M) its differential df € Q(M) is defined as the 1-form
given by
dfs - X, X, f.

Remark 5.6. Indeed, if x4, ..., z,, are local coordinates on U, we have
QU) =P C=(U)da;
i=1

and .

=1
Note that on a manifold there is no notion of the gradient of a function!

Definition 5.7. The bundle of tensors of type (k,¢) is defined as
T (M) := T (TM).
A global section o € T(T*(M)) is called a (k, £)-tensor field.
Remark 5.8. If f: M — N is differentiable, there is a pull back
F* :T(T™N) — T(T% M)
given by
(F*0)al(Xt)ar - (X0)a) = 0pia(TuF(X1)a), o TuF (X)),
If M=V CR"and F = (F,..., F,) we have

F*(dy;, ® ... ®@ dy;,) = dF;, ® ... ® dFj,.
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Definition 5.9. 1. A pseudo-Riemannian metric on a differentiable man-
ifold M is a section g € T'(T%?M), such that the bilinear form

Jo : T,M xT,M — R

is symmetric and nondegenerate for all a € M. It is called a Rieman-
nian metric if the forms g, are positive definite for all a € M.

2. A Riemannian manifold is a pair (M, g) consisting of a differentiable
manifold and a Riemannian metric g € T(T%?(M)).

Remark 5.10. 1. On alocal chart U with local coordinates z1, ..., x,, we
have

gluv = Z gijdr; @ dx;.
1,
with functions g;; € C*>°(M).
2. Let M = F~'(0) C W C R" be a submanifold. Then M is a Rieman-

nian manifold with g := *(>_1 | dz; ® dx;). Here v : M — W denotes
the inclusion.

Definition 5.11. Differential forms of degree k are the sections of the bundle
AR(T*M); we set
QF(M) = T(AM(T*M)).

Note that Q°(M) = C>(M), QY (M) = Q(M).
Remark 5.12. 1. Usually we regard a k-form w as a map associating to

each point a € M an alternating form w, € A*(TM) = A*(T*M).

2. If x4, ..., x,, are local coordinates on U C M, we have

Uy = @ CxU)dw, A Nda,.

1<i1 <. <ipg<m
= @ COO(U)dX],
Ic{1,...m},|I|=k

where
dX] = dfCil AN dl’ik,

if I = {’il, ...,ik}, 1<y <. <y, <m.
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Definition 5.13. The exterior derivative
d: QF(M) — QFFH(M)
is defined as follows: Starting with the alternating k-C>°(M)-linear form
w: (M) — C=(M),
we define the C*°(M)-(k + 1)-linear form
dw : O(M)M — C>(M)
by

k+1
dw(Xy, ..., Xpy1) = Z( 1)1+1X w(X7, ... Xz; vy Xig1)

=1

D (DMK X)X Xy Xy Xig1)-

1<J

Remark 5.14. 1. In order to see that dw € Q*"1(M), we have to check
that

(a) dw is C°°(M)-multilinear

(b) and alternating. For that we may assume that the vector fields
X; are coordinate vector fields (so the second sum vanishes) and
then show that the exchange of two arguments results in a change
of sign.

2. W.r.t.local coordinates we have

d(fdx;, A ... Ndx;) =df Ndzy, A ... Ndz, .

3. d(aAB)=daA B+ (=1 a AdB, where o € QF(M).
4. d(F*w) = F*(dw) for differentiable F' : M — N.

Definition 5.15. A differemtial form w € Q¥(M) is called
1. closed, if dw = 0,

2. exact, if w = dn with a form n € QF~1(M).
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Example 5.16. 1. w = fdx+ gdy € Q(V),V C R?, is closed iff 3—5 = %'

2. Let M := R?*\ {0} be the punctured plane. Then w := —mpde +

71,7y is closed, but not exact. Indeed, on U := R?\ Ry x {0} we
havev w = dip, but ¢ does not admit an extension to M.
Proposition 5.17. 1. Exact forms are closed, or equivalently d o d = 0.

2. Lemma of Poincaré: On a starshaped open subset U C R™ every closed
form is exact.

Proof. 1. W.lo.g. w= fdxy A ... Ndxy € Q(V),V C R™. Then we have
dw =df Ndxy A ..... A dxy,

and
ddw = ddf Ndxy A ... A dxy,

hence it suffices to show ddf = 0. Exercise!
2. We first show

Lemma 5.18. Let W C RxR™ U C R™ be open with [0,1] xU C W,
furthermore

to: U — W, x— (0,%x),01: U — W,x+— (1,x).
Let 0 € Q(W) be a closed form. Then there is a form n € Q(U) with

()"0 — (10)"0 = dn.

Let us first prove the Poincaré lemma: We may assume that U is
starshaped w.r.t. the origin and consider the map ¢ : R x R —
R™, (t,x) — tx, and apply Lemma 5.18 with W := ¢~ 1(U). We take
o = ¢*(w) and obtain

dn = (11)"¢" (W) = (0)"¢" (W) = (pou)w—(pow)w=w
Proof of 5.18. We write

o = Zf]dX]‘F Z ngt/\dXJ

\I|=k |J|=k—1
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and then have

Lo = Z fr(l,x)dxy, 5o = Z fr(0,x)dx;.

[1|=k |I|=k

We know

ofr
ox;

dl‘l N dX])

=1
"9
g‘]dt Adzi A dxy,
I'

=1 ¢

0=do= 1 (affdmderZ
-2
J

in particular

8]; dXI Z Z 99, daz:Z Adxy.
T

;(/ thxdt>de.

= Zi ( g‘i‘] dt> dz; A dx.
J 0 7

=1

Now take

Then we find

[(Esa

i=1

_ /0 (Z %J;’ t x)dxf) dt

Z fr(1,x) — f1(0,x)dxr = (11)"0 — (w)"o.

(t,x d.?:zAdXJ) dt
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Definition 5.19. The factor vector spaces

a _ ker(d: QI(M) — QITH(M))
HdR(M) T qu,1<M>

are called the de Rham cohomology groups of M, a topological invariant due
to the lemma of Poincaré. The dimension

by(M) = dim Hjj (M)
is called the g-th Betti number of M.

Remark 5.20. Integration on a Riemannian manifold: If F: U — V
is a differentiable map between open subsets U,V C R™, we have

E;
F*(fdy1 N\ ... Ndym) = fo F -det (gx ) drzy A ... Ndx,,.
J

On the other hand: If F' is even a diffecomorphism and f : V — R is
continuous with compact support, then there is the following transformation

formula for integrals
F
/fdyl...dym :/foF- det (3 Z)
1% U O

Now let us consider a Riemannian manifold M. On each connected U C M

with local coordinates x, ..., x,, there are two normalized forms w € Q™ (M)

as follows: Denote Xj,..., X,, the corresponding coordinate vector fields.
X1

Choose A : U — GL,,,(R), such that the components of A : form
Xm

an ON-basis of T,M at all a € U. (They are in general not coordinate vector

fields!) Then

dxy....dx,,.

+ det(A(x))dxy A ... ANdz,, € Q™(U)
are the two normalized m-forms on U. Take G : U — GL,,(R), such that

dl’l
dx” @ G(x)dx (with dx := : ) is the metric tensor on U. It follows
dz,,
ATGA=E,
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the unit matrix, hence
1

V] det G’

dxy N ... Ndx,,
| det(G)]

are the two normalized m-forms over U. We may now integrate functions

f e Co(M). If supp(f) := f~1(0) C U with U =V C R™ as above, we set

|det A| =

Thus

0" (U)

/Mf:/v—wﬁdﬁ

Take M = J,; U; with local charts ¢; : U; — V; C R™. Finally choose a
partition of unity 1; subordinate to (U;);c; and define

/f—H/%

In order to see that this does not depend on the choices involved use the
transformation formula for integrals.

In general there is no normalized m-form w € Q™(M). The reason for
that is as follows: Imagine we have two open subsets taken from the above
open covering. Assuming the U; to be connected we can take a normalized
form w; € Q™(U;), which is unique up to sign. But if U;; = Wi UW; is a
disjoint union, we can not exclude that

wilwy = wilwy, wilw, = —wilw,.
So there is no normalized m-form on U; U U;!

Definition 5.21. 1. Anm-dimensional differentiable manifold M is called
orientable, if there is a nowhere vanishing m-form w € Q™ (M), or
equivanlently, if A™T*M = M x R.

2. An orientation of M is given by such a form; two nonvanishing forms
define the same orientation if they differ only by a positive function.

3. An oriented manifold is a manifold together with an orientation.
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Remark 5.22. 1. M is orientable iff there is an atlas A, such that the
transition functions have a positive functional determinant.

2. On an oriented Riemannian manifold M we may define [, n for m-
forms n with compact support: We write n = fw, where w is the
normalized orientation form (volume form), and define

for=1r

6 Connections on Vector Bundles

If E is a vector bundle over M, there is no natural way to produce an iso-
morphism FE, = FE, for different points a,b € M. In this section we define an
additional datum D on FE, called a connection or covariant derivative, which
can be used in order to define a derivative Dx u € E, of a section p € I'(E)
w.r.t. a tangent vector X, € T.M. Thus we are able to define what it means
that p o~y is constant, where v : Z — M is a curve from a to b: We want to
have
Ey@ 3 Dywp =0

for all £ € Z. Then we may ”transport” a vector x € E, to a vector y € E
along 7 by requiring that there is a section p € I'(F), which is constant along
~ and satisfies x = p(a),y = u(b).

Definition 6.1. An affine connection or covariant derivative on a vector
bundle F over M is an R-bilinear map

D:0(M) x I(E) — T(E), (X, ) — Dxp,
which is C*°(M)-linear in X and R-linear in y, such that the Leibniz rule
Dx(fp) = X(f)p+ fDxp
holds. A section p € I'(E) is called (D-)flat if Dxp =0 for all X € ©(M).

Example 6.2. 1. On E = M x R™ we have the "trivial connection” D°:
We have I'(E) = C*°(M)™ and set

DX (fr s fu) = (X (1), s X (f))-
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2. If M = F71(0) < R", we may consider the inclusion
TM — TR"|jyy = M x R"
and the fiberwise orthogonal projection
pr: M xR" — TM,

1.e.
R" = {a} xR — T, M

is the orthogonal projection onto pr, : 7, M — R". Then
Dxp:= pr(Dx ()

defines a connection on £ = TM. Here we regard p € I'(T'M) as
section of TR"|yy = M x R", thus u = (fi, ..., f,) and

Dt = pr(X (1), o X (fu).

