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Abstract. We study de�nable sets D of SU-rank 1 inMeq, whereM is a countable
homogeneous and simple structure in a language with �nite relational vocabulary.
Each such D can be seen as a `canonically embedded structure', which inherits all
relations on D which are de�nable inMeq, and has no other de�nable relations. Our
results imply that if no relation symbol of the language of M has arity higher than
2, then there is a close relationship between triviality of dependence and D being a
reduct of a binary random structure. Somewhat more precisely: (a) if for every n ≥ 2,
every n-type p(x1, . . . , xn) which is realized in D is determined by its sub-2-types
q(xi, xj) ⊆ p, then the algebraic closure restricted to D is trivial; (b) ifM has trivial
dependence, then D is a reduct of a binary random structure.

1. Introduction

We call a countable �rst-order structure M homogeneous if it has a �nite relational
vocabulary (also called signature) and every isomorphism between �nite substructures
ofM can be extended to an automorphism ofM. (The terminology ultrahomogeneous
is used in some texts.) For surveys about homogeneous structures and connections to
other areas, see [25] and the �rst chapter of [3]. It is possible to construct 2ω countable
homogeneous structures, even for a vocabulary with only a binary relation symbol, as
shown by Henson [13]. But it is also known that in several cases, such as partial orders,
undirected graphs, directed graphs or stable structures with �nite relational vocabulary,
all countable homogeneous structures in each class can be classi�ed in a more or less
explicit way [3, 10, 11, 15, 20, 21, 22, 23, 27, 28]. Ideas from stability theory and the
study of homogeneous structures have been used to obtain a good understanding of
structures that are ω-categorical and ω-stable (which need not be homogeneous) [5] and,
more generally, of smoothly approximable structures [4, 16].

Simplicity [2, 30] is a notion that is more general than stability. The structures that
are stable, countable and homogeneous are well understood, by the work of Lachlan
and others; see for example the survey [21]. However, little appears to be known about
countable homogeneous structures that are simple, even for a binary vocabulary, i.e. a
�nite relational vocabulary where every relation symbol has arity at most 2. Besides the
present work, [19] and the dissertation of Aranda López [1] has results in this direction.
A binary structure is one with binary vocabulary.

We say that a structure M is a reduct of a structure M′ (possibly with another
vocabulary) if they have the same universe and for every positive integer n and every
relation R ⊆ Mn, if R is de�nable in M without parameters, then R is de�nable in
M′ without parameters. For any structure M, Meq denotes the extension of M by
imaginary elements [14, 29]. Note that understanding what kind of structures can be
de�ned inMeq is roughly the same as understanding which structures can be interpreted
inM.
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We address the following problems: Suppose that M has �nite relational vocabulary,
is homogeneous and simple, E ⊂M is �nite, D ⊆M eq is E-de�nable, only �nitely many
1-types over E are realized in D, and for every d ∈ D the SU-rank of the type of d over
E is 1.

(A) What are the possible behaviours of the algebraic closure restricted to D if ele-
ments of E may be used as constants?

(B) LetD be the structure with universeD which for every n and E-de�nable R ⊆ Dn

has a relation symbol which is interpreted as R (and the vocabulary of D has
no other symbols). We call D a canonically embedded structure over E. Note
that the vocabulary of D is relational but not �nite. Now we ask whether D is
necessarily a reduct of a homogeneous structure with �nite relational vocabulary?

Macpherson [24] has shown that no in�nite vector space over a �nite �eld can be
interpreted in a homogeneous structure over a �nite relational language, which implies
that, in (A), the pregeometry of D induced by the algebraic closure cannot be isomorphic
to the pregeometry induced by linear span in a vector space over a �nite �eld. If we
assume, in addition to the assumptions made above (before (A)), thatM is one-based,
then it follows from [24] and work of De Piro and Kim [6, Corollary 3.23] that algebraic
closure restricted to D is trivial, i.e. if d ∈ D, B ⊆ D and d ∈ acl(B ∪ E), then there is
b ∈ B such that d ∈ acl({b} ∪ E). But what if we do not assume thatM is one-based?

