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Introduction

Most of the work in model theory has, so far, considered in�nite structures and the methods
and results that have been worked out in this context can usually not be transferred to the
study of �nite structures in an obvious way. In addition, some basic results from in�nite
model theory fail within the context of �nite models. The theory about �nite structures has
largely developed in connection with theoretical computer science, in particular complexity
theory [12]. The question arises whether these two "worlds", the study of in�nite structures
and the study of �nite structures, can be weaved together in some way and enrich each
other. In particular, one may ask if it is possible to adapt notions and methods which have
played an important role in in�nite model theory to the context of �nite structures, and in
this way get a better understanding of fairly large and su�ciently well-behaved classes of
�nite structures.

If we are to study structures in relation to some formal language, then the question arises
which one to choose. Most of in�nite model theory considers �rst-order logic. Within �nite
model theory various restrictions and extensions of �rst-order logic have been considered,
since �rst-order logic may be considered as being both too strong and too weak (in dif-
ferent senses) for the study of �nite structures. A reasonable candidate for studying �nite
structures, with a viewpoint from in�nite model theory, is the language Ln, �rst order
logic L restricted to formulas in which at most n variables occur, whether free or bound.
Theories consisting of only Ln-formulas, even those which are "complete" within Ln, may
have both �nite and in�nite models, or only �nite models, or only in�nite models. The
language Ln has the nice properties of being closed under subformulas, quanti�cation and
negation. Also, there is a pebble game which distinguishes whether two structures satisfy
exactly the same Ln-sentences or not ([23] and implicitly in [29]).

The notion of a type plays an important role in in�nite model theory. In �nite model
theory the notion of an Ln-type, i.e. a type restricted to Ln-formulas, has been used; the
number of di�erent Ln-types of an Ln-theory can be seen as a measure of the complexity
of the theory. Dawar observed [5] that for every Ln-theory T with �nite models there is an
upper bound, depending only on the number of Ln-types (in n free variables) of T , of the
size of the smallest model of T . Later Grohe proved that this upper bound is not recursive
[17]. The language Ln has also been considered in the context of (only) in�nite models in
the work of Hedman [19] where complete theories (within full �rst-order logic) which are
axiomatizable by Ln-sentences are studied. For a general overview about interactions (and
di�erences) between �nite and in�nite model theory, see [30]. For a survey about the use
of �nite variable logics in �nite model theory, see [16].

Within in�nite model theory the area of stability theory has had great in�uence. It
studies a quite large class of "managable" (in�nite) structures and their complete �rst-
order theories. Work in the direction of developing the basics of a similar theory for �nite
structures was �rst carried out by Hyttinen [21]. Then, from a di�erent viewpoint, the
author developed some results, inspired by stability theory, aiming at understanding when
an Ln-theory with in�nite models also must have arbitrarily large �nite models [9, 8].
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Further developments in this direction where made by Baldwin and Lessmann [2] and by
Hyttinen [22]. For an overview, with a historical perspective, of �nite and in�nite model
theory and recent interactions between them, see [1].

Another approach to undestanding certain �nite and countably in�nite structures culmi-
nates with the work about smoothly approximable structures in [3]. This line of research
started with Lachlan's work on stable �nitely homogeneous structures (surveyed in [27])
and Zilber's work on totaly categorical structures [33]. It continued with joint work by
Cherlin, Harrington and Lachlan on ω-categorical ω-stable structures [4] and then with the
work of Kantor, Liebeck and Macpherson [24], to reach its current state in [3]. Smoothly
approximable structures are in�nite but can be approximated by "nicely embedded" �nite
structures which, intuitively speaking, are quite "homogeneous" or "regular". The theory
of smoothly approximable structures can also be seen as a study of �nite structures with
few types.

More recently, a direction of research initiated by Macpherson and Steinhorn [28] and
continued by Elwes [13, 14] studies classes of �nite structures in which de�nable sets have a
uniform asymptotic behaviour, as the cardinalities of the universes increase. The complete
theory T of a non-principal ultraproduct of such a class of �nite structures (called an
`asymptotic class') is simple with �nite SU-rank and there is a notion of measure on the
de�nable subsets of models of T , but T is not necessarily smoothly approximable. See [15]
for a survey of the topic.

In this article an overview is given of a line of research which considers Ln-theories with
in�nite models and tries to isolate conditions for when these have arbitrarily large �nite
models and when least upper bounds for the smallest model is recursive in terms of the
number of Ln-types in n free variables. Although some results are stated within a more
general context, considering some arbitrary fraction of �rst-order logic which is closed under
subformulas, and some results could be stated in a somewhat more general way, we mostly
stick to the language Ln for the sake of simplicity. Moreover, when working with Ln we
usually consider an Ln-theory T such that T is �nitely axiomatizable in Ln and complete
(within Ln) in the sense that for every ϕ ∈ Ln, T |= ϕ or T |= ¬ϕ. The motivation is that
we like to �nd conditions for T which imply that T has a �nite model, and facts 1.6 and 1.7
below imply the following: if T is an Ln-theory and no complete Ln-theory T ′ ⊇ T exists
such that T ′ is �nitely axiomatizable, then T has no �nite model.

The basic idea is to isolate conditions for a �nitely axiomatizable complete Ln-theory T
which guarantee the existence of a model M of T which is smoothly approximable, since
such an M has the property that every sentence which is true in M is true in arbitrarily large
�nite substructures of M . Moreover, in this situation the theory of smoothly approximable
structures implies that a recursive upper bound, in terms of the number of Ln-types in n
free variables, of the smallest model exists (in contrary to the general situation, as proved
in [17]).

Sections 1 � 7 of this article try to unify, as much as possible, the approaches of [9], [8] and
[2]. Hyttinen's paper [22] on canonical �nite diagrams and quanti�er elimination is highly
recommended since it develops, in a more general context, part of the theory and several of
the results. Here I have chosen to expose the subject via a more "down-to-earth"-approach
focused on Ln-theories, although some generality is lost.

Sections 5 and 6 discusses in�nite structures which have the �nite model property but
which are not necessarily smoothly approximable (the random bipartite graph is an example
[24]). This may be useful for understanding other classes of Ln-theories than those treated
in earlier sections. The last section contains a list of questions and problems.
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1. Preliminaries

1.1. Finite variable logic. In this section we introduce the language Ln, the subset of L
containing all formulas in which at most n distinct variables occur.

De�nition 1.1. (i) Let V = {v1, v2, v3, . . .} be the set of variables which are used in
formulas of L.
(ii) By x, y, z, x̄, ȳ, z̄, sometimes with indices, we denote variables and �nite sequences of
variables. Similarly, a, b, c, ā, b̄, c̄ denote elements and �nite sequences of elements from
structures. When writing ā ∈ A we mean that every element of the sequence ā belongs to
A. If, in addition, we like to stress that ā has length n, then we may write ā ∈ An.
(iii) L always denotes the set of all �rst-order formulas over some vocabulary (or signature).
We always assume that L is countable.
(iv) If a formula in L is denoted by ϕ(x̄) then we mean that every free variable in that
formula belongs to the sequence x̄.
(v) For any n < ω, Ln denotes the set of all formulas ϕ(x̄) ∈ L such that at most n distinct
variables occur in ϕ(x̄) (whether bound or free). We allow x̄ to contain "dummy variables"
(not occuring in the formula denoted by ϕ(x̄)). For example, the formula v1 = v2∨ v2 = v3

may be denoted by ϕ(v1, v2, v3, v4) and consequently ϕ(v1, v2, v3, v4) ∈ L3, because only
three variables actually occur in the formula ϕ(v1, v2, v3, v4).
(vi) An Ln-theory is a set of sentences from Ln.
(vii) An Ln-theory T is called a complete Ln-theory if for every sentence ϕ ∈ Ln, T |= ϕ or
T |= ¬ϕ. Of course, a `complete Ln-theory' need not be complete with respect to L.
(viii) If M is an L-structure let

ThLn(M) =
{
ϕ ∈ Ln : ϕ is a sentence and M |= ϕ

}
.

So ThLn(M) is always a complete Ln-theory.

Remark 1.2. We have not �xed n special variables to be used in formulas of Ln, but we
only say that at most n distinct variables may occur in a formula of Ln. For instance, a
formula of Ln may contain variables among v1, . . . , vn or variables among vn+1, . . . , v2n.
For example, both v1 = v2 ∨ v2 = v3 and v2 = v3 ∨ v3 = v4 belong to L3.