Remark 6.3. 1. Let U C M be an open subset. If X|y =0 or u|y =0,
we have Dxu|y = 0 as well. Given a € U take f € C°°(M) vanishing

near a and = 1 in a neighourhood of the support of X resp. pu. We
find X = fX and thus

Dxp= Dyxp=fDxp=0
near a. On the other hand
Dx(p) = Dx(fu) = (Xf)p+ fDxp =0
near a.

2. As a consequence a connection on E induces a connection of F|y for
any open subset U C M.

3. Connections are determined by local data, the so called Christoffel
symbols: Let U C M be an open subset over which both TM and E
are trivial:

o) = @CW(U)X,-, [(Ely) = EB C(U) ;.
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Then we may write

(DX lu] ’U - Zrz]uk

with functions Ffj € C*(U), the Christoffel symbols. We leave it to
the reader to establish that connections on F|y are in one-to-one cor-
respondence with systems of functions I'}; € C>°(U), furthermore that
if M = J,c; Ui is an open cover and D; are connections on E|y, that
agree over U; NUj, they can be patched together to a connection on .
Details are left to the reader.

4. The value of Dxpu at a € M depends only on X, € T, M and the section
w: Given D we may define

ToM X T'(E) — E,, (Xa, 1) — Dx, 1,

such that
(DXILL)G/ = DXH,M'

We have to show that X, = 0 implies (Dxp), = 0 and may assume
that TM is trivial. If X = >~ f;X; with a frame Xj..., X,,, we have
fila) =0,i=1,...,m, and obtain

(Dxft)a Z fi(a)(Dx,t)a = 0.

In general there are no non-zero flat sections over an open subset U C M.
But over a curve in M there are! We need the following definition:

Definition 6.4. 1. Let f : Q — M be a differentiable map. A section of
E above or over f is a differentiable map p: Q — E with pu, € Ey ()

for all ¢ € Q.
E
w0l
Q L M

2. We denote I'f(E) the vector space of all sections of E above f, a C>(Q)-
module.

3. For E =TM we write ©;(M) :=T;(TM).
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Remark 6.5. If D is a connection on F we may define Dxpu, where X €
O(Q) is a vector field on @ and p a section of E above f. Assume first there
is a frame pq, ..., p, € I'(E|y) in an open neighbourhood U of f(Q). Write
then p=3>"", gi(u; o f) with functions g; € C*°(Q) and define

Dxp = ZXgi (pio f) + gi(Drgxypi) o f
i—1

with Dryx)p; being defined pointwise as in Rem.6.3.4. This definition is
independent from the chosen frame and thus can be used locally in order to
patch together the definitions on the members of an open cover of f(Q) in
the general case. If f =~ is a curve ¢t — () one writes also

Vi = V%u.

Definition 6.6. A section pu € I'y(E) over f is called D-flat if Dxpy = 0
holds for all vector fields X € ©(Q).

Proposition 6.7. Let v : T — M be a smooth curve with start point
v(0) = a € M and end point (1) = b € M.

1. For any x € E, there is a unique flat section pi, € I'y(E) with p1,(0) =
T.

2. The parallel transport from a to b along v is the map

PT, : E, — Ey,x — p,(1).

3. If ¥ = v o1 with a reparametrization 7 : J — L of vy, we have
PT5 = PT,.
Proof. We may subdivide
I=7,U..UZ,

into subintervals Z, s.th. v(Zy) is contained in a local chart over which F is
trivial and then prove the theorem separately for all the Z,, k =1, ..., r.
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So w.l.o.g. there is a local frame py, ..., p,, of E in a neighbouhood of v(Z)
and local coordionates 1, ..., Ty, Writing p = > fju; with f; € C(Z) we
want to have

0= Dy(t) <Z fjuj) = Z fj,uj + ijﬁ(t),Uj-
j=1

Jj=1

- Z (fjﬂj + £ (Z %(t)DaiMj>>
=Y i+ (Z i)Y FZMk)
j=1 i=1 k=1

S ek (z ) zrzm) |
j=1 k=1 i=1 j=1
whence we see that

0=f;+ Z e Z%(t)rgk
k=1 =1

should hold for j = 1,...,n. As a linear differential equation it has a unique
solution over the entire interval Z for a given initial value. Finally a solution
f1, -, fn induces the solution fj := f; o7 with ¥ instead of v, since passing
from v to 4 means for each term composition with 7 and multiplication with

7'(s). O
Theorem 6.8. If M is paracompact, there is a connection on E.

Proof. Write M = J,.; U; with a locally finite cover (U;)er, such that E|y, is
trivial over all 4 € I. In particular there are connections D’ on E|y,. Choose
a partition of unity (¢;):cr, subordinate to the cover (U;);e;. Then define our
connection by the locally finite sum

Dxp:=> ;- Di(n),

iel
where, by definition, ¢; - D% (1) = 0 outside U;. O
Remark 6.9. If D, D are connections, then their difference is a tensor:

D — D € Hom(©(M),End(E)) = T'(T*(M) ® End(E)).
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Definition 6.10. The curvature of D is the map
Fp:0(M)* xT(E) — I'(E),

defined as
Fp(X,Y)p:= DxDyp — Dy Dxp — Dix yi-

Remark 6.11. 1. We may also regard the curvature as a map
Fp: ©(M)* — Ende ) (T(E)).
Exercise: Check C*°(M )-linearity w.r.t. pu!

2. Since Fp is C°°(M)-linear in X, Y as well, it is a tensor field, can be
regarded as follows

Fp e T((T**M) @ End(E)),
indeed Fp € T(A*(T*M) ® End(E)), i.e. Fp(Y,X)=—Fp(X,Y).
Theorem 6.12. The following statements are equivalent:
1. Fp=0.

2. FEvery point a € M has a neighbourhood U, over which there is a frame
of flat sections py, ..., i € D(E|y) .

Proof. 1) = 2)”: We have
Fo(X, V) =0,i=1,...n,

hence Fp = 0.

71) = 2)”: We may assume U = (—1,1)™ and do induction on m = dim M.
Given a flat section p € I'(E|(_1,1y»-1xf0y) We may extend it uniquely to a
section f1 € I'(E|y) by defining it for z = (2/, z,,) as

ﬂ(JI/,l‘n) = PTvx(N(x/70))a

where
Yo(t) = (2',tx,),0 <t < 1.

We have to show that



holds for the coordinate vector fields X; = %. Since [X;, X;] = 0, we know
that
Dx,Dx,j1 = Dx,Dx, .

By construction we have
Dx = 0.

Now we show that
Dx, (2’ x,),i=1,...,n—1,

is obtained from
Dx,u(2',0) =0

by parallel transport along ., hence it also vanishes. Indeed
D;Dx, v = 2, Dx,Dx,ftoy = z,Dx,Dx,fioy =0.

Thus, starting with a flat frame ji1, .., 1, € I'(E|(Z1,1)n-1x{0}) We obtain a flat
frame fi1, .., 1, € I'(E|v) O

Connections may also be understood in a geometric way: The correspond-
ing geometric objects are here called E-linear horizontal subbundles of TE.
In the literature there is also the term [linear Ehresmann connection. We
start with the definition of horizontal subbundles:

Definition 6.13. Let V := ker(T'r) C TE (with the bundle projection
7 : E — M) be the "vertical subbundle”.

1. A horizontal subbundle H < T'E is a subbundle with TE =V @ H.

2. A curve ¢ : I — F is called (H-)horizontal if ¢(t) C Hyy for all
tel

3. A section 0 : U — E is called (H-)horizontal, if Too(T,M) C Hyq)
for all a € U.

Example 6.14. A horizontal bundle H C TE induces a horizontal subbun-
dle H® C T(E @ E) as follows: For x,y € E, we have

Tl (E & E) = {(X,.Y,) € T,E & T,B: Tx(X,) = Tr(Y,)}
and define

HEB

0y = (Hy® Hy)) 0T, (E® E).
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Definition 6.15. A horizontal subbundle H C T'E is called E-linear if the
scalar multiplication puy, : £ — FE for all A € R and the addition « :
E® F — E satisfy

Toz(H@) C H,Tux(H) C H.
Remark 6.16. Fix a horizontal subbundle H C TE.

1. Any vector field X € ©(M) has a unique lift to a vector field X e

I'(H) C O(F).
2. Horizontal subbundles are in one-to-one coorrespondence with right
inverses
7 (TM)—TFE
of

TE 1% 7*(TM).

In particular, given a € M and = € E, we have a map
F,:T,M =27 (TM), — T,FE — E,.

Here the projection T, F — FE, depends on the choice of a trivialization
Ely = U x E, on a neighbourhood of U 3 a, it is obtained from the

[

projection U x E, — FE, and the natural isomorphism T, (FE,) = E,.

3. A horizontal subbundle H C TFE is E-linear if and only if £, —
Hom(T,M, E,),x — F,, is a linear map for all a € M.

4. For an E-linear horizontal subbundle H C T'E a parallel transport may
be defined using horizontal liftings of curves: Given v :7Z — M and
x € E,,a =~(0), there exists a unique H-horizontal lifting 7, : Z —
E of v with 4,(0) = z. Locally the lifting is the solution of a linear
differential equation of first order.

Proposition 6.17. There is a one-to-one correspondence between connec-
tions on a vector bundle E and E-linear horizontal subbundles H C TFE.

Proof. Let us start with H C T'E. We want to define Dx, o and pick a curve
v : T — M with start point @ € M and 4(0) = X,. Denote 4,..., 7,
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H-horizontal liftings of 7, such that 4;(0),...,9,(0) € E, is a basis. Then
F1(t), ..., n(t) € Eyq is a basis for all t € Z. Now, given o € I'(E) write

UO’V:Zfz";Yi
i=1

with functions f; : Z — R. Now define
Dx,0:=Y_ f:(0)-%(0).
i=1

On the other hand, given a connection D we are looking for the horizontal
subspace H, C T,E,x € E. Let a := w(xz). We define a linear injection
F,:T,M — T,E and take H, := F,(T,M). Let X, € T,M. Take a curve
v :Z — M with start point « € M and ¥(0) = X,. Then

A

Ay,
dt

FL(X.) == Z2(0).
OJ

Definition 6.18. 1. A metric vector bundle £ — M 1is a vector bundle

together with a fibre metric o € I'(T%?(E)), i.e. o, is an inner product
on E, for all a € M.