Let D0 be the reduct of D to the relation symbols with arity at most 2. If the answer
to the question in (B) is `yes' in the strong sense that D is a reduct of D0 and D0 is
homogeneous, then Remark 3.9 below implies that algebraic closure and dependence
restricted to D are trivial. IfM is supersimple with �nite SU-rank and the assumptions
about D and D0 hold not only for this particular D, but for all D, then it follows from
[12, Corollary 4.7], [6, Corollary 3.23] and some additional straightforward arguments
that the theory ofM has trivial dependence (De�nition 3.5 below).

In the other direction, ifM is binary, has trivial dependence and acl({d}∪E)∩D = {d}
for all d ∈ D (so D is a geometry), then, by Theorem 5.1, D is a reduct of a binary
homogeneous structure; in fact D is a reduct of a binary random structure in the sense
of Section 2.3.

Thus we establish that, at least for binaryM, the problems (A) and (B) are closely
related, although we do not know whether our partial conclusions to (A) and (B) in the
binary case are equivalent. Neither do we solve any one of problems (A) or (B). So in
particular, the problem whether algebraic closure restricted to D (and using constants
from E) can be nontrivial for some binary, homogeneous and simple M remains open.
Nevertheless, Theorem 5.1 is used in [19] where a subclass of the countable, binary,
homogeneous, simple and one-based structures is classi�ed in a fairly concrete way;
namely the class of such structures which have height 1 in the sense of [7], roughly
meaning that the structure is �coordinatized� by a de�nable set of SU-rank 1.

This article is organized as follows. In Section 2 we recall de�nitions and results about
homogeneous structures and simple structures, in particular the independence theorem
and consequences of ω-categoricity and simplicity together, especially with regard to
imaginary elements. We also explain what is meant by a binary random structure.

In Section 3 we prove results implying that if M and D are as assumed before (A)
above andM is binary, then algebraic closure and dependence restricted to D are trivial.
In Section 5 we prove the next main result, Theorem 5.1, saying that if M and D are
as assumed before (A), M is binary and its theory has trivial dependence, then D is
a reduct of a binary random structure. In order to prove Theorem 5.1 we use a more
technical result, Theorem 4.6, which is proved in Section 4, where most of the technical
(and simplicity theoretic) work is done. The proofs assume a working knowledge in
stability/simplicity theory, as can be found in [2, 30].
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2. Preliminaries

2.1. General notation and terminology. A vocabulary (signature) is called relational
if it only contains relation symbols. For a �nite relational vocabulary the maximal k
such that some relation symbol has arity k is called its maximal arity. If V is a �nite
vocabulary and the maximal arity is 2 then we call V binary (although it may contain
unary relation symbols), and in this case a V -structure is called a binary structure. We
denote (�rst-order) structures by A,B, . . . ,M,N , . . . and their respective universes by
A,B, . . . ,M,N, . . .. By the cardinality of a structure we mean the cardinality of its
universe. To emphasize the cardinality of a �nite structure we sometimes call a structure
with cardinality k < ω a k-structure, or k-substructure if it is seen as a substructure of
some other structure. Finite sequences (tuples) of elements of some structure (or set in
general) will be denoted ā, b̄, . . ., while a, b, . . . usually denote elements from the universe
of some structure. The notation ā ∈ A means that every element in the sequence ā
belongs to A. Sometimes we write ā ∈ An to show that the length of ā, denoted |ā|,
is n and all elements of ā belong to A. By rng(ā), the range of ā, we denote the set
of elements that occur in ā. In order to compress notation, we sometimes, in particular
together with type notation and the symbol ` |̂ ' (for independence), write `AB' instead
of `A ∪B', or `ā' instead of `rng(ā)'.

