ENTROPY OF FORMULAS

VERA KOPONEN

ABSTRACT. A probability distribution can be given to the set of isomorphism classes of
models with universe {1,...,n} of a sentence in first-order logic. We study the entropy
of this distribution and derive a result from the 0-1 law for first-order sentences.
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INTRODUCTION

We will study the entropy of a probability distribution on the set of isomorphism classes
of models with universe {1,...,n} of a first-order sentence (i.e. closed formula). Recall
that, for a finite probability distribution p = (p1,...,px), the entropy of p is H(p) =
— Zle piInp; (where we adopt the convention that 0ln0 = 0). For any probability
distribution p = (p1,...,pr) we have (see [6], Theorems 3.7 and 3.10, for instance)
0 < H(p) <Ink and

(a) H(p) =1Ink if and only if p; = 1/k for every i = 1,...,k, and

(b) H(p) = 0 if and only if p; = 1 for some 1.
Let L be a (first-order) language with finitely many relation, function and constant
symbols. If ¢ is an L-sentence which has at least one model with exactly n elements,
then let Aq,..., Ak, be an enumeration of mutually non-isomorphic L-structures with
universe {1,...,n}, such that each A; is a model of ¢ and any model of ¢ with exactly n
elements is isomorphic to some A;. Let [A;] be the set of all L-structures with universe
{1,...,n} which are isomorphic to A4;. If m, is the number of L-structures A with
universe {1,...,n} such that ¢ is true in A, then p = (p1,...,px, ), where p; = |[4;]|/mn
for i =1,...,kp, is a probability distribution. Hence we can consider the entropy H(p)
which in this case we denote by H,(¢), and we call it ‘the entropy of ¢ for n-element
models’. If ¢ has no model with exactly n elements then we let H,(¢) = 0. It follows
that if p is as defined above, then 0 < H,(¢) < Ink, and from (a) and (b) we get:

(a)" Hy(p) = Ink, if and only if [A;] and [A;] contain the same number of structures

for any ¢ and any j, and

(b)” H,(¢) = 0 implies that any two models of ¢ with exactly n elements are isomor-

phic.

The entropy of a formula is not particularly well-behaved with respect to the relation
‘’, where, for L-sentences ¢ and v, ¢ - 1) means that any L-structure which is a model
of ¢ is also a model of v». We may have p1 b @9 and H,(p1) < Hy(p2), but we may also
have 91 F 9y and H, (1) > H,(12); examples showing this are given at the end of the
paper.

However, from the 0-1 law of (first-order) formulas we may draw a conclusion about
the entropy H,,(¢). The 0-1 law says that, under the assumption that L has only finitely
many relation symbols and no function or constant symbols, for any L-formula ¢, the
proportion of L-structures with universe {1,...,n} in which ¢ is true approaches either
0 or 1, as n approaches co. Under the additional condition that not all relation symbols
of L are unary, we will prove that if the above mentioned proportion approaches 1 then
H,(p) is asymptotic to Ink, (where k, is as above). By being asymptotic to Ink,, we
mean that H,(¢)/Ink, — 1 as n — co. Intuitively this means that, if the proportion of
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L-structures with universe {1,...,n} in which ¢ is true approaches 1 as n — oo, then
the entropy H,(¢) approaches maximal entropy as n — oo.
In the case that the proportion of L-structures with universe {1,...,n} in which ¢ is

true approaches 0 as n — oo, we cannot conclude anything particular about the asymp-
totic behaviour of H,(¢). For example, we may have H,(p) = 0 for every n, but we
may also have H,(¢) = Ink, for every n, and it may be the case that lim, ., Hy(¢)
and lim, o Hy(¢)/Ink, don’t exist; examples illustrating these possibilities are given
at the end.

Acknowledgements. The idea to consider the questions dealt with in this paper was
suggested to me by Erik Palmgren. I also thank the anonymous referee for suggesting
simplifications of the proof of Theorem 3.