2. A metric connection on E is a connection D, such that Xo(u,v) =
o(Dxp,v)+o(u.Dxv). for u,v € N'(E), X € ©(M).

Definition 6.19. Let M be a metric bundle over the compact Riemannian
manifold M. The map

D Y M(D) ::/ 1Fp|I
M

from the set of all metric connections on E to the reals is called the Yang-
Mills functional of F.

An application of the Yang-Mills functional is discussed in the next sec-
tion.
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7 Four Manifolds: A Survey

For a four dimensional oriented simply connected compact Riemannian man-
ifold M its (real) intersection form is the bilinear symmetric form

H[?R(M> X H(%R(M) — R,

(o + dQY(M), B+ dQ' (M) — / anp.

Indeed, it may already be defined over the integers: Singular integral coho-
mology associates to a topological space M a Z-module

H*(M) = Hgp(M),

the inclusion being nothing but Z" < R", where n := by(X) is the second
Betti number of X. In technical terms:

H?,(M) = H*(M) ®z R,
There is as well an integral intersection form
oy H* (M) x H*(M) — 7Z,

a unimodular symmetric bilinear form, the restriction of the dR-bilinear form,
which thus in particular maps Z" x Z" C R" x R" to Z C R. Fixing an
isomorphism

we may write
oy(ua,v) =ul Av

with a symmetric matrix A € GL,(Z). In that case we write
oy =2 A.
In particular
Aoy 2 A= A =8"AS8 S € GL,(Z).

The classification of nondegenerate symmetric bilinear forms on R" is given
by I, ® —I, with p + ¢ = n. Here I, denotes the unit matrix of size r x r.
But over the integers there are more refined invariants:
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Definition 7.1. A symmetric bilinear form o : Z" x Z" — 7Z is called

1. even if o(u,u) € 2Z holds for all u € Z", or, equivalently, the diagonal
entries of A are even,

2. odd otherwise.

Example 7.2. 1. H := ( (1) (1) ) is even, while I; & —1; is not. Both
forms are indefinite and equivalent over the reals; both matrices satisfy

A=A

2. Es € GLg(Z), the Cartan matrix of the exceptional Lie algebra Fj, is
even and definite.

3. Any odd indefinite form is diagonalizable, i.e. of the form I,,® —I, with
p,q>0.

4. Any even indefinite form is of the type pEs®qH with unique p € Z,q >
0. The representation as sum of indecomposable forms is nevertheless
not unique: Any indecomposable even positive definite form A gives
rise to an indefinite form A & H.

5. For definite A the decomposition into a direct sum of indecomposable
forms is unique.

6. For given rank n there are only finitely many indecomposable forms.

Theorem 7.3 (Freedman). Every unimodular form o on Z™ is realized as
onm by some compact simply connected oriented topological four manifold M .

Indeed

1. If oy is even, then M is determined up to homeomorphy by the iso-
morphy type of oyr.

2. if oy 1S odd, then there are two non-homeomorphic possible M. For
one of them, M x S admits a differentiable structure, for the other one
it does not.

In particular the topological type of a differentiable manifold as above is
uniquely determined by its intersection form oy;.
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So there are a lot of non-smoothable four manifolds. Th.7.6 gives further
severe restriction for smoothability. For the sake of completeness we mention:

Theorem 7.4 (Quinn). Any non-compact four manifold admits a differen-
tiable structure.

Example 7.5. Here are the most basic building blocks for four manifolds:
1. S* realizes the zero form.
2. P?(C) realizes +1I; depending on the choice of orientation.
3. S? x S? realizes H.

4. We have
oM D ON = OngN

with the connected sum M#N of M and N. Take closed disks E4(M ) C
M, E4(N) C N with boundary spheres S(M),S(N). Now glue as fol-

lows:

M\ BY(M) > S(M) -L5 S(N) ¢ N\ BY(V),

where f : S(M) — S(N) is an orientation reversing homeomorphism.
That operation makes also sense in the category of differentiable man-
ifolds (with an an orientation reversing diffeomorphism).

5. The Kummer surface (a complex(!) surface, hence a four manifold)
K :={[z0,.., 23] € P3(C); 24 + ... + 253 = 0}
has o = 2F5 @ 3H.

Theorem 7.6 (Donaldson). For a compact oriented simply connected differ-
entiable four manifold M with definite intersection form oy we have

OM = :t]n
with n = by(M).

Theorem 7.7. There is a differentiable structure on R*, such that there is

no smooth embedding j : S® — R*, s.th. B lies in the bounded component of
R\ j(S?).
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Proof. Write
K = M #3(S* x §?)

Then M does not admit a differentiable structure according to Th.7.6. The
attempt to amputate 3(S? x §?) from K leads to an ”exotic four plane”. [J

Sketch of the proof of Th.7.6. Let o be definite. One considers a suitable
metric rank 4 vector bundle £ — M. We consider the space of metric
connections

MC(E) = D + T(T*(M) ® Ad(E)).

Indeed, if D, D are metric connections we have D — D € T'(T*(M) @ Ad(E)),
where Ad(F) C End(E) is the bundle of skew symmetric endomorphisms.

Definition 7.8. The group
Auwt(E) :={f: F — E;NYa€ M : f(E,) C E,, f|g, isometry}

is called the gauge group of E.

Remark 7.9. 1. Aut(F) acts on MC(E) by conjugation:

Fe(D)x(p) == f(Dx(f~" op)).

2. Ff*(D)<X7Y>:LL = fOFD(va) © (f_l O:U')
3. YM(f.(D)) = Y M(D).

4. The space SD(FE) C MC(E) of "self dual connections” (instantons) is
contained in the set of critical points of Y M, it is Aut(FE)-invariant.

One considers the "moduli space”
M := SD(FE)/Aut(E).
It is a topological space with the following properties:

1. There are points ay, ..., a,, with n := by(M), s.th. the puncture IMM* :=
M\ {ai,...,a,} is a five dimensional oriented manifold.
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2. There are mutually disjoint open neighbourhoods U; of the singular
points a; homeomorphic to a cone

U =2 C(Py(C)),i =1,...,bo(M)
over the complex projective plane Py(C). Here
C(X):=Xx[0,1)/ ~
with (z,0) ~ (y,0) for all z,y € X.

3. 9 has one end diffeomorphic to M x R, i.e. there is a compact set
K C 9, s.th.
M\ KM xR

Then we may produce from 9t a five dimensional manifold N with bound-
ary

ON = M U ] P:(C).

That implies

oM = UHnP?.(C) = ]n.

8 Connections on T'M

Denote

V : O(M) x O(M) — (M)

a connection on the tangent bundle of the differentiable manifold M.

Definition 8.1. The torsion tensor field Ty € T'(T"2M) of the connection
V is defined by

Ty (X,Y)=VxY - VyX — [X,|Y].
We call V torsion free if Ty = 0.
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Remark 8.2. If V has Christoffel symbols Ffj with respect to the local
coordinates x1, ..., T,,, we have

To =) (T}, —T%) O ® d; @ da;.
1,J
Hence V is torsion free if I'¥; = T'¥; holds for k = 1,...,m.
Theorem 8.3. Let M be a pseudo-Riemannian manifold. Then there is a

unique torsion free “metric” connection V on T M, called the Levi-Civita-
connection.

Example 8.4. 1. M = R™ with g = ), dz; ® dx; has Levi-Civita con-
nection with I'}; = 0 for all ¢, j, k. With other words

Vo0 =0,i,j=0,...m

resp.
Vx(Q_ fi0k) =Y X (fi)ok.
k=1 k=1
2. Let M = F71(0) —< W C R" with F : W — R"™. Denote P :
M x R™ — TM the orthogonal projection. Then VY = Po VY
is the Levi-Civita connection of M.

Proof. We show that on every coordinate patch U with coordinates x4, ..., x,
the Christoffel symbols are uniquely determined; hence the corresponding
connections can be glued to a global connection.

Denote g = Z” gijdr; ® dx; the metric tensor, X; := 0;. Consider a
triple in {1,..,m}3. We want

Xi9(Xi, X5) = 9(Dx, Xi, X;) + 9(Xi, Dx, X;)

and obtain three equations permuting for a given triple the indices. On the
other hand

Xig(Xj, X)) — Xpg(Xi, Xj) + X;9(Xi, Xi) = 29(Dx, X, Xp)

has to hold for a metric torsion free connection (use Vx,X; = Vyx X;).
Indeed the two systems of three equations turn out to be equivalent for a
torsion free connection V. Since

9(Dx,X;, X¢) = > T4 - gu,
J4
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we obtain with the matrix G = (gg) the following equality

(9(Dx, X, X1), ..., 9(Dx, X, X)) = (I}

ij7 .o

L) -G
respectively

(I

YR

,FZL) = (g(DXin;Xl); 7g<DX1XJ;Xm)) . Gil.

Combining that with our previous result we arrive at an explicit formula for
the Christoffel symbols. ]

Definition 8.5. A smooth curve v : Z — M in a pseudo-Riemannian
manifold M is called a geodesic, if its tangent field 4 : Z — T'M is (V-)flat:

Viy = 0.
Proposition 8.6. Given a € M and X, € T,(M) there is a unique geodesic
v :(—e,e) — M with v(0) = a,¥(0) = X,.

Proof. Assume that zq,...,z,, are local coordinates on U C M. If then
v = (71, -, Ym) is a smooth path, and Ffj € C*(M) the Christoffel symbols
w.r.t. the coordinate vector fields Xji, ..., X,,, the condition for v to be a
geodesic is the following non-linear system of differential equations

i?j
Now apply the fundamental theorem of the theory of ODE. [

Remark 8.7. 1. If v is the geodesic as in Prop.8.6, then ¢ +— ~(At) is the
geodesic starting at a with tangent vector AX,.