We are interested in �nding conditions under which an Ln-theory with in�nite models also
has (arbitrarily large) �nite models. So we �rst give some easy examples showing that
Ln-theories may have only in�nite models, only �nite models or both in�nite and �nite
models

Examples 1.3. (a) Let M = (N, S), where S is the successor function (or relation). Then
ThL3(M) has no �nite model.
(b) If M = (Q, <) then ThL3(M) has no �nite model.
(c) Let M be a �nite graph such that v1, . . . , vm lists all vertices of M and there is an edge
between vi and vj if and only if j = i + 1 or i = j + 1. Then every model of ThL3(M) is
isomorphic to M .
(d) Let M be an in�nite tree such that for some m < ω, no path in M has length m. Then
ThLn(M) has arbitrarily large �nite models, for any n.
(e) Let K be a �nite �eld. Let T be a set of sentences which expresses the axioms of a
K-vector space. With scalar multiplication and vector addition represented by function
symbols we may assume that T is an L3-theory. With scalar multiplication and vector
addition represented by relation symbols we may assume that T is an L7-theory. T has
arbitrarily large �nite models and hence in�nite models.

1.2. Types. The notion of a `type' plays an important role in model theory. Here we
will in particular be interested in certain types which are restricted to formulas of some



4 VERA KOPONEN

sublanguage of the �rst-order language L. We �rst give some de�nitions with associated
notation and then state a few well-known results concerning types.

De�nition 1.4. (i) Let Φ ⊆ L, let M be an L-structure and let A ⊆ M .
(ii) De�ne

ThΦ(M,A) =
{
ϕ(ā) : ϕ(x̄) ∈ Φ, ā ∈ A, M |= ϕ(ā)

}
,

and let ThΦ(M) = ThΦ(M, ∅). So ThΦ(M) is the set of sentences in Φ that are true in M .
(iii) For a sequence of variables x̄ we de�ne

Φx̄(A) =
{
ϕ(x̄, ā) : ϕ(x̄, ȳ) ∈ Φ, ā ∈ A

}
,

and Φx̄ = Φx̄(∅).
(iv) A Φ-type over A (with respect to ThΦ(M,A)) in the free variables x̄ is a set p(x̄) ⊆
Φx̄(A) such that p(x̄) ∪ ThΦ(M,A) is consistent.
(v) A Φ-type p(x̄) over A is called a complete Φ-type over A if whenever ϕ(x̄, ā) ∈ Φx̄(A)
then ϕ(x̄, ā) ∈ p(x̄) or ¬ϕ(x̄, ā) ∈ p(x̄).
(vi) SΦ

m(A,M) is the set of all complete Φ-types over A (with respect to ThΦ(M,A)) in
the free variables v1, . . . , vm. If Φ = L then we may omit it.
(vii) We write Sn

m(A,M) instead of SLn

m (A,M).
(viii) For a complete Ln-theory T we de�ne Sn

m(T ) = Sn
m(∅,M), where M is any model of

T (so ThLn(M, ∅) = T ). By Lemma 1.2 in [9] this de�nition does not depend on the choice
of the model M of T .

Below are a few facts about Ln-types.

Fact 1.5. For any complete Ln-theory T , Sn
n(T ) is �nite if and only if there are only �nitely

many Ln-formulas in the free variables v1, . . . , vn up to equivalence modulo T .

The previous fact is a consequence of the �Stone duality theorem for boolean algebras� [20],
but it can also be derived in a straightforward way from the de�nitions.

The next fact can be extracted from the proof of a similar result in [6], and it is also
mentioned in [29] (in Exercise 4).

Fact 1.6. (Dawar, Lindell, Weinstein; Poizat) Suppose that the vocabulary of L is �nite
and contains no function symbols. If T is a complete Ln-theory and Sn

n(T ) is �nite then
there is ϕ ∈ Ln that axiomatizes T (i.e. ϕ |= T and T |= ϕ). Moreover, we can choose ϕ
so that its quanti�er rank is at most |Sn

n(T )|+ n.

The next fact is easy to prove, but a proof can also be found in [9].

Fact 1.7. (i) If a complete Ln-theory T has a �nite model M then |Sn
n(T )| ≤ |M |n.

(ii) If T is a complete Ln-theory and Sn
n(T ) is in�nite then T has no �nite models.

Using Fact 1.7, when looking for �nite models of a complete Ln-theory T we can rule out
the case when Sn

n(T ) is in�nite.

1.3. Closure maps.

De�nition 1.8. Let M be an L-structure.
(i) We call a function cl : P(M) → P(M) a closure map (or closure function) if whenever
A ⊆ B ⊆ M then A ⊆ cl(A), cl(cl(A)) = cl(A) and cl(A) ⊆ cl(B).
(ii) If cl(A) = A then we say that A is closed. A sequence is closed if the set of elements
occuring in the sequence is closed.

A few examples of closure maps are given below:

Examples 1.9. (a) If cl(A) = A for every A ⊆ M then cl is a closure map; we say that
such a closure map is trivial.
(b) If, for every A ⊆ M , cl(A) is the substructure of M which is generated by A, then cl is
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a closure map.
(c) If, for every A ⊆ M , cl(A) is the algebraic closure of A, in the model theoretic sense,
then cl is a closure map. See [20] for a de�nition of `algebraic closure' in the model theoretic
sense.
(d) If M is an algebraically closed �eld and cl(A) is the algebraic closure of A, in the sense
of �eld theory, then cl is a closure map.
(e) If M is a vector space and cl(A) is the linear span of A, then cl is a closure map.

2. Amalgamation classes

In order to prove that arbitrarily large �nite models of a �nitely axiomatizable theory
T exist we prove that a particularly nice model M of T exists. This M will have the
property that every sentence which is true in M is true in a �nite substructure of it. Such
an M exists if there is an "amalgamation class" of models of T and all models in the
amalgamation class are "stable". The de�nition of an amalgamation class is given in this
section (De�nition 2.5) and the notion of `stability' is treated in Section 3.

De�nition 2.1. Let Φ ⊆ L and let M and N be L-structures.
(i) If ai ∈ M, bi ∈ N , for i < λ, then we write

(M, (ai : i < λ)) ≡Φ (N, (bi : i < λ))

if for every m < ω, every ϕ(x1, . . . xm) ∈ Φ and every {i1, . . . , im} ⊆ λ,

M |= ϕ(ai1 , . . . , aim) if and only if N |= ϕ(bi1 , . . . , bim).

(ii) A function f : A → N , where A ⊆ M , is called a Φ-elementary embedding if for every
ϕ(x̄) ∈ Φ and ā ∈ A with |ā| = |x̄|, we have

M |= ϕ(ā) if and only if N |= ϕ(f(ā)).

(iii) If M is a substructure of N and for every ϕ(x̄) ∈ Φ and every ā ∈ M with |ā| = |x̄|,
M |= ϕ(ā) if and only if N |= ϕ(ā), then we say that M is a Φ-elementary substructure
of N and that N is a Φ-elementary extension of M , denoted M 4Φ N . As usual we may
write 4 instead of 4L.

In the next section we will use the following result which is proved in the same way as the
well-known Tarski-Vaught test [20]; for the proof we only need to observe that Ln is closed
under subformulas.

Fact 2.2. (Tarski-Vaught test for Ln) Suppose that n is greater than the arity of every
function symbol in the vocabulary of L and let M be an L-structure. For any subset N
of M , we have N 4Ln M if and only if for every ϕ(y, x̄) ∈ Ln and every ā ∈ N (with
|ā| = |x̄|), if M |= ∃yϕ(y, ā) then there is b ∈ N such that M |= ϕ(b, ā).

Assumption 2.3. For the rest of this section we assume the following:

(1) Φ ⊆ L and Φ is closed under subformulas.
(2) T ⊆ Φ is a set of sentences.
(3) For every M |= T a closure map clM is �xed such that if M,N |= T , ai ∈ M ,

bi ∈ N , for i < λ, and

(M, (ai : i < λ)) ≡Φ (N, (bi : i < λ))

then {ai : i < λ} is closed (with respect to clM ) if and only if {bi : i < λ} is closed
(with respect to clN ). Because of this assumption we can, for simplicity of notation,
omit the subscript `M ' in clM in the situations where we deal with a closure map.

(4) cl is uniformly locally �nite with respect to T ; that is, for every m < ω there is
m′ < ω such that if M |= T , A ⊆ M and |A| ≤ m, then |cl(A)| ≤ m′.
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Remark 2.4. Natural examples of Φ which are closed under subformulas are Φ = Ln and

Φ = {ϕ ∈ L : the quanti�er rank of ϕ is at most n}.
See [20] for a de�nition of quanti�er rank.