Suppose that M is a structure, A ⊆ M and ā ∈ M . Then aclM(A), dclM(A) and
tpM(ā/A) denote the algebraic closure of A with respect toM, the de�nable closure of
A with respect toM and the complete type of ā over A with respect toM, respectively
(see for example [14] for de�nitions). By SMn (A) we denote the set of all complete n-
types over A with respect toM. We abbreviate tpM(ā/∅) with tpM(ā). The notation
aclM(ā) is an abbreviation of aclM(rng(ā)), and similarly for `dcl'.

We say thatM is ω-categorical, respectively simple, if Th(M) has that property, where
Th(M) is the complete theory ofM (see [14] and [2, 30] for de�nitions). Let A ⊆M and
R ⊆Mk. We say that R is A-de�nable (with respect toM) if there is a formula ϕ(x̄, ȳ)
(without parameters) and ā ∈ A such that R = {b̄ ∈ Mk : M |= ϕ(b̄, ā)}. In this case
we also denote R by ϕ(M, ā). Similarly, for a type p(x̄) (possibly with parameters) we
let p(M) be the set of all tuples of elements inM that realize p, andM |= p(ā) means
that ā realizes p inM. De�nable without parameters means the same as ∅-de�nable.
De�nition 2.1. (i) If M is a structure with relational vocabulary and A ⊆ M , then
M�A denotes the substructure ofM with universe A.
(ii) If M is a V -structure and V ′ ⊆ V , then M�V ′ denotes the reduct of M to the
vocabulary V ′.

Note that ifM is a V -structure and V ′ ⊆ V , thenM�V ′ is a reduct ofM in the sense
de�ned in Section 1.

2.2. Homogeneity, Fraïssé limits and ω-categoricity.

De�nition 2.2. (i) Let V be a relational vocabulary andM a V -structure. We callM
homogeneous if its universe is countable and for all �nite substructures A and B ofM,
every isomorphism from A to B can be extended to an automorphism ofM.
(ii) A structureM (for any vocabulary) is called ω-homogeneous if whenever 0 < n < ω,
a1, . . . , an, an+1, b1, . . . , bn ∈ M and tp(a1, . . . , an) = tp(b1, . . . , bn), there is bn+1 ∈ M
such that tp(a1, . . . , an+1) = tp(b1, . . . , bn+1).

De�nition 2.3. Let V be a �nite relational vocabulary and let K be a class of �nite
V -structures which is closed under isomorphism, that is, if A ∈ K and B ∼= A, then
B ∈ K.
(i) K has the hereditary property, abbreviated HP, if A ⊆ B ∈ K implies that A ∈ K.
(ii) K has the amalgamation property, abbreviated AP, if the following holds: if A,B, C ∈
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K and fB : A → B and fC : A → C are embeddings then there are D ∈ K and embed-
dings gB : B → D and gC : C → D such that gB ◦ fB = gC ◦ fC .
(iii) If M is a V -structure, then Age(M) is the class of all V -structures that are iso-
morphic with some �nite substructure ofM.

We allow structures with empty universe if the vocabulary is relational (as generally
assumed in this article), so if K has the hereditary property then the structure with
empty universe belongs to K. It follows that if the vocabulary is relational then the
joint embedding property [14] is a consequence of the amalgamation property, which is
the reason why we need not bother about the former in the present context. The following
result of Fraïssé ([9], [14] Theorems 7.1.2 and 7.1.7) relates homogeneous structures to
�nite structures, and shows how the former can be constructed from the later.

Fact 2.4. Let V be a �nite relational vocabulary.
(i) Suppose that K is a class of �nite V -structures which is closed under isomorphism
and has HP and AP. Then there is a unique, up to isomorphism, countable V -structure
M such thatM is homogeneous and Age(M) = K.
(ii) IfM is a homogeneous V -structure, then Age(M) has HP and AP.

De�nition 2.5. Suppose that V is a �nite relational vocabulary and that K is a class of
�nite V -structures which is closed under isomorphism and has HP and AP. The unique
(up to isomorphism) countable structureM such that Age(M) = K is called the Fraïssé
limit of K.