2. Taking A = 0 in the previous point we see that v = a is a geodesic.
Using that together with the above uniqueness result we obtain that a
geodesic vy either is constant or §(t) # 0 for all ¢.

3. For a geodesic v we have g(¥,7%) = c € R.

In the theory of ODEs one reduces the order of a system of differential
equations by introducing additional variables. Here is a geometric version of
that process applied to the second order system for geodesics.
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Definition 8.8. Given a smooth path + in M denote ¥ : Z — T'M and
4+ Z — TTM the first and second derivative of 7. The geodesic flow
Z € ©(TM) is the vector field such that

ZXa = ;}'/Xa (0)7
where v = vx, : (—&,6) — M is the geodesic with v(0) = a,%(0) = X,.
Remark 8.9. 1. If (z1, ..., %, Y1, ..., Ym) are local coordinates on 71 (U) C
T'M,, such that

(X1, ey Tony Y1y ooy Ym) > (T15 ooy Ty Zyi@?‘)
i=1

with x = (21, ..., 2,,), we find

& 0 0
Z = — y Dk | ——
; (yk axk (; yzy] z]) ayk> Y

in particular Zy, = 0 holds for 0, € T, M.

2. Denote 7w : TM — M the projection. For an integral curve o : Z —
TM of Z through X, the path v := 100 : Z — M is the geodesic
through a with tangent vector X,.

For the next definition remember that ID(Z) C TM x R consists of those
points (X,,t), such that Z has an integral curve defined on [0, ¢] starting at
X, see also Th.3.17.

Definition 8.10. Let
U:={X,eTM;(X,,1) eD(Z) Cc TM x R},
an open neighbourhood of the zero section in T'M. The map
exp: U — M, X, — vx,(1)

is called the exponential map for the pseudo-Riemannian manifold M. Here
vx, denotes the geodesic starting at a with tangent vector X,. Set

exp, :=exp |y, : Uy — M.

with U, :=T,M NU.
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Lemma 8.11. We have exp(tX,) = vx,(t) and
To(exp,) = idg,m
holds for the differential of the exponential
To(exp,) : To(U,) = To(T,M) = T,M — T,M

at 0 = 0, € T,M. In particular exp, induces a diffeomorphism from a
neighbourhood ot 0, € T, M onto a neighbourhood of a € M.

The next statement deals with the differential of the exponential outside
the origin:

Proposition 8.12. Let X, € U, C T,M and ~(t) = exp,(tX,) be the
geodesic with 4(0) = X,. Then the differential of the exponential map
exp, : U, — M at X,, the map

Tx, exp, : ToM = Tx, (T,M) — TyyM
1. induces an isometry RX, — R¥(1) and
2. preserves the orthogonal complements:
Tx, exp,(X;) € 7(1)%,
a statement also known as Gauf3” lemma.

Proof. The first part of the statement follows from the fact that ||¥(¢)|| =
|| Xa|| for all ¢, in particular ||4(1)|| = ||X,||. For the second part take a
vector Y, L X, with ||Y,|| = || X,||- Now choose £ > 0, such that the map

f:Ix(—g,e) — M,(t,w) — exp,(t(cos(w)X, + sin(w)Y,)),

is defined. Obviously all paths ¢ — f(t,w) are geodesics with tangent vectors
of length || X,||. We want to apply the below lemma with 7" := T'f(9;), W =
Tf(0y) € Of(M). So we have to compute g(W,T). We obtain

Witw) = T exp, (t(—sin(w) X, + cos(w)Y,)).

In particular
Wito) = T exp,(tYa))

and thus, according to Rem. 8.13,

9 Wit0), (1)) = 9(Wi0,0. 7(0)) = g(0,7(0)) = 0.
With ¢ = 1 we obtain T, exp,(Ya) L 4(1). O
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Lemma 8.13. Assume f :Z X (—¢,e) — M is a variation of the geodesic
~v(t) == f(t,0), i.e. all curves t — f(t,w) are geodesics. If in addition
they have tangent vectors of the same length, then for T := T f(0,), W =
Tf(0w) € Of(M) the inner product g(W,T) : I x (—e,e) — R does not
depend on t.

Proof. The assumption yields

0
=—g(T,T)=2 T,T
0 8U}g( ) ) g(vaw ) )7
whence
the connection V being torsion free and V3,7 = 0. [

Theorem 8.14. Let M be a pseudo-Riemannian manifold with metric tensor
g, Levi-Civita connection V and curvature R = Fyg. Then the following
statements are equivalent:

1. R=0

2. FEvery point a € M has a neighbourhood isomorphic to an open subset of
R™ endowed with the standard metric 27;1 gidx; ®dx;, where e; = £1.

Proof. According to Th. 6.12 there is a connected neighbourhood U > a
with flat vector fields Xy, ..., X, € O(U). We have

Xig(Xj, Xp) = 9(Vx,X;, X)) + 9(X;, Vi, X)) = 0,
hence ¢(X;, X;) = ¢;; € R. On the other hand
[Xi,Xj] = inXj - VXin = 0;

thus by Frobenius there are, after a shrinking of U at least, local coordinates
X1, ..., Ty on U with X; = %. With other words

glU = Z g,]dxz X da:j.

2]

Finally diagonalize. [l
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9 Length and distance

Definition 9.1. Given a Riemannian manifold M we define the metric d =
dM by

d(p,q) = inf{L(7);~ a broken smooth curve from p to g}.

Proposition 9.2. The manifold topology of M coincides with the topology
of the metric space (M, dyy).

Proof. Fix a point p € M and local coordinates
U-—=5By:={xeR™|x|| <2},p— 0.
Here ||..|| denotes the euclidean norm on R™. Consider

§:By x R™ — R,

9xy) =, /Zgij(x>yiyj

R:=sup{g(x,y);[[x]| < 1, [ly[]| = 1} < o0,

and

and
re=inf {g(x,y); [[x|| < 1,[ly[| =1} > 0.

We show for x € B; the estimates:
x| < d(0,x) < R-[[x]].
First of all looking at the path t — tx,0 <t < 1, we obtain

1 1
d(o,x)g/ g(tx,x)dth/ x[|dt = R||x]|
0 0

Second, take any path v : Z — M from 0 to x. Denote ¢ € Z the first point
with [|y(c)|| = [[x[|. Then

L(v) = L(7lz) = /OCQ(V(tM(t))dt > T/Ocllﬁ(t)Hdt >
-l /Ocﬁ(t)dtH = |y (O] = rllxl]

Since that holds for all v, we are done. [
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Theorem 9.3. Assume that

exp,

T.M D B.(0,) —UCM
is a diffeomorphism. Then
1. U = B.(a),
2. for b =exp,(X.), Xs € B:(0,), we have d(a,b) = || X,]||, and
3. any minimizing path from a to b has support {exp,(tX,),0 <t < 1}.

Proof. Let R :=||X,||. We show L(c) > R for any broken C'*°-path o from
a to b, furthermore that equality implies that o is a reparametrization of the
geodesic vx, [j0,1]-

1. We may assume o~ '(a) = {0} and then find a "subpath” gy = exp o,
where 7 : Z = [0,¢] — B.(0,) with 7(0) = 0,,||7(c)|] = R and
0<|l7(®)|| <R.

2. We show L(0p) > R. We may assume
7(t) = r(t)e(t)

with r(t) > 0 for ¢ > 0 and ¢ : T\ {0} — S(7,M), i.e. one starts
travelling at ¢ = 0 and never returns to the origin 0, € T,M. For
0y = exp, oT we have

0(t) = Tr) exp, (1) (t) + (1) (1),

where we use the isomorphism 75T, M = T, M. Since p(t) L ¢(t),
we find with Gau’ lemma (Prop. 8.12) the estimate

160()[1* = 11Tty expa (F(O)p(E)I* + | Trie) expa (r()p()[1* > 7(2)*.

Indeed, if $(t) # 0 somewhere we obtain a strict inequality over some
open subinterval Zy C Z, the map 717 exp, being an isomorphism, and

thus . . "
/||c‘70(t)||dt>/ |7’~(t)|dt2/ dr = R
0 0 0

3. We thus know that L(og) = R implies ¢ = 0.
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4. If 0¢ is broken, we may apply the above estimates to its smooth pieces.
In particular we see, that for L(og) = R no breaks can occur, since that
would mean that ¢ £ 0 on some of its smooth pieces.

5. If L(o) = R, it follows 0 = 0y and because of ¢ = 0, we have

(t) =r(t) R X,.

]

Corollary 9.4. Let v be a piecewise smooth path from a € M to b € M.
Then if L(7y) = d(a,b), it is a reparametrization of a geodesic, i.e. it is the
composition of a nondecreasing surjective function T — J and a geodesic
J — M.

Proof. First of all any subpath of ~ is minimizing as well. Pick a point
a € |y|. Using exp, : B:(0,) —> B.(a) as in Prop. 9.3 we see that v
is immediately before and after a a reparametrized geodesic. It remains
to exclude a break at a. For that we choose ¢ > 0, s.th. exp,. defines a
diffeomorphism B.(0.) — Bc(c) for all ¢ € |y|. Take ¢ € |y|,¢ # a, with

a € B:(c) and apply Prop. 9.3 to exp, : B:(0.) — B:(c) O

R

10 Completeness

Theorem 10.1 (Hopf/Rinow). For a connected Riemannian manifold M
denote U C TM the domain of definition for the exponential exp : U — M.
Then the following statements are equivalent:

1. There is a point a € M, such that T,M C U.
2. The exponential is defined everywhere, i.e. U =T M.
3. (M,d) is a complete metric space.

4. The closed d-balls
B.(a):={be M;d(a,b) <r} C M
are compact.
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Furthermore if M is complete, i.e. if one (or all) of the above conditions
are satisafied, then for any two points a,b € M there is a (not necessarily
unique) geodesic vy between a and b with L(v) = d(a.b).

Remark 10.2. Note that the exponential exp, : T,M — M for complete
M in general neither is injective nor distance preserving; we only know

d(a, exp,(Xa)) < || Xal]
with equality for sufficiently short tangent vectors X,,.