De�nition 2.5. A non-empty class A of L-structures is called a Φ-amalgamation class for
T if:

(1) Every structure in A is a model of T .
(2) A is closed under isomorphism.
(3) A is closed under Φ-elementary substructures, i.e. if N ∈ A and M 4Φ N then

M ∈ A.
(4) Whenever M1,M2 ∈ A and ā ∈ M1, b̄ ∈ M2 are closed sequences of the same length

and

(M1, ā) ≡Φ (M2, b̄),
then there are N ∈ A and a Φ-elementary embedding f : M2 → N such that
M1 4Φ N and f(b̄) = ā.

Remark 2.6. If there is a Φ-amalgamation class for T then there is, by the downward
Löwenheim-Skolem theorem, an amalgamation class for T such that all structures in it are
countable.

Examples 2.7. (a) Let n ≥ 4, let M be a tree such that for some m < ω no path in M
has length m and let T = ThLn(M). Moreover, for every M |= T and every A ⊆ M let
cl(A) = A. Then the class of all models of T is an Ln-amalgamation class for T .
(b) Let n ≥ 3, let K be a �nite �eld and let T ⊆ L3 formalize the axioms of K-vector
spaces in a language where scalar multiplication and vector addition are represented by
function symbols. For every M |= T and every A ⊆ M let cl(A) be the substructure which
is generated by A. Then the class of all models of T is an Ln-amalgamation class for T . If
we had de�ned cl as in (a) then T would not have had any Ln-amalgamation class. This
fact is a consequence of results in Section 3 and is discussed immediately after Theorem 3.7.

De�nition 2.8. Suppose that A is a Φ-amalgamation class for T .

(i) We say that p ⊆ Φ is a closed (Φ,A)-type if there are M ∈ A and a closed �nite
sequence ā ∈ M such that

p = {ϕ(x̄) ∈ Φ : M |= ϕ(ā)}.
(ii) We say that an L-structure M is (Φ, ω,A)-saturated for closed sets if whenever

b̄ ∈ N ∈ A, ā ∈ M ∩N , ā and b̄ā are closed �nite sequences and

(M, ā) ≡Φ (N, ā),

then there exists c̄ ∈ M such that (M, āc̄) ≡Φ (N, āb̄), and hence, by Assump-
tion 2.3 (3), c̄ā is closed.

Lemma 2.9. If A is a Φ-amalgamation class for T such that the set of all closed (Φ,A)-
types is countable, then there exists a countable L-structure M , such that

(i) M |= T
(ii) M is (Φ, ω,A)-saturated, and
(iii) for every �nite ā ∈ M there exists N ∈ A such that ā ∈ N and (M, ā) ≡Φ (N, ā).

Proof. By Remark 2.6 we may assume that A is a Φ-amalgamation class for T which
consists only of countable structures.

Then we use the idea in the proof of Fraïssé's theorem (see [20] for instance) to construct
Mi ∈ A, for i < ω, such that

• Mi 4Φ Mi+1, for all i < ω, and
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• for any i < ω, ā ∈ Mi and N ∈ A, if ā, b̄ ∈ N , ā and āb̄ are closed and (Mi, ā) ≡Φ

(N, ā), then there exists j ≥ i and c̄ ∈ Mj such that (Mj , āc̄) ≡Φ (N, āb̄).

Let π : ω3 → ω be a bijection such that π(i, j, k) ≥ i, j, k for all i, j, k and let pk, k < ω,
be an enumeration of all closed (Φ,A)-types. Let M0 ∈ A be arbitrary. Now suppose

that Mi is de�ned for all i < ` + 1, Mi 4Φ Mi+1 for all i < ` and that āj
i , j < ω, is an

enumeration of all closed �nite sequences of elements from Mi, for i < ` + 1. Suppose

that ` = π(i, j, k). If there exists N ∈ A and b̄ ∈ N such that āj
i ∈ N , āj

i b̄ is closed,

pk = {ϕ(x̄, y) ∈ Φ : N |= ϕ(āj
i , b)} and (Mi, ā

j
i ) ≡Φ (N, āj

i ), then (M`, ā
j
i ) ≡Φ (N, āj

i )
so, by condition (4) in the de�nition of a Φ-amalgamation class, there are M`+1 ∈ A and

c̄ ∈ M`+1 such that M` 4Φ M`+1 and (M`+1, ā
j
i c̄) ≡Φ (N, āj

i b̄). Otherwise let M`+1 = M`.
Let M =

⋃
i<ω Mi. Since Φ is closed under subformulas it follows from Lemma 2.11

below that Mi 4Φ M , for all i < ω, and from this we get (i). Conditions (ii) and (iii)
follows from the construction of M . �

De�nition 2.10. If M is a model as in Lemma 2.9 then we call M a limit of A.

Lemma 2.11. Suppose that Φ is closed under subformulas and that Mi 4Φ Mi+1 for i < κ.
If M =

⋃
i<κ Mi then Mi 4Φ M for every i < κ.

Proof. By induction on the complexity of formulas in Φ. �

See [20] for a de�nition of an unnested formula.

Lemma 2.12. Suppose that every unnested atomic formula of L is equivalent, modulo T ,
to a formula in Φ. Let A be a Φ-amalgamation class for T and suppose that M and N are
limits of A. Then for all closed �nite sequences ā ∈ M and b̄ ∈ N with |ā| = |b̄|,

if (M, ā) ≡Φ (N, b̄) then (M, ā) ≡L (N, b̄),

and in fact there is an isomorphism from M onto N which sends ā to b̄.

Proofsketch. Using properties (ii) and (iii) of Lemma 2.9 one carries out a back and forth
argument which shows that there is an isomorphism from M to N which sends ā to b̄. �

Corollary 2.13. Suppose that every unnested atomic formula of L is equivalent, modulo
T , to a formula in Φ. Then a limit of a Φ-amalgamation class A for T is unique up to
isomorphism.

Note that if, for example, Φ = Ln, n ≥ 2, every relation symbol has arity at most n and
every function symbol has arity less than n, then every unnested atomic L-formula belongs
Φ, so the condition about Φ in Lemma 2.12 and in Corollary 2.13 is satis�ed.

De�nition 2.14. An L-structure M is Φ-determined if for any closed �nite sequences
ā, b̄ ∈ M ,

if (M, ā) ≡Φ (M, b̄) then (M, ā) ≡L (M, b̄).

Hence, if Φ and T satis�es the assumptions of Lemma 2.12 and A is a Φ-amalgamation
class for T , then a limit of A exists, is unique up to isomorphism and is Φ-determined. We
also have a partial converse. To state it we need the following de�nition:

De�nition 2.15. An L-structure M is ω-homogeneous if for all �nite sequences ā, b̄ ∈ M
such that (M, ā) ≡L (M, b̄) and for every c ∈ M there is d ∈ M such that (M, āc) ≡L

(M, b̄d).

Lemma 2.16. If M a model of T which is Φ-determined and either �nite, or in�nite and
ω-homogeneous, then there is a Φ-amalgamation class for T .
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Proofsketch. Take as the Φ-amalgamation class all N which are isomorphic to some count-
able N ′ 4Φ M . �

We say that an in�nite L-structure M is ω-categorical if ThL(M) is ω-categorical.

Remark 2.17. A basic fact is that every ω-categorical structure is ω-homogeneous. Also,
a complete theory is ω-categorical if and only if for every model M of the theory and every
n < ω, SL

n (∅,M) is �nite and there are only �nitely many formulas with at most n free
variables, up to equivalence modulo the theory. (This is the well-known �Ryll-Nardzewski
theorem� [20]).

For the next proposition, recall that Φx̄ = {ϕ(x̄) : ϕ(x̄) ∈ Φ}. By combining the previous
lemmas we get the following.

Proposition 2.18. Suppose that every unnested atomic formula in L is equivalent to a
formula in Φ and that for any x̄, Φx̄ is �nite up to equivalence modulo T . Then the
following are equivalent:

(i) There exists a Φ-amalgamation class for T .
(ii) There exists M |= T which is Φ-determined, and if M is in�nite, then M is ω-

categorical (because, by Assumption 2.3 (4), cl is uniformly locally �nite on M).

3. Stability

Now we will consider `stability' and see how imposing a stability condition on an Ln-theory
T makes the limit M of every amalgamation class for T ω-stable. This together with the
ω-categoricity of M ensures that there are arbitrarily large �nite substructures of M which
are models of T .