Part (i) in the next fact is Corollary 7.4.2 in [14] (for example). Part (ii) follows from the
well known characterisation of ω-categorical structures by Engeler, Ryll-Nardzewski and
Svenonius ([14], Theorem 7.3.1), which will frequently be used without further reference.
Part (iii) follows from a straightforward back and forth argument.

Fact 2.6. Let V be a relational vocabulary andM an in�nite countable V -structure.
(i) If V is �nite thenM is homogeneous if and only ifM is ω-categorical and has elim-
ination of quanti�ers.
(ii) IfM is ω-categorical, thenM is ω-saturated and ω-homogeneous.
(iii) If M is countable and ω-homogeneous, then the following holds: if 0 < n < ω,
a1, . . . , an, b1, . . . , bn ∈ M and tpM(a1, . . . , an) = tpM(b1, . . . , bn), then there is an au-
tomorphism f ofM such that f(ai) = bi for all i.

2.3. Binary random structures. Let V be a binary vocabulary (and therefore �nite).

De�nition 2.7. A class K of �nite V -structures is called 1-adequate if it has HP and
the following property with respect to 1-structures:

If A,B ∈ K are 1-structures, then there is C ∈ K such that A ⊆ C and B ⊆ C.

Construction of a binary random structure: Let P2 be a 1-adequate class of
V -structures such that P2 contains a 2-structure. We think of P2 as containing the
isomorphism types of �permitted� 1-(sub)structures and 2-(sub)structures. Then let
RP2 be the class of all �nite V -structures A such that for k = 1, 2 every k-substructure
of A is isomorphic to some member of P2. Obviously, RP2 has HP, because the 1-
adequateness of P2 implies that P2 has HP. The 1-adequateness of P2 implies that any
two 1-structures of RP2 can be embedded into a 2-structure of P2. From this it easily
follows that RP2 has AP. Let F be the Fraïssé limit of RP2. We call F the random
structure over P2, or more generally a binary random structure. This is motivated by
the remark below. But �rst we show that the well known �random graph� (or �Rado
graph�) is a binary random structure in this sense.



SIMPLE HOMOGENEOUS STRUCTURES 5

Example 2.8. (The random graph) Let V = {R}, where R is a binary relation
symbol and let P2 be the following class (in fact a set) of V -structures, where (A,B)
denotes the {R}-structure with universe A and where R is intepreted as B ⊆ A2:

P2 =
{

(∅, ∅), ({1}, ∅), ({1, 2}, ∅), ({1, 2}, {(1, 2), (2, 1)})
}

If RP2 is as in the construction above, then RP2 is the class of all �nite undirected
graphs (without loops), which has HP and AP, and the Fraïssé limit of it is (in a model
theoretic context) often called the random graph.

Remark 2.9. (Random structures and zero-one laws) Let P2 and RP2 be as in
the construction of a binary random structure above. Then RP2 is a parametric class
in the sense of De�nition 4.2.1 in [8] or Section 2 of [26]. Hence, by Theorem 4.2.3
in [8], RP2 has a (labelled) 0-1 law (with the uniform probability measure). This is
proved by showing that all extension axioms that are compatible with RP2 hold with
probability approaching 1 as the (�nite) cardinality of members of RP2 approaches
in�nity; see statement (5) on page 76 in [8]. (Alternatively, one can use the terminology
of [18] and show that RP2 �admits k-substitutions� for every positive integer k, and
then apply Theorem 3.15 in [18].) It follows that if TRP2 is the set of all V -sentences ϕ
with asymptotic probability 1 (in RP2), then all extension axioms that are compatible
with RP2 belong to TRP2 . Let F be the Fraïssé limit of RP2. Then F satis�es every
extension axiom which is compatible with RP2 (since if A ⊆ F and A ⊆ B ∈ RP2, then
there is an embedding of B into F which is the identity on A). By a standard back-and-
forth argument, it follows that if M is a countable model of TRP2 , then M ∼= F and
hence F |= TRP2 .