Proof. 74) = 3)”: Any d-Cauchy sequence is d-bounded, hence contained
in a compact subset, thus has points of accumulation, indeed, exactly one,
its limit.

73) = 2)”: Assume 7y : Z = [0,¢) — M is a geodesic. Then if ¢ < oo
the completeness of M implies that the limit lim;,.v(t) = b exists, and
K :=~(Z) U {b} is a compact set. Thus there is some ¢ > 0, s.th.

{X, €TM;a € K,||X,|| <e} CU.

It follows that v can be extended to the interval [0,d+¢) for all d < ¢, hence
to [0,c¢+ ¢). Thus, after all, v can be extended to [0, 00).

72) = 1)": Clear.

71) = 4)": If we show that

E,(a) = eXpa(Erma)) = Fr(a)

holds for all » > 0, we are done: In that case, any B,(a) is compact being
the continuous image of a compact set. Furthermore, if d(a,b) = r, we have
b = exp,(X,) with || X,|| = r and ¢ — exp,(tX,),0 <t < 1, is a geodesic of
minimal length joining a and b.

Now, for small 7 > 0 the equality E,(a) = B,(a) follows from Prop.9.3.
We show then, that the set of all 7 > 0 with E,(a) = B,(a) for ¢ < r is both
open and closed in R+y. In any case it is an interval.

1. Tt is closed: Assume that we have E,(a) = B,(a) for ¢ < r. Let
d(a,b) = r. We claim that there is a sequence b,, — b with d(a,b,) <r
for all n. If so, write b, = exp,(X,(n)). Since ||X,(n)|| < r for all n,
we find a convergent subsequence resp. may assume that X,(n) — X,.
Then we have b = exp,(X,). To find the sequence b, choose paths -,
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from a to b with L(v,) <7+ 2. Indeed, we take points b, € |v,| with
r>d(a.b,) >r— % and decompose 7, into a path «,, from a to b, and
a second one, (,, from b, to b. Then we have d(b,,b) < L(5,) — 0
because of

L(an) + L(ﬁn) = L(’Yn) -

and L(ay,) — r as well.

. It is open: Assume E,.(a) = B,(a). We show that E,,s(a) = B,,s(a)
for sufficiently small § > 0. Choose € > 0, such that for every point
¢ € Sy(a) (the set of all points in M at distance r from a, a closed subset
of the compact set B, (a), hence compact as well) the exponential map
exp, defines a diffeomorphism B.(0.) — B.(a). Let § < ¢ and take a
point b € B,,5(a). Choose ¢ € S,(a) with minimal d(b,c). We claim
d(a,b) = d(a,c) + d(c,b). We have to show L(v) > d(a,c) + d(ec, b) for
any path v from a to b. We may cut v into two subpaths at some point
in |7y|N'S,(a). The first has length at least r = d(a, c), the second one
at least d(c, b) because of the choice of c.

Now write ¢ = exp,(X,) and b = exp,(Y,). If our equality holds, then
the geodesics t — exp,(tX,),0 <t <1, and t — exp,(tY;),0 <t < 1,
form together a minimizing path, hence, according to Cor 9.4, there is
no break at ¢ and they form a geodesic from a to ¢ of length d(a,b).
Hence b = exp,((r + d(c, b)) X,) € E.15(a).

]

11 Jacobi fields

Remark 11.1. Let f : @ — M be a differentiable map. Here M is a
Riemannian manifold with Levi-Civita connection V, metric tensor g and

curvature R = Ry. If X|Y € 04(Q),W € ©(Q), then

Definition 11.2. Let v : Z — M be a geodesic. A vector field W : Z —
TM above 7 is called a Jacobi field, if

VEW = vf%w = R(y,W)?.
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Proposition 11.3. Let v : T — M be a geodesic. Given a point ty € T
and tangent vectors X,,Y, € T,M at a = ~y(ty), there is a unique Jacobi field
W T — TM along v with Wy, = Xo, Vi)W =Y.

Proof. Denote T, ..., T,, a basis of v-parallel vector fields along v. Then a
vector field W = """, o, T; with functions ¢; € C°°(Z) is a Jacobi field iff

VEW =3 T =) piR(3. T
i=1 =1

Now we may write
R(’% Tz‘)"Y = Z ajiTj
j=1

with functions a;; € C*°(Z), so our equation is equivalent to the equation

¢ = Ayp
¥1
with ¢ = ' and the matrix A = (a;;) € (C*Z)™™. Now the solution
Pm
theory for linear differential equations gives the result. O

Example 11.4. 1. A tangential vector field W = f¥,f € C*(Z), is a
Jacobi field, if and only if f = 0, i.e. f is an affine linear function:
f(t) =at +b.

2. On R™ parallel vector fields are constant vector fields and Jacobi fields
are of the form tV + W with constant vector fields V, W.

3. On S™ geodesics v are segments of intersections S"™ N H with a two
dimensional subspace H C R"*!  and the vector space of parallel vector
fields is

Ry ® H*,

where the elements in H+ are regarded as restrictions to S” of constant
vector fields on R"™!. Futhermore

R(X,Y)Z = g(Y,2)X — g(Z, X)Y,
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see problem 7.3 a) with L = idys». So the equation for a Jacobi field
W is
VAW = g(W,A)5 = g(3,5)W.

Now writing W = fi7 + >, f;Y; with a basis Y, ..., Y, of H+ we
obtain

fry + Zfzyz =hy—hy - Zfz‘yz‘,
i=2 =2
where we assume v to be parametrized by arc length. Thus
fi=0,fi=—fii=2,..n,
and f1(t) = A\t + pq, while f; = \;cos(t) + p;sin(t),i = 2, ..., n.

Proposition 11.5. Assume [ : T X (—e,e) — M is a variation of the
geodesic y(t) == f(t,0), i.e. all curvest — f(t,w) are geodesics. Then the
vector field

W::Tfoi:Ix(—g,g)—>TM
ow

restricts to a Jacobi field on T = T x {0}. Indeed, every Jacobi field W along

the geodesic 7y is obtained in that way.

Proof. We leave it to the reader to check that W and

T::Tfo%:Ix(—a,a)—>TM

satisfy
VoW =V aoT
ot Ow
as well as
VQVAX—VAVQX:R<T,W)X.
ot Ow Ow ot
Now

V@(V%W):VQ(VQT):VA(V%T)—}—R(T,W)T:R(T,W)T.

ot ot ow ow

For the proof of the second part we refer to the text book. ]
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Example 11.6. Given a tangent vector V, € T,M and a geodesic v := vy,
with start point a we can explicitly write down the Jacobi field W : 7 —
TM with Wy = 0, Vy)W = V,. Denote V € ©(T,M) the constant vector
field V =V, (remember Ty, (T,M) = T, M naturally.).Then we have

Wi = Tix, exp,(tVix,)-
Indeed, it is obtained from the following variation of geodesics
ft,w) == exp,(t(X, + wV,)).

Then we have
V%W = v%(tﬂXa eXpa(‘/;Xa))

= 7_’t)(u, eXPa(‘/;Xa) _'_ tv%(ﬂxa eXpCL(Vt-Xa))

Thus for ¢ = 0 we obtain (V%W)o = V,. Note that if V, L X,, we have
g(W,4) = 0 as a consequence of Gauf’ lemma.

Definition 11.7. A point b € M is called conjugate to a € M iff b =
exp,(X,) and exp, is not a diffeomorphism near X,, i.e.

Tx,exp, : ToM = Tx (T,M) — T,M
is not an isomorphism.

Proposition 11.8. The point b = exp,(X,) is conjugate to a € M iff there
is a Jacobi field W : T — T M above vx, : T —» M with Wy =0, W; = 0.

Proof. ”=": Denote Z € ©(T, M) a nonzero constant vector field such that
Zx, € ker(Tx, exp,) and take

Wy = Tix, exp,(tZix,)-

"<=": Given W : T — T'M we choose Z € ©(T, M) as the constant vector
field with Zy = VW # 0 (because of W # 0). Then the Jacobi fields
W and Y, = Tix, exp,(tZix,) satisfy Wy = 0 = Yo, Vi)W = V)Y, hence
coincide. In particular

Tx, exp,(Zx,) =Wy =0.

60



Corollary 11.9. 1. A point b € M 1is conjugate to the point a € M iff a
18 conjugate to b.

2. If v:Z =[0,1] — M is a geodesic from a € M tob € M and b is
not conjugate to a, then, given X, € T,M and X, € T,M, there is a
unique Jacobi field W along v with Wy = X, W1 = X,.

Theorem 11.10. First variation of arc length: Let
f 1= [07[)] X <_€76) — M7 (taw) = f<t7w>
be a variation of paths and

L(w) = L(’Vw)fyw(t) = f(tv w)'

Furthermore T := T f(0;), W := T f(0w). If o is parametrized by arc length,
we have

(0,0)

b
L,(O) = g(W7 T)}(ojo) - \/0 g(W’YO(t)v (VatT)’YO(t))dta

0,b)

0.0)’ if Yo 1S a geodesic.

In particular L'(0) = g(W, T)‘E
Proof. Indeed
* 9 *9(Vo,T,T)
L' (w :/ L (g T)dt = | Pty
(w) i 5, (VIT,T)) ) AT T

For w = 0 we have ¢(7,T) = 1 and

0
g(VawT, T) = g(VatW, T) = ag(W, T) - g(VVa VatT)‘
Finally integrate! O]

Corollary 11.11. Let p,q € M. For a smooth path o : [0,b] — M from p
to q parametrized by arc length the following statements are equivalent:

1If f 7T =10, x (—e,e) — M, (t,w) — f(t,w) is a variation of
curves with fized end points f(0,w) = p, f(b,w) = q and "base curve”
Yo = o, then L'(0) = 0.
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2. 0 1s a geodesic.

Proof. ”2) = 1)": For a variation f with fixed end points we have W ;) =
0 = Wo,0); hence Th.11.10 gives L'(0) = 0.
”1) = 2)”: First of all note that any vector field W : [0,b] — T'M above
o with boundary values 0 can be realized by some variation of o with fixed
end points: Take

f(t,w) = exp(wWy).