Assumption 3.1. In this section we assume the following:

(1) For every theory T that we speak about there is a closure map cl on the models of
T which is uniformly locally �nite with respect to T . (See Assumption 2.3 (4).)

(2) If T is an Ln-theory, M,N |= T , ai ∈ M , bi ∈ N , for i < λ and

(M, (ai : i < λ)) ≡Ln (N, (bi : i < λ))

then {ai : i < λ} is closed if and only if {bi : i < λ} is closed.

De�nition 3.2.

(i) Suppose that A is an Ln-amalgamation class (for T ). We say that A is stable in Ln

if for every ϕ(x̄, ȳ) ∈ Ln there exists kϕ < ω such that there does not exist M ∈ A
and āi, b̄i ∈ M , for i < kϕ, satisfying M |= ϕ(āi, b̄j) ⇐⇒ i ≤ j.

(ii) We adopt the convention that every �nite structure is stable.
(iii) An in�nite L-structure M is stable if for every ϕ(x̄, ȳ) ∈ L, there exists kϕ < ω such

that there do not exist āi, b̄i ∈ M , for i < kϕ, satisfying M |= ϕ(āi, b̄j) ⇐⇒ i ≤ j.
(iv) A formula ϕ(x̄, ȳ) is unstable with respect to a theory T if there exist M |= T and

āi, b̄i ∈ M , i < ω, such that M |= ϕ(āi, b̄j) ⇐⇒ i ≤ j; otherwise ϕ(x̄, ȳ) is stable
with respect to T .

Proposition 3.3. Suppose that n is greater than the arity of every function symbol in the
vocabulary of L and that n is at least as great as the arity of every relation symbol in the
vocabulary of L. If T is a complete Ln-theory such that Sn

n(T ) is �nite then the following
are equivalent:

(i) There is a stable Ln-amalgamation class for T .
(ii) T has a stable model which is Ln-determined (and hence ω-categorical if it is in�-

nite).
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Proofsketch By Fact 1.5, the assumption that Sn
n(T ) is �nite implies that there are only

�nitely many Ln-formulas up to equivalence modulo T and hence for any sequence of
variables x̄ (of any length) Ln

x̄ is �nite up to equivalence modulo T .
Hence Proposition 2.18 gives all except the statement about stability. But one direction

of this follows from the fact that

• in (ii) we take the model of T to be the limit of a stable Ln-amalgamation class
for T , and

• if the formulas ϕi(x̄, ȳ), i = 1, . . . ,m, are stable with respect to a complete L-
theory, then every boolean combination of the ϕi's is stable with respect to the
same complete L-theory. (This can be proved directly by using Ramsey's theorem,
but it also follows from the basic work on stable formulas by Shelah [31].)

And conversely, given a model M satisfying the conditions in (ii), a stable Ln-amalgamation
class is obtained by taking all Ln-elementary substructures of M (and structures isomorphic
to these) as in Lemma 2.16. �

De�nition 3.4. An L-structure M is ω-stable if whenever M ′ ≡L M , A ⊆ M ′ and |A| ≤ ω
then |SL

1 (A,M)| ≤ ω.

A basic fact from stability theory is that if M is ω-stable then M is stable. The next lemma,
which tells that under certain circumstances the converse also holds, will be essential here.

Lemma 3.5. Suppose that M is an in�nite L-structure such that cl(A) = A for every
A ⊆ M and Sn

n(∅,M) is �nite. If M is stable and Ln-determined then M is ω-stable.

Proofsketch. Under the premises of the lemma it follows that any L-formula is equivalent,
modulo ThL(M), to a boolean combination of Ln-formulas and there are only �nitely many
Ln-formulas up to equivalence modulo ThLn(M). Thus for every complete L-type p(x̄) over
a set A, p(x̄) is determined by p(x̄) ∩ Ln(A). Now the lemma follows from the fact that if
0 < m < ℵ0 then (ℵ0)m = ℵ0 and from Shelah's �unstable formula theorem� ([31], Theorem

II.2.2), which tells us that if ϕ(v1, ȳ) is stable and A ⊆ M is countable then S
{ϕ(v1,ȳ)}
1 (A)

is countable. �

Suppose that n is greater than the arity of every function symbol in the vocabulary of L
and greater than or equal to the arity of every relation symbol in the vocabulary of L.
From Proposition 3.3 and Lemma 3.5 it follows that if T is a complete Ln-theory such
that Sn

n(T ) is �nite and there is a stable Ln-amalgamation class for T , then T has a model
which is ω-stable and, if it is in�nite, ω-categorical.

Next we state the crucial result which will give us �nite models for every complete
Ln-theory T such that Sn

n(T ) is �nite and there is a stable Ln-amalgamation class for T .

Theorem 3.6. (Cherlin, Harrington, Lachlan [4]) If M is ω-categorical and ω-stable, M |=
ϕ and A is a �nite subset of M , then there exists a �nite substructure N ⊆ M such that
N |= ϕ and A ⊆ N .

Recall that, by Fact 1.6, if T is a complete Ln-theory such that Sn
n(T ) is �nite then T is

axiomatized by an Ln-sentence. Thus, applying Theorem 3.6 and previous results we get:

Theorem 3.7. Suppose that n is greater than the arity of every function symbol in the
vocabulary of L and greater or equal to the arity of every relation symbol in the vocabulary
of L. If T is a complete Ln-theory such that Sn

n(T ) is �nite then the following hold:

(i) If M is a model of T which is ω-categorical and ω-stable, then for any �nite A ⊂ M
there is a �nite N 4Ln M such that A ⊆ N , and consequently N |= T .

(ii) Suppose that for every M |= T and A ⊆ M , cl(A) = A. If there is a stable Ln-
amalgamation class A for T such that A contains at least one in�nite structure
then T has arbitrarily large �nite models.
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Observe the assumption in part (ii) of the above theorem that the closure operation is
trivial. We now turn to the case when `cl' is not trivial (i.e. for some A, cl(A) 6= A).
An example of such a situation is if M is an in�nite vector space over a �nite �eld and
T = ThLn(M), for su�ciently large n. Then there cannot exist a trivial closure operation
cl and a stable Ln-amalgamation class for T , with respect to this closure operation, which
contains an in�nite structure. The reason is that it would imply the existence of an in�nite
vector space, over the same �eld, which is Ln-determined and this is impossible. For
in every in�nite model of T we can choose m greater than n and on the one hand a
linearly independent sequence ā = (a1, . . . , am) and on the other hand a sequence b̄ =
(b1, . . . , bm) such that b̄ is not linearly independent but every proper subtuple of b̄ is linearly
independent. With this choice, ā and b̄ have the same Ln-type but not the same L-type,
so the structure is not Ln-determined.

Motivated by this example we would like to �nd some amalgamation property for com-
plete Ln-theories T which holds also for the example of vector spaces and which implies
the existence of an ω-categorical and ω-stable model of T , so that we are in position to
apply Theorem 3.6.

De�nition 3.8. Let T be an Ln-theory. T has the strong Ln-amalgamation property over
countable models if, whenever

M0 |= T , M0 4Ln Mi, where Mi is countable for i = 1, 2, ā1 ∈ M1, ā2 ∈ M2 are
�nite sequences and (M1, cl(ā1)M0) ≡Ln (M2, cl(ā2)M0)

then

there are M and Ln-elementary embeddings fi : Mi → M , i = 1, 2, such that
f1(ā1) = f2(ā2) and fi is the identity on M0 for i = 1, 2.

Remark 3.9. Suppose that M is a vector space over a �nite �eld and T = ThLn(M),
for n larger than the number of elements in the �eld. Using the elementary theory of
vector spaces it is now easy to verify that T has the strong Ln-amalgamation property over
countable models. Also one can easily verify that if cl is taken to be linear closure then
there is a stable Ln-amalgamation class for T with respect to this closure operation.

Theorem 3.10. (Baldwin, Lessmann [2]) Suppose that T is a complete Ln-theory such that
Sn

n(T ) is �nite and T has the strong Ln-amalgamation property over countable models.

(i) If M |= T and M is stable and Ln-determined then M is ω-stable.
(ii) If there is a stable Ln-amalgamation class A for T such that A contains at least

one in�nite structure then T has arbitrarily large �nite models; these can be taken
as Ln-elementary substructures of the limit of A.