Notation and terminology. For definitions of, and elementary results about (first-
order) languages and structures, see [5] or [1] for instance; the notation and terminology
used here, for structures and languages, follows [5]. We always assume, even when not
explicitly mentioned, that the symbol ‘=’ is part of the language and is interpreted in
structures as the identity relation. We say that a language is finite and relational if it has
only finitely many relation (also called predicate) symbols and no constant or function
symbols. A language is said to be monadic if every relation symbol of it, except for =,
is unary. If A and B are L-structures then A = B means that A is isomorphic to B. We
may, as usual, identify a structure with its universe (or domain) notationally. For a k-ary
relation symbol R of the language L and an L-structure A, R* denotes the interpretation
of R in A. For an L-structure A and an L-sentence ¢ (i.e. closed L-formula), A = ¢
means that ¢ is true (or satisfied) in A, or in other words, that A is a model of ¢. If X
is a set then | X| denotes its cardinality. With k,m,n,ni,ne,... we will denote positive
integers.

ENTROPY OF FORMULAS

Throughout this paper we will assume that L is a finite and relational language, although
we will occasionally repeat this assumption.

Definition 1. Let S,, be the set of all L-structures with universe {1,...,n}. Since
L is finite, each S, is finite. If A € S, then let [A] = {B € S,, : B = A}. Let
S ={[A]: A€ S,}. If ¢ is an L-sentence then let M,,(¢) ={A € S, : A = ¢} and let
My () ={[A] : A € Mu(0)}

For any L-sentence ¢ we can consider a probability distribution on M/, () by letting
each [A] € M/ (¢) have probability [[A]|/|M(¢)]. So if A € M, (¢), and supposing that
each structure in S, is equally probable, |[A]|/|M(¢)| is the probability that a model of
¢ in &, is isomorphic to A.

Definition 2. Let L be a finite and relational language. For an L-sentence ¢, we define
the entropy of ¢ for n-element models, denoted H,(p), by

k
Al 1Al
Hnl2) = = 2 I ™ TaC)

where [A1],...,[Ak] is an enumeration of M/ () without repetitions, if M, (¢) # 0. If
M., () = 0 then define H,(¢) = 0.
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The so-called 0-1 law (|2], [4], [1] Theorem 4.1.5, [5] Theorem 7.4.7) states that, for any
L-sentence ¢,

the limit  lim M

exists and is either 0 or 1.
n—00 |5n|

Theorem 3. Let L be a finite and relational language which is not monadic and let
be an L-sentence.

. Ma(e)| Hy(p)
If lm ——= =1 then lim ————— =1.
n—oo |8y n—oo In | M, ()]

Remark 4. (i) If (M, (¢)|/|Sn| — 0 as n — oo, then it may or may not be the case
that Hy,(¢)/In|M!,(p)] — 1 as n — co. Examples 6, 7 and 8 show this.
(ii) The theorem does not hold for monadic L. Example 9 shows this.

In order to prove Theorem 3 we will use the following lemma which should occur in the
literature in one form or another, but for the sake of completeness a (short) proof is
nevertheless given in the appendix.

Lemma 5. Suppose that a, and b, are two sequences such that a, > b, > 0, for every
n, limy, o0 by, = o0 and lim, o an/b, = 1. Then lim, . (Ina, — Inb,) = 0, and
consequently lim, o, Ina,/Inb, = lim,,_, In2a,/Inb, = 1.

We now prove Theorem 3. Suppose that L is a finite and relational language which is
not monadic and suppose that ¢ is a formula in L such that

(M)
Iim ———

We introduce some simpler notation. For every n, let
sn=1Snl,  sp =Sl mn = |Mnle)|,  my, = M (0)]-

With the new notation we have

=1.

(1) lim 2% =1
n—oo Sy,
and we want to prove that H,(¢)/Ilnm] — 1 as n — oo.