The construction of a binary random structure can of course be generalised to any �nite
relational (not necessarity binary) vocabulary.

2.4. Simple ω-categorical structures, imaginary elements and rank. We will
work with concepts from stability/simplicty theory, including imaginary elements. That
is, we work in the structure Meq obtained from a structure M by adding �imaginary�
elements, in the way explained in [14, 29], for example. In the case of ω-categorical
simple theories, some notions and results become easier than in the general case. For
example, every ω-categorical simple theory has elimination of hyperimaginaries, so we
need not consider �hyperimaginary elements� or the �bounded closure�; it su�ces to
consider imaginary elements and algebraic closure, so we need not go beyondMeq. The
results about ω-categorical simple structures that will be used, often without explicit
reference, are stated below, with proofs or at least indications of how they follow from
well known results in stability/simplicity theory or model theory in general.

LetM be a V -structure. Although we assume familiarity withMeq, the universe of
which is denotedM eq, we recall part of its construction (as in [14, 29] for instance), since
the distinction between di�erent �sorts� of elements ofMeq matters in the present work.
For every 0 < n < ω and every equivalence relation E on Mn which is ∅-de�nable in
M, V eq (the vocabulary ofMeq) contains a unary relation symbol PE and an (n + 1)-
ary relation symbol FE (which do not belong to V ). PE is interpreted as the set of
E-equivalence classes and, for all ā ∈ (M eq)n and each c ∈M eq,Meq |= FE(ā, c) if and
only if ā ∈ Mn, c is an E-equivalence class and ā belongs to c. (So the interpretation
of FE is the graph of a function from Mn to the set of all E-equivalence classes.) The
notation F (ā, c) means thatMeq |= FE(ā, c) for some n and some ∅-de�nable equivalence
relation E on Mn.

A sort ofMeq is, by de�nition, a set of the form SE = {a ∈M eq :Meq |= PE(a)} for
some E as above. If A ⊆M eq and there are only �nitely many E such that A∩SE 6= ∅,
then we say that only �nitely many sorts are represented in A. Note that `=', the identity
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relation, is an ∅-de�nable equivalence relation on M and every =-class is a singleton.
Therefore M can (and will) be identi�ed with the sort S=, which we call the real sort.
Hence every element of M eq belongs to SE for some E. If N ≡Meq then every element
a ∈ N such that N |= P=(a) is called a real element and every element a ∈ N such that
N |= PE for some E is called an imaginary element (so real elements are special cases
of imaginary elements). However, the set

{¬PE(x) : E is a ∅-de�nable equivalence relation on Mn for some n}
is consistent with Th(Meq) (by compactness), so some model of Th(Meq) will contain
elements which are neither real nor imaginary. This also shows that Meq is not ω-
saturated even if M is (which is the case if M is ω-categorical). However, if M is
ω-categorical and A ⊆ M eq is �nite, then every type p ∈ SMeq

n (A) which is realized by
an n-tuple of imaginary elements in some elementary extension ofMeq is already realized
in Meq, as stated by Fact 2.14 below. The �rst fact below follows from Theorem 4.3.3
in [14] or Lemma III.6.4 in [29].

Fact 2.10. For all ā, b̄ ∈M , tpM(ā) = tpM(b̄) if and only if tpMeq(ā) = tpMeq(b̄).

Fact 2.11. Suppose thatM is ω-categorical, let A ⊆M eq and suppose that only �nitely
many sorts are represented in A.
(i) For every n < ω and �nite B ⊆Meq, only �nitely many types from SM

eq

n (aclMeq(B))
are realized by n-tuples in An.
(ii) For every n < ω and �nite B ⊆Meq, aclMeq(B) ∩A is �nite.