Proofsketch. (ii) follows from (i) and earlier results. Concerning (i): The assumptions that
Sn

n(T ) is �nite, M is stable and Ln-determined (so M is ω-categorical) imply, via Shelah's
�unstable formula theorem� [31], that for any countable A ⊆ M ′ ≡L M , SLn

1 (A,M ′) is
countable. The useful consequence of the strong Ln-amalgamation property over countable
models is that if N 4 N ′ |= T , where N is countable, and ā, b̄ ∈ N ′ are �nite sequences
then

(N ′, cl(ā)N) ≡Ln (N ′, cl(b̄)N)

implies

(N ′, cl(āN)) ≡Ln (N ′, cl(b̄N)).

This property together with the assumption that M is Ln-determined (which by the ω-
categoricity of M implies that any N ≡L M is Ln-determined) shows that M is ω-stable,
by a counting types argument. �
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4. Recursive bounds

In this section we derive results about recursive upper bounds of the size of the least model
of Ln-theories.

We will use the theory of smoothly approximable structures which is presented in detail
in [3]. Every structure which is ω-categorical and ω-stable is smoothly approximable which
essentially follows from [4], but also see [24]. One of several equivalent ways of de�ning
`smoothly approximable' is the following:

De�nition 4.1. An L-structure M is smoothly approximable if M is ω-categorical and if
every L-sentence which is true in M is true in a �nite substructure N ⊆ M such that

(1) for every θ(x̄) ∈ L there is χ(x̄) ∈ L such that

{ā ∈ N : M |= θ(ā)} = {ā ∈ N : N |= χ(ā)}, and

(2) for all ā, b̄ ∈ N of the same �nite length

(N, ā) ≡L (N, b̄) ⇐⇒ (M, ā) ≡L (M, b̄).

We derive our results from the following theorem which does not directly speak about
smoothly approximable structures.

Theorem 4.2. (Cherlin, Hrushovski [3]) We can e�ectively decide for a given sentence and
k < ω if that sentence has a �nite model M such that |SL

4 (∅,M)| = k.

For our purposes we now de�ne a recursive function f : ω2 → ω as follows:

Let f(n, k) = k if n < 2 or k = 0.
Now suppose that n ≥ 2 and k ≥ 1.
• Let ϕ1, . . . , ϕm be an enumeration of all sentences (up to equivalence) of quan-
ti�er rank at most k + n in a language Lk such that for every 1 ≤ i ≤ n
the vocabulary of Lk contains exactly k constant symbols and exactly k i-ary
relation symbols, but no function symbols, and we assume that `=' is one of
the binary relation symbols.

• For 1 ≤ i ≤ m, let Li be the language built up from the constant symbols and
the relation symbols that occur in ϕi and the identitity symbol `=' (but no
other symbols from the vocabulary of Lk). Then use Theorem 4.2 to decide if

ϕi has a �nite model Mi such that |SLi
4 (∅,Mi)| ≤ k;

• if such a model of ϕi exists then search until we �nd such Mi and let `i = |Mi|;
otherwise let `i = 0.

• Then let f(n, k) = max{`1, . . . , `m}.
If we had allowed function symbols in the language Lk appearing in the de�nition of f, then
there would have been in�nitely many formulas of rank at most n ≤ k + n (even quanti�er
free formulas) that are non-equivalent. When computing f we depend on the fact that
(with the stated de�nition) there are only �nitely many non-equivalent Lk-formulas with
quanti�er rank at most k + n.

De�nition 4.3. Let T be a complete Ln-theory. As in the previous sections we associate
a uniformly locally �nite closure operation cl with models of T . We now de�ne a function
cl∗ : ω → ω as follows:

cl∗(n) = max{|cl(A)| : A ⊆ M |= T, |A| ≤ n}.

Corollary 4.4. Let T be a complete Ln-theory such that Sn
n(T ) is �nite and let cl be the

closure operation associated with models of T . Also assume that n ≥ cl∗(4) and that the
vocabulary of L contains no function symbols and that the arity of every relation symbol is at
most n. If M |= T , where M is smoothly approximable and |Sn

cl∗(4)(∅,M)| = |Scl∗(4)(∅,M)|,
then ϕ has a �nite model of cardinality at most f(n, |Sn

n(∅,M)|) (where Sn
n(∅,M) = Sn

n(T )).
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Proof. Suppose that T , L, n and M satis�es the premises of the corollary. By renaming
symbols if necessary we may assume, without loss of generality, that L ⊆ Lk where Lk

is the language that occurs in the de�nition of f, with k = |Sn
n(T )|. By Fact 1.6, T

is axiomatized by an Ln-sentence with quanti�er rank at most |Sn
n(T )| + n = k + n.

Since M is smoothly approximable it follows that M has a �nite substructure N such
that N |= T and |S4(∅, N)| ≤ |S4(∅,M)|. From the assumptions that n ≥ cl∗(4) and
|Sn

cl∗(4)(∅,M)| = |Scl∗(4)(∅,M)| it follows that

|S4(∅, N)| ≤ |S4(∅,M)| ≤ |Scl∗(4)(∅,M)| = |Sn
cl∗(4)(∅,M)| ≤ |Sn

n(∅,M)| = k.

By the de�nition of f, there is a model of T with cardinality at most f(n, |Sn
n(∅,M)|). �

Corollary 4.5. Let n ≥ 4 and let L be a language with �nite vocabulary which contains no
function symbols and in which all relation symbols have arity at most n. If T is a complete
Ln-theory such that

• Sn
n(T ) is �nite,

• n ≥ cl∗(4),
• for every M |= T and every A ⊆ M , cl(A) = A, or T has the strong Ln-
amalgamation property over countable models, and

• there is a stable Ln-amalgamation class for T (with respect to cl),
then T has a model of cardinality at most f(n, |Sn

n(T )|).

Proof. Suppose that T satis�es the above conditions. First note that (by Fact 1.6) T is
axiomatized by an Ln-sentence with quanti�er rank ≤ |Sn

n(T )| + n. By results in the
previous section, T has an ω-categorical and ω-stable (hence smoothly approximable)
model M which is Ln-determined (with respect to the given closure operator). Then
|Sn

cl∗(4)(∅,M)| = |Scl∗(4)(∅,M)|, so by Corollary 4.4, T has a model N with cardinality at

most f(n, |Sn
n(∅,M)|) = f(n, |Sn

n(T )|). �

Remark 4.6. Grohe [17] has shown that if n ≥ 3 then there does not exist a recursive
function fn : ω → ω such that for every complete Ln-theory T with �nite models,

min{|M | : M |= T} ≤ fn(|Sn
n(T )|).

Except for the results presented here, an existence result about recursive upper bounds has
also been obtained by Dawar in [5]. The hypothesis of Dawar's result is that the class C of
�nite structures considered (where C could be the class of all �nite models of an Ln-theory,
for example) has the `weak n-Ehrenfeucht-Mostowski property'. Roughly speaking, this
property says that every su�ciently long "Ln-indiscernible" sequence in a structure in C
can both be extended in some Ln-elementary extension which belongs to C and reduced
(as long as it does not become too short) in some Ln-elementary substructure that belongs
to C.

The question arises: How general can a class, T , of complete Ln-theories with �nite
models be if we require that there exists a recursive function f such that min{|M | : M |=
T} ≤ f(|Sn

n(T )|) for all T ∈ T ? Another problem is to determine such a function f
more precisely (polynomial, exponential, etc.), perhaps starting with some smaller class of
theories over which we have more control.

5. Simple, possibly not smoothly approximable structures

This paper has focused on obtaining �nite models for a complete Ln-theory T by showing
that T has an in�nite model M which has the �nite submodel property, by which we mean
that every sentence which is true in M is true in a �nite substructure of M . As stated in
Theorem 3.6, every ω-categorical ω-stable structure has the �nite submodel property. The
same holds for the more inclusive class of smoothly approximable structures which also
contains unstable examples (see [3]).
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There are natural examples of structures which have the �nite submodel property but
are not smoothly approximable, such as the random (bipartite) graph Grg [24]. Grg can
be de�ned as the Fraïssé limit of the class of all �nite graphs, or alternatively one can
give an explicit axiomatization of the complete theory of Grg; see for instance [12, 20]
for more about the random graph. (The random bipartite graph is obtained similarly by
considering the class of all �nite graphs expanded with an equivalence relation with exactly
two classes subject to the condition that edges may only occur between elements in di�erent
classes.) The random (bipartite) graph has the following model theoretical properties: it
is ω-categorical with elimination of quanti�ers, (super)simple (but unstable) with SU-rank
1 and has trivial forking; see for instance [20] and [32] for these model theoretic and
stability/simplicity theoretic notions. The fact that Grg has SU-rank 1 implies that the
algebraic closure operation `acl' forms a pregeometry on Grg (see [20]).