Since L is not monadic, Theorem 8 in [2] says that
(2)

For every [A] € S}, |[A]| = n!/k where k is the order of the group of automorphisms
of A. So if |[A4]| < n! then |[A]| < n!/2. A structure A € S, is rigid if A has only one
automorphism. It follows that A is rigid if and only if |[A]| = nl.

Let

n—oo sh - nl

Ty =

fo={A € Myn(p) : Ais rigid}|,

fn:rn_fn: ‘{Aesn_Mn<90)
= |{[A] € My, () : Ais rigid}|.

Observe that f, = n!fT/L and, by (1), that lim, e fn/sn = 0. From (2) together with
Lemma 4.3.2 and Proposition 4.3.3 in [1] we get

lim % =1

and from this and (1) we get
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(3) %:ﬂ«%:{w_h

Sn
-— — 1lasn— oo.
My, Sp My Sn Sn

My

Since L is not monadic it has at least one relation symbol R of arity k where & > 2. For
each A € S, and each k-tuple @ of elements from {1,...,n} we have @ € R* or a ¢ R4,
As there are n* such k-tuples, there are on* possibilities for R4. Since on* > 2”2, there
are at least 27" different structures in Sn, 80 Sy > 2"2, which gives

7’1/2 n2
(4) Insy, _ln(2 )_111(2 ):nln2—>ooasn—>oo.
In(n!) = In(n!) In(n") Inn

By Lemma 5 and (1) we have lim,,_,o(Inm, —In s,,) = 0, which together with (4) implies
that

Inm, Inm,—Ins, In s,
= + — 00 as n — 00.

(5) In(n!) In(n!) In(n!)
And (5) in turn gives

In 2 !
(6) le_Mﬁlasn_)oo.
Inm, Inm,

As T <mj, < my we have In T < Inmj, < Inm, which together with (6) implies that

1 /
(7) lim —n

n—oo Inmy,

=1.

Since
Hy(p) _ Hy, (o) ) Inm,
In|Ml(p)]  Inm, Inml

it suffices, by (7), to prove that Hy,(¢)/Inm, — 1 as n — oco. From the definitions of
fn and f] it follows that f, = n!f] and that

®) Holo) > —f, M o gy

My My My My

By (8), (6) and (3) we get

n !
Halp) —aelngef

> —1 as n — oo.
Inm,, Inm,, my, Inm,

(9)

Since for every probability distribution p = (p1,...,px) Hn(p) < Ink, we have H,(p) <
Inm], < Inm, and hence H,(¢)/Inm, < 1, for all sufficiently large n. Together with
(9) this implies that

H,

lim n(¢)
n—oo Inmy,

and, as shown above, Theorem 3 follows from this.

=1

EXAMPLES

Example 6. This example shows that the conclusion of Theorem 3 may hold even if
|IMy(9)|/|Sn] — 0 as n — oco. Let L have one binary relation symbol R and no other
relation symbols (exept for =). Let ¢ the following L-sentence

Vo, yR(z,y) V Vo, y-R(z,y).

For any n, M/ (¢) has two elements and each of them contains exactly one structure.
It follows that |M,,(¢)| = 2, for every n. In the proof of Theorem 3 we showed that
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Sn| > 2™, so we have |[M,,(¢)|/|Sn| — 0 as n — co. Since for any n, M/ ()| = 2 and
H,(y) = —1/21n(1/2) —1/2In(1/2) = 1In2, we get H,(¢0)/In| M. ()| = 1 for every n.

Example 7. This example shows that the conclusion of Theorem 3 may fail if
|IMy(©)|/|Sn] — 0 as n — oo. It also shows that for certain formulas ¢ and 6 we have
Y F 0 and Hy(0) < H,(¢) for all sufficiently large n. Let L and v be as in the previous
example. Let x be an L-sentence which expresses that

R is an equivalence relation such that R has exactly two equivalence classes and
one of them contains exactly one element.