Now assume (Vdia)to = 0 with 0 < ty < b. Denote f : [0,b] — R3p a

smooth function vanishing at the boundary points with f(¢y) > 0 and take
W= fvdicr. Then we find L'(0) < 0. O

Theorem 11.12. Second variation of arc length: If in the situation of
Th.11.11 the basic path vy is a geodesic parametrized by arc length, we have

L'(0) = 9(Vo, W, T)| 1)
b 0
+ [ (oROVTINT) + (Vo TWVa W) — (o)) .
0

In particular, if g(W,T) is constant along the base curve vy, then

(6,0)

L”(O) = Q(VawW, T)‘((),O)

i / | (g(RW,T)W,T) + g(Vo,W, Vo, W)) dt.

Here the first term only depends on the restrictions W |ox(—ee)) 1esp. Wlpx(—c,e))-
Finally, if furthermore W is a Jacobi field

9 (b,0)
L”(O) = %Q(T, W)l(op)'

In particular

L"(0) =0,
if all geodesics v have the same start and end point

Proof. We compute

82 o 0 g(vawTa T)
% g(TvT) - % < g(T,T) )
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_ 9(V,T.T)? 1

VT, T " V9(T.T) o

We evaluate at w = 0 and obtain with Vy,T = V5, W the following

V. T.T)+9(Vo,T,Vp,T)) .

2

0
52 VI T) = =g(VaW.T)* + 9(Vo,VaW.T) + g(Va, W, Vo, W)

8 2
=g(RW, T)W + Vy,Va, W, T) + g(Vo,W, Vo, W) — (QQ(W, T)>

0 0 ?
= SoVa VT + g(ROVIIW.T) + g(Ta W, Val?) = ( Ga(W.T))

Now integration gives the first formula. If W is Jacobi, we have along the
bae curve

g(RW, TYW,T) = —g(W, RW,T)T) = g(R(T,W)T,W)

0
= g(V3,W,T) = EQ(V&W’ W) = g(Vo, W, Vo, W).

Finally use
0

]

Here is a funny application of the second variation formula:

Theorem 11.13. If v : [0,a] — M is a geodesic and there is a point
7(b),0 < b < a, in between, which is conjugate to the start point v(0), then
we have

L(v) > d(~(0),7(a)).

Remark 11.14. In the cylinder M := S! x R < R? x R = R? there are no

pairs of conjugate points. Nevertheless for the geodesic v(t) = (cos(t),sin(t), At),0 <
t < a, we have L(y) > d(v(0),7v(a)) for @ > 7. Indeed the above theorem
means that after a conjugate point there is a variation, such that the geodesic

is not of minimal length within that family of curves. On the other hand

such families do not exist before the first conjugate point.

For the proof of Th.11.13 we need
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Proposition 11.15. Let v : [0,b] — M be a geodesic. For a a continuous
piecewise smooth vector field W : [0,b] — T'M along v with Wy = 0 we set

F(W) = /b (g(R(W, T)W,T) +g(V 4 W, V%W)) dt.

Then, if Z : [0,b] — T'M denotes the Jacobi field with Zy = 0, Z, = W, and
no point y(t) is conjugate to the start point v(0), we have

FW) > F(Z)
with equality iff W = Z.
We start with a useful observation:

Remark 11.16. If X, Y are Jacobi vector fields along the geodesic v we have
g(V%X, Y) — g(X,V%Y) = const.

Indeed

Proof of Th.11.15. Choose a basis of T, )M and denote Vi, ..., V,,, € O(T} ) M)
the associated constant vector fields. Then W; := T exp(V;) is a frame of T M
along =y, since there is no point conjugate to v(0), and the vector fields Z;
with Z;; = tW;, are Jacobi fields. Write W = ", ¢;WW; with continuous
piecewise smooth functions g; : [0,b] — R, indeed g;(t) = tfi(t) because of
Wy = 0 with continuous piecewise smooth functions f; : [0,b] — R. Thus
Z=5"1:(b)Z;, while W =>"" fiZ;.
We write
V%W =A+B

with . "
A= ZfiZiaB = ZfiV%Zi-
i=1 i=1
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Note that the functions fl, o fm are bounded and piecewise continuous — we
need not care about their values at the breaks. We show that

b
FW) = F(2) + / o( Ay, A,
0
and obviously [7 g(Ay, A)dt = 0 <= f; = fu(b),i = 1,...m <= W = Z.

We have
g(VaW, V4 W) = g(A, A)+29(A,B) + g(B,B)

and
g(R(T,W)T, W) =" fig(R(T, Z;)T, W) Zfz (Vi Zi, W)
=1
- d
= Zfi (ag(vizi, W) — Q(V%Zi, VgtW)>
=1
d W
= 9(B.W) = fig(V1Z:, W) — g(B, A) — g(B, B).
=1
Hence

g(R(T,W)T, W) + g(ViW, VAW)
d
= (B, W)+ g(A,A) + g(B, A) — Zfz (VaZi, W).
On the other hand

9(AB) = fig(V 1 Zi, W) = Zfzfj (902, V4. 2;) = 9(V 4 2., 7)) = 0
i=1
according to Lagrange’s identity, since Z; o = 0 for ¢ = 1,...,m. Thus
b b
FOV) = [ (a(ROV.TIW.T) 4+ 6(V WV 19)) dt = g(Bu Wi+ | g(An A,
0 0

since W is continuous and Wy = 0. If we take W = Z we have W, = 2,
and A = 0, while the respective vector fields B coincide at b. This gives the
result. [

65



Proof of Th.11.13. 1t suffices to show the inequality for a > b close to b, since
for a > a we have

L(vloa) = L(Vo,a) + L(V]jwa) > d(0,a) + d(a,a) > d(0,a).

We choose a, such that v(b) is contained in the diffeomorphic image w.r.t.
exp,(, of a ball around 0, € T,M. Choose ¢ < b s.th. 7(c) is contained in
there as well.
If V' is a vector field over v|z with a subinterval Z C [0, a], we consider
the variation
I x (—€,e) — M, (t,w) — exp(wVyq))

and denote Ly (w) the length of the path T — M, ¢ — exp(wV, ). Denote
Z :[0,b] — M a nontrivial Jacobi field vanishing at the end points. We
have g(Z,T) = 0 along v, since Z; = T exp(tU) with a constant vector field
orthogonal to 4(0) (Gauf’ lemma), and thus have

0= L%(0) = L%,(0) + L7,(0),

where Zy = Z|(0.q, Z1 = Z|jcp)- Denote Y : [c,a] — M the Jacobi field along
~v with Y, = Z.,Y, = 0 and define the broken vector field X by X\[o,c] =
Zy, X|[c,a] =Y. According to Prop.11.15 we have

Ly (0) < Ly (0) = L7, (0),
where Wl = Z1, W/|pq = 0. Thus
0> L7,(0) + Ly (0) = L (0),
and it follows that Lx has a local maximum at 0. O

Theorem 11.17. Let v : T — M be a geodesic emanating from a € M.
Then the set of points on v conjugate to a s discrete.

Proof. Assume a = 7(0) and that b = (c),c € Z, is conjugate to a, write
b = exp,(X,). Take a basis of constant vector fields Y3, ....,Y,, € (T, M),
such that Y; x,,...,Y, x, span the kernel of T, exp,. Then consider the
Jacobi vector fields (Z;); = T, exp,(tY;) along 7. We claim that the tangent
vectors (V%Zl)c, o (V% Zr)es (Zri1)ey ooy (Zm)e form a basis of T, M. If so,

we obtain because of p
(VaZ)e = lim (23

t—)ct—b’
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that for t # ¢ close to ¢, the vectors %, ey %, (Zr41)ty ooeey (Zm)e are a

basis for T’ M; in particular (t) is not conjugate to a = y(0). First of all
(V%Zl)c, . (V%Zr)c are linearly independent: If
Al(V%ZQC + .+ )\T(V%Zr)c =0,

then X := > | \;Z; is be a Jacobi field with X, = 0 = (V%X)C, hence
X =0. Now

0=Xo= ; M(V 2 Z)o = ; na
implies A\; = ... = )\, = 0. Now the claim follows from the fact that
(V%Zi)C 17z,
forallteZ,i=1,..,r,j=r+1,...,m: According to Rem. 11.16 we
9(VaZ;), Z;) — 9(Z;,(V 4 Z;)) = d,
while t = 0 gives d = 0, whence
9((Va2), Z;) = 9(Zi, (V 1. Z;)).

The result now follows, since Z;, =0 for i =1,...,r.
]

12 Negative and Positive Curvature, Cover-
ings

Theorem 12.1. A complete simply connected Riemannian manifold M of

constant sectional curvature K and dimension m > 2 is isomorphic to either

1. (K < 0) m-diomensional hyperbolic space

1
H,(K):={xeR™ a2l + . +a2 —al ., = 70 Tm1 > 0}

endowed with the restriction of the Lorentz metric

Z dz; @ dv; — ATy @ dxy,1,

i=1
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2. (K =0) euclidean m-space R™, or

3. (K > 0) the m-dimensional sphere S™(K) < R™ of radius \/LE
Proof. Given a complete M with constant curvature we construct a local
isometry, indeed a covering, see Def.12.2,

M — M

with
M =H,,(K),R™, S™(1/VEK).

The fact that M is simply connected implies then that it is an isomorphism.
Indeed, given a point a € M we study the exponential map exp, : T,M —
M at some point a € M and find that the pair (7,M,exp’(g)) does only
depend on K. For K < 0 it is a Riemannian manifold isomorphic to M,
while for K > 0 we have to be slightly more careful. Indeed we obtain:

(exp,)"(9)|rx, (arr) = Galrx, © hic (|| Xal]) - Galx 1

with a function hx € C*°([0,00)) depending only on K. Here we denote g,
the metric tensor associated to the inner product g,. For K < 0 it has no
zeros; thus (exp,)*(g) is a Riemannian metric.

The zeros of hy for K > 0 are the integer multiples of 7/ VK. Tt follows,
that exp, maps the sphere of radius 7/ VK to one point b € M. Now
apply the same arguments to b € M instead of a € M. Since the two open
balls with radius 7/v/K in T,M and T,M (with the above metrics) can be
patched together to a sphere S™(K), we obtain a locally diffeomorphic map
S™(K) — M. It is onto since its image is both closed and open in the
connected manifold M.