Proof. Let B′ ⊆ M be �nite and such that B ⊆ aclMeq(B′). By ω-categoricity, there
are, up to equivalence inM, only �nitely many formulas in free variables x1, . . . , xn with
parameters from B′, so part (i) is a consequence of Lemma 6.4 of Chapter III in [29] (or
use Theorem 4.3.3 in [14]). Part (ii) follows from part (i). �

De�nition 2.12. Suppose that A ⊆M eq is �nite. We say that a structure N is canon-
ically embedded in Meq over A if N is an A-de�nable subset of M eq and for every
0 < n < ω and every relation R ⊆ Nn which is A-de�nable in Meq there is a rela-
tion symbol in the vocabulary of N which is interpreted as R and the vocabulary of N
contains no other relation symbols (and no constant or function symbols).

The following is immediate from the de�nition:

Fact 2.13. If A ⊆ M eq is �nite and N is canonically embedded in Meq over A, then
for all ā, b̄ ∈ N and all C ⊆ N , aclN (C) = aclMeq(CA)∩N and tpN (ā/C) = tpN (b̄/C)
if and only if tpMeq(ā/CA) = tpMeq(b̄/CA).

Fact 2.14. Suppose thatM is ω-categorical.
(i) If N is canonically embedded in Meq over a �nite A ⊆ M eq and only �nitely sorts
are represented in N , then N is ω-categorical and therefore ω-saturated.
(ii) If A ⊆M eq is �nite and ā ∈M eq, then tpMeq(ā/aclMeq(A)) is isolated.
(iii) If A ⊆Meq is �nite, n < ω and p ∈ SMeq

n (aclMeq(A)) is realized in some elementary
extension ofMeq by an n-tuple of imaginary elements, then p is realized inMeq.
(iv) IfM is countable, thenMeq is ω-homogeneous.

Proof. (i) If M is ω-categorical, then, by the characterization of its complete theory
by Engeler, Ryll-Nardzewski and Svenonius (the characterisation by isolated types),
Fact 2.13 and, for example, Lemma 6.4 of Chapter III in [29] (or Fact 1.1 in [7]), it
follows that N is ω-categorical (and hence ω-saturated).

(ii) For ω-categorical M, �nite A ⊆ M eq and ā ∈ M eq, it follows from Fact 2.13
and part (i) that tp(ā/A) is isolated. From the assumption that tp(ā/aclMeq(A)) is not
isolated it is straightforward to derive a contradiction to Fact 2.11. Parts (iii) and (iv)
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follow from part (ii). �

Besides the above stated consequences of ω-categoricity, the proofs in Sections 3 and 4 use
the so called independence theorem for simple theories [2, 30]. Every ω-categorical simple
theory has elimination of hyperimaginaries and, with respect to it, `Lascar strong types'
are equivalent with strong types ([2] Theorem 18.14, [30] Lemma 6.1.11), from which it
follows that any two �nite tuples ā, b̄ ∈ M eq have the same Lascar strong type over a
�nite set A ⊆M eq if and only if they have the same type over aclMeq(A). Therefore the
independence theorem implies the following, which is the version of it that we will use:

Fact 2.15. (The independence theorem for simple ω-categorical structures and
�nite sets) Let M be a simple and ω-categorical structure and let A,B,C ⊆ Meq be
�nite. Suppose that B |̂

A
C, n < ω, b̄, c̄ ∈ (M eq)n, b̄ |̂

A
B, c̄ |̂

A
C and

tpMeq(b̄/aclMeq(A)) = tpMeq(c̄/aclMeq(A)).

Then there is d̄ ∈ (M eq)n such that

tpMeq(d̄/B ∪ aclMeq(A)) = tpMeq(b̄/B ∪ aclMeq(A)),

tpMeq(d̄/C ∪ aclMeq(A)) = tpMeq(c̄/C ∪ aclMeq(A))

and d̄ is independent from B ∪ C over A.