Before continuing we note that there is a line of research [28, 13, 14, 15], not discussed
here, which studies the connection between classes of �nite structures in which de�nable
sets have uniform behaviour, asymptotically, and (in�nite) simple structures with �nite SU-
rank and with a measure on the de�nable subsets, but which are not necessarily smoothly
approximable. A question not answered here is whether the approach in this article has
anything in common with the work about `asymptotic classes' and `measurable structures'
(the random graph �ts within both frameworks).

Work in two di�erent directions has been carried out by the author to prove the �nite
submodel property for classes of structures which contain the random (bipartite) graph.
One direction of research [10] studies ω-categorical structures on which the algebraic closure
operation forms a pregeometry. The other direction of research [11, 26] studies structures
which are ω-categorical, simple with �nite SU-rank and have trivial forking. In both di-
rections a probabilistic argument is involved in proving the �nite submodel property. In
order to carry out this argument we need to assume that de�nable relations are "su�ciently
independent" from each other in senses that are made precise in [10] and [26]. It seems
that without any assumption about "su�cient independence" we are in a di�cult situation
with respect to proving or disproving the �nite submodel property. We say more about
this in the last paragraph of Section 6.

The notion of "su�cient independence" which is considered in [26] is called the `n-
embedding of types property' (for a natural number n ≥ 2), with respect to certain kinds
of "generators". Before stating the main result of [26] we introduce some notation from
stability/simplicity theory and explain, rougly, the involved notions. We assume familiar-
ity with imaginary elements (see [20] or [32] for example). By A |̂

C
B we mean that A

is independent from B over C (see for example [32] for a de�nition of `independence').
The negation of A |̂

C
B is denoted by A |̂�

C
B. A complete �rst-order theory T has trivial

dependence (or forking) if whenever A,B1, B2, C are subsets of M eq where M |= T and
A |̂�

C
(B1 ∪B2), then A |̂�

C
Bi for i = 1 or i = 2.

Here is a rough description of the n-embedding of types property (with respect to all/simple
generators). Suppose that T is a complete �rst-order theory which is simple (see [32] for
a de�nition of `simple') and assume that M |= T . As usual, M eq denotes the extension
of M by imaginary elements and `algebraic closure' is taken in the structure M eq (see [20]
for a de�nition of algebraic closure). We identify every natural number n with the set
{0, . . . , n−1} and let P(n) be the set of all subsets of n and P−(n) = P(n)−{n}. Suppose
that A0

i and B0
i , for i ∈ n, are subsets of M eq and that, for every w ∈ P−(n), Aw is the

algebraic closure of
⋃

i∈w A0
i and Bw is the algebraic closure of

⋃
i∈w B0

i . Also assume that

• for all w,w′ ∈ P−(n), Aw
|̂

Aw∩w′
Aw′ and Bw

|̂
Bw∩w′

Bw′ , and
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• for every w ∈ P−(n) there is an elementary map (see [20]) fw from Aw onto Bw

such that fw(A0
i ) = B0

i for every i ∈ w, and if w ⊆ w′ then fw′ extends fw�
⋃

i∈w A0
i .

The n-embedding of types property says (omitting some details) that if ā = (a1, . . . , ar) is
a sequence of elements from M eq which does not contain any element from the algebraic
closure of

⋃
w∈P−(n) Aw, then there are b̄ = (b1, . . . , br) in M eq (we can assume that M

is su�ciently saturated) and, for w ∈ P−(n), elementary maps gw : Aw ∪ {a1, . . . , ar} →
Bw ∪ {b1, . . . , br} such that gw�

⋃
i∈w A0

i = fw�
⋃

i∈w A0
i and if w ⊆ w′ then gw′ extends

gw�
⋃

i∈w A0
i .

The phrase `with respect to all/simple generators' when stating the condition `n-embedding
of types property with respect to all/simple generators' in the next theorem refers to the
conditions (if any) that we impose on the sets A0

i , B0
i , for i ∈ n. In [26] the sets A0

i , B0
i ,

i ∈ n, are called the "generators" of the sets Am, Bm, m ∈ P−(n). Every stable theory (see
[20, 31, 32] for the notion `stable') has the n-embedding of types property with respect to
simple generators for every 1 < n < ω [26]. The complete theory of the random graph [20]
has the n-embedding of types property with respect to all generators for every 1 < n < ω
[26].

Theorem 5.1. [26] Suppose that there is m < ω such that every function symbol of the
language of M has arity at most m. If Th(M) is ω-categorical, simple with �nite SU-rank,
has trivial dependence and, for every 1 < k < ω, has the k-embedding of types property
with respect to all generators, then M has the �nite submodel property. If the SU-rank of
Th(M) is 1, then the phrase `with respect to all generators' can be replaced by the phrase
`with respect to simple generators', a weaker hypothesis.

It follows from Lemma 5.3, below, that Theorem 5.1 holds also if we replace `trivial depen-
dence' with `n-degenerate dependence for some n < ω', where n-degenerate dependence is
de�ned as follows.

De�nition 5.2. Let T be a complete simple (L-) theory. We say that T has n-degenerate
dependence if the following holds: Whenever M |= T and A,B, C ⊆ M and A |̂�

C
B then

there is B′ ⊆ B such that |B′| ≤ n and A |̂�
C

B′.

Observe that trivial dependence implies 1-degenerate dependence.

Lemma 5.3. Suppose that T is ω-categorical, simple with �nite SU-rank and with n-
degenerate dependence for some n < ω. Then T has trivial dependence.

Proof sketch. Suppose that T satis�es the premises of the lemma. By Corollary 4.7 in [18]
and Lemma 3.22 in [7], it is su�cient to show that every type with SU-rank 1 is trivial,
i.e. if D is the set of realizations of the type, in M eq where M is a su�ciently saturated
model of T , then the restriction to D of the algebraic closure operator forms a trivial pre-
geometry. For a contradiction, suppose that there is a nontrivial type of SU-rank 1. By
Corollary 3.17 in [7] there is a de�nable subset of Meq on which the algebraic closure is
a projective geometry over a �nite �eld. Now a contradiction can be derived in the same
way as in the last two paragraphs of the proof of Proposition 8.7 in [8]. �

Now we can derive a corollary which applies to Ln-theories and amalgamation classes.
Suppose that Φ is a subset of L and T is a set of sentences from Φ such that Φ is closed
under subformulas, every unnested atomic formula of L is equivalent, modulo T , to a
formula in Φ, for every x̄, Φx̄ is �nite up to equivalence modulo T . Also suppose that A
is a Φ-amalgamation class for T . Note that the assumptions about Φ hold if Φ = Ln and
n is greater than the arity of every symbol in the vocabulary. Then the assumptions of
Lemma 2.9 and of Corollary 2.13 are satis�ed, so by these results a unique limit of A exists.
By Lemma 2.12 and Proposition 2.18 the limit of A is �nite or ω-categorical.
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Corollary 5.4. Assume that there is m < ω such that every function symbol has arity at
most m. Let T be a set of sentences from Φ ⊆ L where Φ is closed under subformulas.
Suppose that, for every x̄, Φx̄ is �nite up to equivalence modulo T and that every unnested
atomic formula is equivalent to a formula in Φ, modulo T . Moreover, suppose that T has
a Φ-amalgamation class A with a limit M such that M is simple with �nite SU-rank and
has both n-degenerate forking for some n < ω and the k-embedding of types property with
respect to all generators for every 1 < k < ω. Then T has arbitrarily large �nite models
(which can be taken as substructures of M).

The following example illustrates the notions and assumptions of the previous corollary.

Example 5.5. Let the vocabulary of the language L be {=, E} where E is a binary relation
symbol. Let χ be the sentence ∀x1, x2

(
¬E(x1, x1) ∧ (E(x1, x2) → E(x2, x1))

)
. For every

n ≥ 2 and every w ⊆ {1, . . . , n− 1} let θn
w(x1, . . . , xn) be the formula∧

i∈w

E(xi, xn) ∧
∧
i/∈w

¬E(xi, xn)

and let ϕn
w be the sentence

∀x1, . . . , xn−1

( ∧
i6=j

xi 6= xj → ∃xnθn
w(x1, . . . , xn)

)
.