Let us now establish the formula for the pull back of the metric g. First
of all we may write the curvature tensor as follows

R(X,Y)Z = K(g(Y, 2)X — g(Z, X)Y).

We study Jacobi fields Z along a geodesic v(t) = exp,(tX,), || Xa|| = 1, with
initial value Zy = 0. (The above formula for the pull back of the metric
is established for ¢X, instead of the unnormalized X, in the formula.) We
have then Z; = Tix, exp(tV;x,) with a constant vector field V € ©(T,M), in
particular V a Z = Vy. On the other hand look at the parallel vector field YV
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over v with Yy = Vh. We investigate whether fY with f € C*([0,00)) is a
Jacobi field, assuming Vy L X,. We find

Y =R(3, fY)y = Kf(g(Y,%)7 — 9(4,%)Y) = =K fY,

since Y; L 4(t) for all ¢, that being true for ¢ = 0. So fY is a Jacobi
field if f = —Kf. The unique solution of that differential equation with

£(0)=0,f(0) =1is

L. f(t) = ﬁsinh( |K|t) for K <0,

2. f(t)=tfor K =0 and

3. [(t) = Fzsin(VK?) for K > 0.

Finally, since they have the same value and the same (covariant) derivative
at t =0, we find Z = fY and

Tix, exp,(tVix,) = f(1)Y3,

whence
Tix, exp,(Vix,) = hx(t)Y;
with hg(t) = f(¢)t 1. O

Definition 12.2. A surjective continuous map © : X — Y between topo-
logical spaces X and Y 1is called a covering iff every point b € Y admits an
open neighbourhood V- C'Y', such that its inverse image s the disjoint union

~—'(V)=Ju

il

of open subsets U; C X with |y, : Ug — V' being a homeomorphism for
every 1 € 1.

Remark 12.3. Note that a locally homeomorphic map need not be a cov-
ering. For example removing a point in X leads to a non-covering X* —
Y. On the other hand: If X is compact, then a local homeomorphism is
even a covering. The fiber of b € Y is finite, say aq,...,a,. Take neigh-
bourhoods U; 3 a;, s.th. «|y, : Uy — V; is a homeomorphism. Finally
f(X\UiN...NU,) CY is compact, hence closed. Take V' as its complement.
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Example 12.4. 1. S — P™.

2.t f: M — N is a local isometry from a complete Riemannian
manifold M to a connected one, then 7 is a covering and N is com-
plete as well. Indeed, its image f(M) is both open and closed, hence
f(M) = N. Openness is trivial. If b € f(M) take ¢ > 0, s.th.

exp, : B-(0p) = B.(b) is a diffcomorphism. In particular there is
a geodesic from b to some point ¢ = f(a) € B.(b). Now take the
geodesic in M starting at a with tangent vector ”opposite” to that one
of the geodesic segment from b to ¢ and follow it up to t = d(b,c).
(M is complete!) The end point d then satisfies f(d) = b. Finally if
f7Y0) = {a;,i € I}, we have

7 '(B.v) = | Bo(a).

i€l

3. If M is complete and a € M, s.th. there are no points conjugate to a,
then exp, : T,M — M is a covering. Indeed, the pull back exp’(g) is
a Riemannian metric on T, M and T, M is complete w.r.t. it, the lines
through the origin being geodesics.

In order to complete the proof of Th.12.1 we show that a covering X —
Y with simply connected Y and connected X is a homeomorphism. For that
we need the following lifting theorem:

Theorem 12.5. Letyy € Y and xg € X, 29 € Z. Given a coveringm : X —»
Y with (x¢) = yo and a continuous map ¢ : Z — Y with ¢(29) = yo with
simply connected Z, there is a unique lifting ¢ : Z — X of v, i.e. we have
a commutative diagram:

X
/

1
Z =Y
s.th. o(z0) = .

Corollary 12.6. A covering m : X — Y with path connected X and simply
connected Y 1is a homeomorphism.

Proof. We apply Th.12.5 with Z = Y, ¢ = idy, and suitable points yy €
Y, xq € X. Then ¢ is a homeomorphism: Obviously it is injective and a local
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homeomorphism. Now take a point © € X, denote v : Z — X a path from
xo to . Both v and ¢ omo~y are liftings of mo~, hence coincide, in particular

z e pY). O
Proof of Th.12.5. 1. The case Z = [0, 1], zp = 0. Write [0,1] = ;U...U1,
with I, = [5=1, 5], For sufficiently big n € N every piece p(I;) C (1)

is contained in an open path connected set V = V), C Y, such that
7~ 1(V) is a disjoint union as in Def. 12.2. Now assume we have found
a lift

¢ : [0,k/n] — X,
of ¢k = 7ljp.)- Choose U C 7 (Viq1) with 7|y : U — Vjoq being
homeomorphic and ¢ (£) € U. Now define $y41 by

Sak-i-l’[o,k/n] = Sbk’ ) ¢k+1‘1k+1 = (ﬂ—’U)_1|1k+1‘

2. The case Z = [0,1], 29 = (0,0). Fix n € N. We consider the subdivi-
sion of the unit square

0,17 = J @y

1<i,j<n

with

Qij:: |:7/ 71:|><|:j 7l:|7 ]-SZ?]STL

n n

For sufficiently big n € N every ¢(Q;;) C Y is contained in an open
connected set V' =V;; C Y, such that 7—1(V) is a disjoint union as in
Def. 12.2. Now assume we have found a lift

Gij : Bij = U Qre — X,
(k,0)=<(4,4)

of ¢|p,;, where < is the lexicographic order on {1, ..., n}?. Since B;;NQ;;
is connected, we have ¢;;(B;; N Q;;) C U for one of the subsets U C
7 Y(V) with n|y : U — V being homeomorphic. Hence we may
extend @ij to Bij U Qij deﬁning it on Qij as (7T|U)71.

3. The general case: Given a point z € Z, take a path 3, : [0,1] — Z
with 3,(0) = 2o, 8.(1) = z. Denote 4, : [0,1] — X the lift of v, :=
po 3, with 4,(0) = o and take ¢(z) := 4.(1). It remains to show that
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different choices of 3, : [0.1] — Z give the same value ¢(z). This is
done below.
O

We start with the notion of homotopic paths:

Definition 12.7. Two paths o, : [0,1] — Y with same start and end
point are called homotopic: "o ~ (7, if there is a homotopy from « to (3,
i.e., a continuous map F :[0,1] x [0,1] — Y with the following properties:

F(0,5) = a(0) = (0), F(1,s) = a(1) = 5(1)
and Fy(t) := F(t,s) satisfies
Fy=a, Fi =0.

Remark 12.8. 1. To be homotopic is an equivalence relation on the set
of paths from a given point x € Y to another given point y € Y. We
denote [y] the equivalence class (homotopy class) of the path ~. If
7 :[0,1] — [0,1] is a continuous map with 7(0) = 0,7(1) = 1 (a
"reparametrization ), then y o7 ~ 7.

2. Given paths «, 5 : [0,1] — Y, such that $(0) = «(1), we define the
concatenation af : [0,1] — Y by

a(2s) , if
@i ={ 850

’

0
1
2

I/\ I/\
I/\ I/\
— =

3. If o ~ @&, ~ 3 and the end point of « is the starting point of 5, then
aff ~ dﬁ, in particular we can concatenate homotopy classes. Note
that in general a(f8v) # (af)y, but that a(B7y) ~ (af)y, i.e. on the
level of homotopy classes concatenation becomes associative.

4. We can not only compose paths, but there is also the notion of an
inverse path: Given « : [0,1] — Y, we denote o' : [0,1] — Y the
path a=!(s) := a(1 — s). Note that a 'a ~ «a(0) ~ aa™?.

5. A path connected top. space X is simply connected if there is a point
xg € X s.th. every closed curve with xy as starting and end point
is homotopic to the constant path = xy. Indeed, if that condition is
satisfied for one base point xy € X then it holds for all base points.
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6. In a simply connected topological space X any two paths with the same
start and the same end points are homotopic.

Example 12.9. 1. Obviously R™ is simply connected.

2. A path connected space X = U UV, which is the union of two open
simply connected subsets U,V C X with a path connected intersection
U NV, is simply connected. In particular the spheres S™,n > 2, are
simply connected. — To see this take a base point zp € U NV and
consider a closed path 7 : [0, 1] — X. Then for sufficiently big n € N
every interval I, := [®=1 £] satisfies v(I) C U or y(Ix) C V. Choose
a path oy, from zo to y(£) within U resp. V if y(£) € U resp. v(£) €
V. That is possible, since U NV is connected. Then v ~ S;...6, =
(..(B1B2)----Bn) With By := yia7 !, By == a1k, 2 < k < nand B, :=
Qp—17Yn- Since both U and V' are simply connected and G ([0,1]) C U
or Bx([0,1]) C V, we get By ~ x9,1 < k < n, and thus v ~ .

Definition 12.10. A covering 7 : X — X s called a universal covering of
the path connected space X, if X s simply connected.

Remark 12.11. LIfX — X, X — X are universal coverings of X,
then it follows from Th.12.5, that there is a homeomorphism X — X
making

A~ ~

X — X

pY v
X

a commutative diagram. But it is not unique, since it depends on the
choice of base points.

2. If X —» X is a universal covering and o € X , o € X base points
with 7(z¢) = zo, then
] = A1),
where 7 : [0,1] — X is a path with v(0) = 2 and 4 : [0, 1] — X its
lifting with 4(0) = Zo, defines a bijection between the set of homotopy
equivalence classes of paths in X starting at zy and the points & € X.
Here +, 8 are called homotopic if v(1) = B(1) and v ~ S.

As next we want to construct, given a topological space X, its universal
covering X — X. The second part of the last remark suggests how to do
that.
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Call a topological space locally simply connected if every point has an
open simply connected neighbourhood.

Theorem 12.12. Every path connected and locally simply connected topo-
logical space X admits a covering m : X — X with a simply connected X,
called the universal covering of X.