By induction one easily gets the following, which is sometimes more practical:

Corollary 2.16. Let M be a simple and ω-categorical structure, 2 ≤ k < ω and let
A,B1, . . . , Bk ⊆Meq be �nite. Suppose that {B1, . . . , Bk} is independent over A, n < ω,
b̄1, . . . , b̄k ∈ (M eq)n and, for all i, j ∈ {1, . . . , k}, b̄i |̂

A
Bi and

tpMeq(b̄i/aclMeq(A)) = tpMeq(b̄j/aclMeq(A)).

Then there is b̄ ∈ (M eq)n such that, for all i = 1, . . . , k,

tpMeq(b̄/Bi ∪ aclMeq(A)) = tpMeq(b̄i/Bi ∪ aclMeq(A))

and b̄ is independent from B1 ∪ . . . ∪Bk over A.

Suppose that T is a simple theory. For every type p (possibly over a set of parameters)
with respect to T , there is a notion of SU-rank of p, denoted SU(p); it is de�ned in [2, 30]
for instance. We abbreviate SU(tpM(ā/A)) with SU(ā/A). For any type p, SU(p) is
either ordinal valued or unde�ned (or alternatively given the value ∞).

3. Sets of rank one in simple homogeneous structures

In this section we derive consequences for sets with rank one in simple homogeneous
structures with the n-dimensional amalgamation property for strong types (de�ned be-
low), where n is the maximal arity of the vocabulary. A consequence of the independence
theorem is that all simple structures have the 2-dimensional amalgamation property for
strong types. We will use the notation P(S) for the powerset of the set S, and let
P−(S) = P(S) \ {S}. Every n < ω is identi�ed with the set {0, . . . , n − 1}, and hence
the notation P(n) makes sense. For a type p, dom(p) denotes the set of all parameters
that occur in formulas in p. We now consider the `strong n-dimensional amalgamation
property for Lascar strong types', studied by Kolesnikov in [17] (De�nition 4.5). How-
ever, we only need it for real elements and in the present context `Lascar strong type' is
the same as `type over an algebraically closed set'.
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De�nition 3.1. Let T be an ω-categorical and simple theory and let n < ω.
(i) A set of types {ps(x̄)|s ∈ P−(n)} (with respect toMeq for someM |= T ) is called an
n-independent system of strong types over A (where A ⊆Meq) if it satis�es the following
properties:

• dom(p∅) = A.
• for all s, t ∈ P−(n) such that s ⊆ t, pt is a nondividing extension of ps.
• for all s, t ∈ P−(n), dom(ps) |̂

dom(ps∩t)
dom(pt).

• for all s, t ∈ P−(n), ps and pt extend the same type over aclMeq(dom(ps∩t)).

(ii) We say that T (and any N |= T ) has the n-dimensional amalgamation property
for strong types if for every M |= T and every n-independent system of strong types
{ps(x̄)|s ∈ P−(n)} over some set A ⊆ M eq, there is a type p∗ such that p∗ extends ps
for each s ∈ P−(n) and p∗ does not divide over

⋃
s∈P−(n) dom(ps).

Remark 3.2. By the independence theorem (in the general case when the sets of pa-
rameters of the given types may be in�nite [2, 30]), every ω-categorical and simple theory
has the 2-dimensional amalgamation property for strong types.

Theorem 3.3. Suppose thatM has a �nite relational vocabulary with maximal arity ρ.
Also assume that M is countable, homogeneous and simple and has the ρ-dimensional
amalgamation property for strong types. Let D,E ⊆ M where E is �nite, D is E-
de�nable, and SU(a/E) = 1 for every a ∈ D. If a ∈ D, B ⊆ D and a ∈ aclMeq(BE),
then a ∈ aclMeq(B′E) for some B′ ⊆ B with |B′| < ρ.

Proof. Assume that a ∈ D, B ⊆ D and a ∈ aclMeq(BE). Without loss of generality
we may assume that B is �nite. By induction on |B| we prove that there is B′ ⊆ B
such that |B′| < ρ and a ∈ aclMeq(B′E). The base case is when |B| < ρ and we are
automatically done.