Then let ϕn be the conjunction of χ and every ϕn
w as w ranges over subsets of {1, . . . , n−1},

so ϕn ∈ Ln. Also, every model of ϕn is an undirected graph, or just `graph' for brevity.
Fix an arbitrary natural number n ≥ 2. Recall that, by De�nition 2.1, M ≡Ln N means

that M and N are Ln-elementarily equivalent, i.e. satisfy exactly the same Ln-sentences,
From the n-pebble game characterization of Ln-elementary equivalence [23, 29] it follows
that if M and N are models of ϕn, then Duplicator (or "player II" or "∃") has a winning
strategy in the n-pebble game on M and N in ω rounds, and therefore M ≡Ln N . It
follows that Tn = {ϕn} is a complete Ln-theory (in the sense of De�nition 1.1 (vii)).

In�nite models of ϕn exist since for every sequence a1, . . . , an−1 from a graph and every
w ⊆ {1, . . . , n−1} we can add a new element b to the graph and extend the interpretetation
of E so that E(ai, b) holds if and only if i ∈ w. By repeating this process systematically in
ω steps (if we start with a �nite structure) we can make sure that the union of the graphs
created in the process is a model of ϕn. In fact, by reasoning similarly as has been outlined,
we can show the following.

(I) For every graph G (�nite or in�nite) there is a graph M |= ϕn such that G is a
substructure of M .

From the n-pebble game characterization of `M ≡Ln N ' we can also derive the the following.

(II) If M and N are models of ϕn, m < ω, a1, . . . , am ∈ M are di�erent elements and
b1, . . . , bm ∈ N are di�erent elements, then (M,a1, . . . , am) ≡Ln (N, b1, . . . , bm) if
and only if for all i, j ∈ {1, . . . ,m}, M |= E(ai, aj) ⇐⇒ N |= E(bi, bj)

Consequently, if M,N |= ϕn then every embedding f : M → N is an Ln-elementary
embedding. In particular, if M,N |= ϕn then M 4Ln N if and only if M is a substructure
of N .

For every M |= ϕn and every A ⊆ M , de�ne cl(A) = A, so every subset of every model
of ϕn is closed. Let A be the class of all models of Tn = {ϕn}. From the de�nition of A
it immediately follows that (1)�(3) in the de�nition of an Ln-amalgamation class for Tn

(De�nition 2.5) are satis�ed. We verify that also (4) in the same de�nition holds. Suppose
that M1,M2 ∈ A, a1, . . . , am ∈ M1, b1, . . . , bm ∈ M2 and that

(M1, a1, . . . , am) ≡Ln (M2, b1, . . . , bm).
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To simplify the argument, without loss of generality, we may assume that ai = bi for
i = 1, . . . ,m, and that M1 ∩ M2 = {a1, . . . , am}. By (I), the graph M1 ∪ M1 (where
M1 ∪M2 |= E(a, b) ⇐⇒ M1 |= E(a, b) or M2 |= E(a, b)) is a substructure of some model
N of Tn = {ϕn}. Since M1,M2 |= ϕn, it follows from (II) that Mi 4Ln N for i = 1, 2.
Hence A is an Ln-amalgamation class for Tn.

By Lemma 2.9 and Corollary 2.13, A has a unique limit M which is countable (by the
de�nition of limit). By Lemma 2.12, M is Ln-determined which together with (II) implies
that

(III) if m < ω, a1, . . . , am ∈ M are di�erent elements and b1, . . . , bm ∈ M are dif-
ferent elements, then (M,a1, . . . , am) ≡L (M, b1, . . . , bm) if and only if for all
i, j ∈ {1, . . . ,m}, M |= E(ai, aj) ⇐⇒ M |= E(bi, bj).

Hence ThL(M) has elimination of quanti�ers and is ω-categorical. Since M is the limit
of A, conditions (ii) and (iii) in Lemma 2.9 are satis�ed. This together with (I) implies
that for every m < ω, every choice of distinct a1, . . . , am ∈ M and every w ⊆ {1, . . . ,m},
there is b ∈ M such that M |= E(ai, b) ⇐⇒ i ∈ w. Hence M |= ϕm for every 1 < m < ω.
This implies that M is the random graph [12, 20]. It is well-known that ThL(M) is simple
with SU-rank 1 and has trivial dependence [32]. In [26] it is shown that ThL(M) has the
k-embedding of types property with respect to all generators, for every 1 < k < ω. Note
that since M |= ϕm for every 1 < m < ω, we can, for every m < ω, �nd ai, bi ∈ M for
i < m such that M |= E(ai, bj) if and only if i ≤ j. Hence M and A are not stable in Ln.

Corollary 5.4 implies that Tn = {ϕn} has arbitrarily large �nite models (all of which
are isomorphic to substructures of M). This is nothing new, since the proof of the so-
called 0-1 law for the random graph shows that, for every 1 < n < ω, the number of
graphs with universe m = {0, . . . ,m − 1} which satisfy Tn divided by the number of all
graphs with universe m approaches 1 as m → ∞ [12, 20]. At the core of the proof is a
probabilistic argument ("What is the probability that ϕn holds in a graph with universe
m?"). The method in this example of showing that ϕn has arbitrarily large �nite models
does not avoid the main idea, the probabilistic argument, in the proof of the 0-1 law. On
the contrary, our approach has utilized this idea in a more general setting, but this is not
evident in this paper since we don't discuss the proof of Theorem 5.1 or of Theorem 6.7,
on which the former theorem relies.

Remark 5.6. It would be nice if we could specify some properties of complete Ln-theories
(without speaking about limits of amalgamation classes) which, if they hold for such a
theory, would allow us to derive the existence of a structure M as in Theorem 5.1. However,
while the notion of stability straightforwardly transfers from the context of complete L-
theories to complete Ln-theories (in Section 3) the notions `n-degenerate forking', `SU-rank'
and `n-embedding of types property' involve the stability/simplicity theoretic notion of
forking (or (in)dependence) and the author does not currently see a straightforward, or
"natural", way of de�ning forking with respect to a complete Ln-theory (which, according
to our de�nition, need not be complete in the usual sense). The notion of simplicity may,
on the other hand, be straightforwardly transferred to the context of complete Ln-theories
by saying that a complete Ln-theory is simple if no Ln-formula has the tree property (see
[32]) in any model of the theory. However, the question remains whether simplicity, de�ned
in this way, has any interesting consequences for Ln-theories.

6. Structures on which algebraic closure forms a pregeometry

In this section we give a brief overview of the main results in [10], about the �nite submodel
property, which are stated as Theorems 6.6 and 6.7 below. Theorem 6.7 is used to prove
the main result in [26] (stated as Theorem 5.1 in this survey). We will assume throughout
this section that M is an ω-categorical L-structure such that the algebraic closure in M ,
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denoted aclM , forms a pregeometry on M ; see for instance [10] or [20] for a de�nition of
a pregeometry. A consequence of M being ω-categorical is that for every �nite A ⊆ M ,
aclM (A) is �nite. Moreover, in this context every subset A ⊆ M has a dimension de�ned
by

dimM (A) = inf{|B| : B ⊆ A and A ⊆ aclM (B)}.
A type is called algebraic if it has only �nitely many realizations.

De�nition 6.1. Let 0 < k < ω. We say that M is polynomially k-saturated if there is a
polynomial P (x) such that for every n0 < ω there is a natural number n ≥ n0 and a �nite
substructure N ⊆ M such that:

(1) n ≤ |N | ≤ P (n).
(2) N is algebraically closed (in M).
(3) Whenever A ⊆ N , dimM (A) < k and q(x) ∈ SL

1 (A,M) is non-algebraic, then there
are distinct b1, . . . , bn ∈ N such that M |= q(bi) (i.e. bi realizes q in M) for each
1 ≤ i ≤ n.

Examples of structures on which the algebraic closure forms a pregeometry and which are
polynomially k-saturated for every 0 < k < ω include the "in�nite empty structure" (having
only the relation '='), the random (bipartite) graph, in�nite vector spaces, projective spaces
and a�ne spaces over any �nite �eld [10]. Another example is obtained by "independently"
expanding a vector space (for instance) with the random graph [10].

We also have the following result from [10] which relates polynomial k-saturation to the
�nite submodel property.

Lemma 6.2. If M is polynomially k-saturated for every 0 < k < ω, then M has the �nite
submodel property.

Assumption 6.3. From now on L is a �rst-order language such that L's vocabulary is
included in L's vocabulary, so L ⊆ L. We suppose that aclM coincides with aclM�L (i.e.
aclM (A) = aclM�L(A) for every A ⊆ M). Moreover, we assume that both M and M�L have
elimination of quanti�ers, where M�L denotes the reduct of M to L. If these conditions
are not ful�lled in the beginning, then we can just add new relation symbols to L and L so
that the resulting expansions satisfy these conditions and all previous assumptions about
M .