Proof. We choose a base point 2o € X and define X to be the set of all
homotopy classes of paths with the base point xy as start point. The map
7: X — X then is defined as m([y]) := 7(1). The topology on X is defined
as follows: Given a point & := [y] with z := m(Z) and a simply connected
neighbourhood U of z, we set

U(z) :={[y0];0:[0,1] — U,6(0) =z}, =[]

Then the sets U (&) with an open neighbourhood U C X of x € X constitute
a basis for the topology of X. We claim, that for simply connected U we
have U(a) NU(b) = 0 for a,b € 7 1(x),a # b. Let a = [a],b = [B]. Assume
that [ad] = [d'] with paths §,6" : [0,1] — U. Take a path v : [0.1] — U
from §(1) = §'(1) to a(1l) = (1). Now, U being simply connected, we have
0y ~ 0 ~ ¢~ and thus

ad ~ B8 = ady ~ Béy = a ~ 3,

a contradiction. It follows easily that X is Hausdorff and 7 : X — X a
covering.

Finally we show that X is simply connected: Let é& : [0,1] — X be
a closed path with start end point &y := [x¢] (where zq is regarded as the
constant path). Consider the path o := 7 o &. We have &(1) = [«], since &
is a lift of a with starting point Z as well as the path ¢ — [o;] with the path
ap @ [0,1] — X, s a(ts). So because of the unique lifting property we
obtain &(1) = [ay] = [a]. But & was a closed path, i.e. [o] = &(1) = &(0) =
Xo, i.e. a ~ xg. By Proposition 7?7 we obtain & ~ 2. O

Remark 12.13. Fundamental Group: The construction of the universal
covering m : X — X can be used to associate to any connected and locally
simply connected space a group, namely the set

Deck(X) :={f: X — X homeomorphism; 7o f = 7}
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of all mfiber preserving homeomorphisms of X ("deck transformations”)
with the composition of maps as group law. From our above reasoning
it follows that, given a base point z; € X, the restriction Deck(X) —
S(m~H(xo)), f + flr1(m) 18 injective. On the other hand, given points
a,b € T 1(xg) there is exactly one f € Deck(X) with f(a) = b. If one wants
to avoid the universal covering 7 : X —» X in the definition of Deck(X),
one can construct an isomorphic group as follows: Take again a base point
xo € X and define the fundamental group of X as the set

(X, z0) == {[7]; v path in X,5(0) = zy = v(1)}

of homotopy classes of closed paths in X with start and end point x, the
group law being the concatenation of paths representing homotopy classes:

[a][8] := [aB].
Then there is a natural isomorphism
1 (X, x9) = Deck(X)

as follows: Given [y] take any lifting 4 of 7, then the unique f € Deck(X)
with f(9(1)) = 4(0) is the image of [v].
Furthermore note that a path o from zy € X to z; € X induces an
isomorphism
m(X.m) — m (X, 11), [7] = [a 14l

Theorem 12.14. Denote M a connected complete Riemannian manifold.
Then we have:

1. If M has everywhere nonpositive sectional curvature then there are no
pairs of conjugate points in M. In particular for any a € M the expo-
nential map exp, : T,M — M is the universal covering of M.

2. If M has sectional curvature > K > 0, then

T
d(a,b) < —

V= UR
holds for a,b € M. In particular M s compact and the fundamental
group of M is finite, the universal covering of M being of the same

type.
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Example 12.15. If M has finite fundamental group it is the quotient
M = M/T

of a simply connected compact manifold by the free action of a finite group
I': Take M as the universal covering of M and T" its deck transformation
group. E.g. take M = $**' ¢ C" and I = C,, the group of ¢-th roots of
unity, (lens spaces).

We mention without proof the theorem of Synge:

Theorem 12.16. If M is a compact manifold with positive sectional curva-
ture, then (M) is trivial or Zy, if m = dim M is even, and M is orientable
if m is odd.

Remark 12.17. 1. There is no positive curvature metric on P? x P2
2. Conjecture (Hopf): There is no such metric on S* x S?.

Proof. 1.) We consider a geodesic 7 : R — M parametrized by arc length,
write a := 4(0). Denote X € ©(M) a constant vector field with X, L
4(0), ]| Xo|| = 1, furthermore Z the vector field along v with

Zy = T30y exp(Xes(0))-

For the function
F(t) = [[tZ]]| —t.

we have F'(0) = 0 as well as F'(0) = 0 and show F”(t) > 0. It follows that F
is a convex function and F'(t) > 1 for t > 0, whence ||Z;|| > 1 for t > 0. Since
that holds for all vector fields Z with the above properties it follows that the
exponential is a local diffeomorphism along v, the kernel of Ti; () exp being
orthogonal to 4(0) according to Gaufy’ lemma. Now Y = tZ is a Jacobi field

and
2

d
F'(t) = 25V 9(Y.Y).
On the other hand we have Y; # 0 for small ¢ > 0 and thus

g(V4Y,Y)

d
%WIW
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and thus

d? 1
VI Y) = o (g(V}tY, Y)+g(VaY,VaY) —

g(VaY,Y)?
Il

Y]

EE (Q(V%Y,Y) AV +9(VaY, VaY) - Y[ = g(VaY)Y) >
1 . .
= VE (9(R(%Y)%Y) YR+ V2 Y|P Y] - g(V 4, Y)2>

> —K(RY, +Ri(1)) - [[¥i]| > 0

with Cauchy-Schwartz and the fact that the curvature tensor is skew symmet-
ric. It follows that the function ¢ — ||Y;|| is convex with nonzero derivative
at ¢ = 0, hence increasing and without zeros ¢ > 0; in particular the above
argument applies to all ¢ > 0.

2.) We show that on every geodesic v : [0, \/LE] — M parametrized by
arc length there is a point conjugate to the starting point (0). Assume the
contrary. Denote E parallel unit vector field orthogonal to y. We consider

the vector field W along v given by
W, = sin (\/? : t) E,.

It vanishes at the end points of [0, \/LF] and Z = 0 is the unique Jacobi vector

field which agrees with W at the boundary points. We thus have
Ly (0) > L7(0) = 0.
On the other hand with b = = and K(t) := K(R}(t) + RE;) we have
b
Lp(0) = [ (o(ROVAWA) + 19 4 WIR)
= /Ob (—K(t) sin? (VK - t) + K cos®(VK - t)) dt

< K/Ob <— sin?(VK - t) 4 cos? (VK - t)) dt = 0.
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Example 12.18. 1. For m < 3 the only simply connected differentiable
manifolds underlying a Riemannian manifold of curvature > K > 0 are
the spheres S™.

2. The metric product of Riemanian manifolds M, N of curvature > K >
0 has sectional curvature > 0, not more, since the "sections” U C
Tap) (M x N) = T,M & TN spanned by vectors (X,,0), (0,Y;) have

curvature 0.

3. For m = 2n > 4 there are Riemannian manifolds of curvature > K > 0,
which are not spheres, e.g. the complex projective spaces P*(C) to be
discussed in the next section.

13 Complex projective space

In this section we study complex projective space
P*(C) :={L=C-zzec C"™"\{0}},

the set of all complex lines (one dimensional subspaces) in C"*!| from the
point of view of differential geometry. Write

[z] := [20, ..., 2n) := Caz.

We consider C"*! with the standard hermitian metric and identify the tan-
gent space at a point z € C"! with C*™!. The first thing we note is that
the tangent map of the quotient map

7 : C"\ {0} — P"(C),z ~ [7]

induces an isomorphism
z- — T,;P"(C).

Hence T1,P"(C) is even in a natural way a complex vector space and TP"(C)
a complex vector bundle. Furthermore assuming ||z|| = 1 the tangent space
inherits a hermitian metric giving rise to a hermitian metric

g +w

on TPP™"(C), the so called Fubini-Study metric; its real part g is a Riemannian
metric, while w € Q?(P"(C)).
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Geodesics: A non-constant geodesic on P!(C) is given by
{[z];2" Az = 0}

with a nondegenerate nondefinite selfadjoint matrix A € C?2. Under the
stereographic projection S? — P!(C) they correspond to great circles, while
when interpreting the projective line as extended complex plane CU{occ} they
are the generalized circles (circles or lines together with the point at infinity)
meeting the unit circle in (at least) two antipodal points. If P(U) C P™(C)
with a two dimensional subspace U, then the geodesics in P(U) are obtained
from P(U) = P!(C) induced by any isometric isomorphism U = C?. Every
geodesic is obtained in that way.

Curvature: Projective spaces are homogeneous, but don’t have constant
sectional curvature - for n > 1 they are not spheres. We have

K(RX, +RY,) =1+ 3g(iX,, Ya)?,

where X,,Y, are orthonormal. As a consequence of the Cauchy-Schwartz
inequality we find 1 < K(U) < 4, where K(U) = 4 means that U C T,P"(C)
is a complex subspace.

Remark 13.1. Complex projective spaces are among the most basic exam-
ples of complex manifolds; we conclude our notes with some remarks about
that subject: Replace R with C and "differentiable” with ”holomorphic” in
order to obtain the definition of a complex (analytic) manifold M. In partic-
ular complex manifolds are smooth manifolds, hence one should understand
how real and complex notions are related. First of all we need germs of com-
plex valued smooth functions: Every smooth function f : U — C, where U
is an open neighbourhood of a given point a € M, gives rise to its germ at a:
We have f, = g,, if the representing functions coincide in some sufficiently
small neighbourhood W 3 a. Germs can be added and multiplied, they form
a C-algebra &, with O,, consisting of the germs of holomorphic functions, as
subalgebra. Now a real tangent vector may be regarded as a derivation

X,: & —C
mapping real valued functions to R, s.th. we obtain an isomorphism
ToM — Dery(&,, C) — Der,(O,,C)
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of real vector spaces, composed of an injection and a surjection, the latter
being the restriction of a derivation to O, C &,. Thus the left hand side,
T, M, inherits the structure of a complex vector space from the right hand
Der,(O,,C). We remark that the kernel of the right arrow is generated by

the operators
0 1/ 0 w 0 ]
0z, 2\0x, Oy,)’ Y

and thus we see that 7 € C acts on T, M as follows:

.0 g .0 0
1 = , 1 = —

ox, 0Oy, Oy, oz,

Definition 13.2. A hermitian metric g 4 iw on the tangent bundle T'M of a
complex manifold is called a Kéahler metric if w € Q%(M) is closed: dw = 0.
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