Finally let 6 be ¢V x. For any n, M/, () has three elements: The first contains the unique
structure in S, which satisfies Vx yR(:U y); the second contains the unique strucure in
S, which satisfies Vz, y—R(z,y); the third element of M/ (f) contains the precisely n
different structures in S, in which y is true. It follows that | M, (0)] = n + 2 and

1 1
Hn(9)2—2< In )7 L ML
n+2 n+2 n+2 n+2
In(n + 2) n n+2
=2 + In —0 as n— oo,
n+2 n+2 n
1 2 2
because M_)’ " — 1 and lnn+ —0 as n— oo.
n+2 n+2 n
Therefore, H,(6)/In| M (8)] = H,(6)/In3 — 0 as n — oo. We clearly have ¢ F 6.

Since Hy(¢) = In2 for all n and lim,, o, Hy,(0) = 0 it follows that H,(¢) > H,(0) for
all sufficiently large n.

Example 8. This example shows that if [M,,(¢)|/|Sn| — 0 asn — oo then lim,,_,oc Hy(p)
may not exist. It also shows that we may have ¢ F v and H,(¢) < Hy(¢). Let L have
two relation symbols R, P (except for =) where R is binary and P is unary. Let o1 be
a sentence which expresses that

R is symmetric and irreflexive,

for every x there exists a unique y such that R(z,y), and

either VxP(z) or Yoz—P(z).
Let oy be the sentence Vz,y(—=R(z,y) A —P(z)) and let o be the sentence o7 V 5.

Then, for every n, M5, (o) has exactly one element which contains exactly one

structure. And, for every n, M), (o) has exactly three elements; one of them contains
exactly one structure and each of the other two contains exactly a,, = (2n)!/2"n! struc-
tures; consequently |M2n(0)} = 2a,+1. It follows that Hy,4+1(0) = —In1 = 0, for every
n. For every n we also have

1 1 a a
H — 1 —2< ny, o )
() 2%, +1  2a, +1 2%, +1  2a, +1
~ In(2a, +1) 2a, 2a, +1

In — In2 as n — oo,
2a, +1 2a, + 1 an
1
because lim a, = oo and lim 27 0.
n—oo r—00 I

Hence lim,, o H,(0) does not exist; and neither does lim,, oo Hy(0)/|M., ()| exist
since |[M! (0)| is always 1 or 3. Clearly, oo F o and H,(o2) = 0 for all n. Hence
H,(09) < Hy(0) for all sufficiently large even n.

Example 9. The following example shows that the assumption about non-monadic
language L in Theorem 3 is necessary. Let L have only one unary relation symbol P
and no other relation symbols (in addition to =). Let ¢ be any sentence which is true
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in every L-structure; for instance, we can let ¢ be Vz(x = x). Then M, (¢) = S,. We
will show that
Hu(p) 1

W M, ()] T 2
First note that for any A, B € S,,, A = B if and only if |[P4| = |P?|, so [M/,(¢)| = |S.| =
n. Hence it suffices to prove that H,(¢)/Inn — 1/2asn — co. For any nand 1 < ¢ < n,
let pn; = (1)/2", so Hp(p) = — >0 Pnilnpni. Let Hi(p) = — 30 pp,ilog pn,
where log is the logarithm with base 2. From the identity Ina = loga/loge it follows
that H,(p) = H(¢)/loge. By [3] (Theorem 3) we have

H* () = log 4 /% +0((4n)72).

Hy(p loge Hx(p
(©) _logey o Hio)
Inn logn logn

_ log /TS% + O((4n)~?)

logn
1 logn+log %t 4+ 2- O((4n)~?)

2 logn

1
—>§asn—>oo.

Therefore

APPENDIX

Proof of Lemma 5: Suppose that a, and b, are two sequences such that a, > b, > 0,
for every n, lim, o b, = 00 and lim,,_,o ay, /b, = 1. By the continuity of In we have
lim,, oo (Ina, —Inb,) = lim, .~ In g—: = 0, and consequently

Ina, Ina,—1Inb,

np. = np Tl lasn— oo (because lim by = o).

Since In2a, = In2 + Ina,, it follows that In2a,/Inb, — 1 as n — co.
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