Before going to the next de�nition we note that if aclM and aclM�L coincide and ā, b̄ ∈ M
satisfy exactly the same L-formulas, then ā is algebraically closed if and only if b̄ is.

De�nition 6.4. We say that M satis�es the k-independence hypothesis over L if the fol-
lowing holds:
Whenever A and B are algebraically closed substructures of M and

(1) dimM (B) ≤ k,
(2) dimM (A) < k,
(3) f : A�L → B�L is an L-embedding (i.e. it preserves all atomic L-formulas and

negations of atomic L-formulas), and
(4) if A′ ⊂ A (proper inclusion) is an algebraically closed substructure then the restric-

tion f : A′ → B is an L-embedding,

then there are an algebraically closed substructure C ⊆ M and an L-ismorphism g : B�
L → C�L such that

(5) gf : A → C is an L-embedding, and
(6) for every algebraically closed substructure B′ ⊆ B such that f(A) 6⊆ B′, g : B′ → C

is an L-embedding.
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The de�nition of the k-independence hypothesis given above looks a bit di�erent from the
de�nition of it given in [10], but the two ways of de�ning the k-independence hypothesis
are equivalent under Assumption 6.3. Below follow some examples which illustrate the
k-independence hypothesis.

Examples 6.5. (a) The random graph: Let the vocabulary of L be {=} and let the vo-
cabulary of L be {=, E} where E is a binary relation symbol. Let M be the random graph
in the language L where E is interpreted as the edge relation. Then M and M�L have
elimination of quanti�ers and aclM (A) = A and dimM (A) = |A| for any A ⊆ M . Since
any �nite graph embedds into M it follows that M satis�es the k-independence hypothesis
over L for every k < ω. With the notation of the de�nition, the case when dimM (A) = 2
is the most interesting. The reason is that M has elimination of quanti�ers in a language
with only binary relations symbols and that dimension coincides with cardinality.

(b) The random structure: Let L be as in (a) and let the vocabulary of L be {=, R1, . . . , Rm}
where Ri are relation symbols of any arity. Let M be the random structure in the language
L, i.e. M is the Fraïssé limit of the class of all �nite L-structures. For the same reasons
as in (a), M satis�es the k-independence hypothesis over L for every k < ω. However
the veri�cation becomes a little bit more interesting for A of dimension > 2 if L contains
relation symbols of arity greater than 2.

(c) A vector space expanded with the bipartite random graph: Let K be the class of all �nite
structures
N = (V, P, E, +, f0, f1, 0) such that:
1. V , the universe of N , is a vector space over the �eld F = {0, 1}.
2. P is a unary relation.
3. E is a binary relation symbol interpreted as an irre�exive and symmetric relation.
4. + is a binary function symbol interpreted as vector addition and the constant symbol 0
is interpreted as the zero vector.
5. fi(v) = i · v, for i = 0, 1 and any v ∈ V (so fi represents scalar multiplication by i).
6. N |= ∀xy

(
E(x, y) →

[ [ (
P (x) ∧ ¬P (y)

)
∨

(
¬P (x) ∧ P (y)

) ] ] )
.

7. N |= P (0).
It is easy to verify that K is nonempty and has the hereditary property, the joint embedding
property and the amalgamation property and is uniformly locally �nite (see [20]). Hence
the Fraïssé limit of K, which we call M , exists and is ω-categorical with elimination of
quanti�ers. Since the reduct of M to the language with vocabulary {=, P, E} is the random
bipartite graph, M is not smoothly approximable [3].

Let L ⊆ L be the sublanguage which contains all symbols of L except P and E. Then
M�L is a vector space over a �nite �eld, so M�L has elimination of quanti�ers. It is not
hard to see, using quanti�er elimination of M and the fact that any structure in K can be
embedded into M (since M is the Fraissé limit of K), that aclM (A) is linear span of A.
Hence aclM and aclM�L coincide. Again using the fact that M is the Fraissé limit of K it
follows that M satis�es the k-independence hypothesis over L, for every k < ω.

(d) The random pyramid-free (3)-hypergraph: As shown in [10], the random pyramid-free
(3)-hypergraph does not satisfy the 4-independence hypothesis over the language L with
vocabulary {=} (as opposed to the case of the random graph).

Having Assumption 6.3 in mind, we now state the two main results of [10].

Theorem 6.6. Suppose that M�L is polynomially k-saturated and that M satis�es the
k-independence hypothesis over L. If ϕ ∈ L is an unnested sentence, in which at most k
distinct variables occur, and M |= ϕ, then ϕ has arbitrarily large �nite models.
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Note that Theorem 6.6 only speaks about arbitrarily large �nite models, but does not claim
that these can be taken as substructures of M .

Theorem 6.7. Suppose that, for every 0 < k < ω, M�L is polynomially k-saturated and
that M satis�es the k-independence hypothesis over L. Then M is polynomially k-saturated,
for every 0 < k < ω, and hence M has the �nite submodel property.

We say that M has trivial (also called degenerate) algebraic closure if for every A ⊆ M ,
aclM (A) =

⋃
a∈A aclM (a). Examples of (ω-categorical) M which are simple with SU-rank

1 and trivial algebraic closure include the random (bipartite) graph, the random structure
and the random pyramid-free (3)-hypergraph. The following is a consequence of the �rst
theorem:

Corollary 6.8. Suppose that M is simple with SU-rank 1 and has trivial algebraic closure.
If ϕ ∈ L3 is unnested and M |= ϕ then ϕ has arbitrarily large �nite models.

The assumption that M satis�es the k-independence hypothesis (over L) in the previous
two theorems is used in the probabilistic argument at the core of the proofs. It generalizes
the argument used when showing that the random graph (or random structure) satis�es a
0-1 law with the uniform probability measure. The proofs of Theorems 6.6 and 6.7 do not
however lead to 0-1 laws in general, with the uniform probability measure.

It seems that without assuming any kind of independence we get into a di�cult situation
with respect to proving or disproving the �nite submodel property, as witnessed by the
complete theory of the random pyramid-free (3)-hypergraph (example (d) above). It is ω-
categorical with elimination of quanti�ers, simple with SU-rank 1, has trivial dependence
and trivial algebraic closure. However, for all k ≥ 4, it does not satisfy the k-independence
hypothesis over (the only proper sublanguage) L with vocabulary {=} [10]. Neither does
it have the n-embedding of types property for any n ≥ 4, nor does it have have the n-
amalgamation property for any n ≥ 4 [25, 26]. It is an open problem whether the random
pyramid-free (3)-hypergraph has the �nite submodel property or not.

7. Questions and problems

In connection with the approach exposed in this paper one may of course ask many ques-
tions, some of which are stated below.

(1) Can we �nd �natural� amalgamation properties and stability/simplicity theoretic
properties for Ln-theories T (or other fragments of �rst-order logic) which imply the exis-
tence of an in�nite model M of T with the �nite model property (i.e. every sentence which
is true in M is true in a �nite model), for other classes of theories T than those that �t
into the framework presented here (in sections 1�3)?

(2) In particular, can we �nd �natural� amalgamation properties and stability/simplicity
theoretic properties for �simple� Ln-theories T (without a stable amalgamation class) which
guarantee that T has a model such as M in Theorem 5.1?

(3) Can stronger upper bounds than recursive (exponentional, polynomial etc.) on the
size of the least model be obtained for some interesting classes of theories?

(4) Are there other approaches, than the one presented here, towards understanding
when (arbitrarily large) �nite models exist and when a recursive (or better) upper bound
of the smallest model exist, in terms of the number of Ln-types, for instance?

(5) Can one derive the conclusions of Theorem 5.1 from a weaker assumption than that
forking is trivial?

(6) Can the approach in Section 9, about structures on which algebraic closure forms a
pregeometry, be helpful for understanding Ln-theories (or, say, theories in a language with
a �nite bound on the quanti�er rank)?

(7) The random graph �ts within the framework presented in sections 5 and 6 as well as
within the framework of `asymptotic classes' and `measurable structures' [28, 13, 14, 15].
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Do the two approaches have anything in common? If `yes', can both approaches together
enrich our knowledge about relationships between in�nite structures and classes of �nite
structures.

(8) Does the random pyramid-free (3)-hypergraph (Example 6.5 (d)) have the �nite
submodel property?
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