So suppose that |B| ≥ ρ. If B is not independent over E then there is b ∈ B such that
b |̂�
E

(B \ {b}) and as SU(b/E) = 1 (by assumption) we get b ∈ aclMeq

(
(B \ {b}) ∪ E

)
.

Hence B ⊆ aclMeq(B′E) where B′ = B \{b} is a proper subset of B, so by the induction
hypothesis we are done.

So now suppose, in addition, that B is independent over E. If a ∈ aclMeq(B′E) for
some proper subset B′ ⊂ B, then we are done by the induction hypothesis. Therefore
assume, in addition, that a /∈ aclMeq(B′E) for every proper subset B′ ⊂ B.

Let n = |B|, so n ≥ ρ and enumerate B as B = {b0, . . . , bn−1}. For each S ∈ P−(ρ),
let

BS = aclMeq

(
{bt : t ∈ S} ∪ {bρ, . . . , bn−1} ∪ E

)
.

From the assumptions that B is independent over E and a /∈ aclMeq(B′E) for every
proper subset B′ ⊂ B it follows that the types tp(a/BS) form a ρ-independent system
of strong types over aclMeq(E ∪{bρ, . . . , bn−1}). As Th(M) has the ρ-dimensional amal-
gamation property for strong types (and using Fact 2.14), there is a′ ∈ D such that for
every i ∈ {0, . . . , ρ− 1} and Si = {0, . . . , ρ− 1} \ {i},

tpMeq(a′/BSi) = tpMeq(a/BSi) and(3.1)

a′ /∈ aclMeq(BE).

Claim. The bijection f :M�BEa′ →M�BEa de�ned by f(b) = b for all b ∈ BE and
f(a′) = a is an isomorphism.

Proof of the Claim. Let R be a relation symbol of the vocabulary ofM, so the arity
of R is at most ρ. It su�ces to show that if ā ∈ BEa′ then M |= R(ā) if and only if
M |= R(f(ā)). But this is immediate from (3.1) and the de�nition of f . �
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Since M is homogeneous and B and E are �nite, there is an automorphism g of M
which extends f from the claim. Then g(a′) = a and g �xes BE pointwise. But since
a ∈ aclMeq(BE) and, by (3.1), a′ /∈ aclMeq(BE) this contradicts that g is an automor-
phism. �

By using the previous theorem and Remark 3.2 we get the following:

Corollary 3.4. Suppose thatM is a countable, binary, homogeneous and simple struc-
ture. Let D,E ⊆ M where E is �nite, D is E-de�nable and SU(a/E) = 1 for every
a ∈ D. If a ∈ D, B ⊆ D and a ∈ aclMeq(BE), then a ∈ aclMeq({b} ∪ E) for some
b ∈ B.

De�nition 3.5. Let T be a simple theory.
(i) Suppose that M |= T and E ⊆ M . We say that D ⊆ M eq has n-degenerate depen-
dence over E if for all A,B,C ⊆ D such that A |̂�

CE
B there is B0 ⊆ B such that |B0| ≤ n

and A |̂�
CE
B0.

(ii) We say that T has trivial dependence if wheneverM |= T , A,B,C1, C2 ⊆ M eq and
A |̂�
B
C1C2, then A |̂�

B
Ci for i = 1 or i = 2. A simple structureM has trivial dependence

if its complete theory Th(M) has it.

Theorem 3.6. Suppose thatM has a �nite relational vocabulary with maximal arity ρ.
Also assume that M is countable, homogeneous and simple and has the ρ-dimensional
amalgamation property for strong types. Let D,E ⊆ M where E is �nite, D is E-
de�nable and SU(a/E) = 1 for every a ∈ D. Then D has (ρ− 1)-degenerate dependence
over E.

Proof. This is essentially an application of Theorem 3.3, basic properties of SU-rank
and the Lascar (in)equalities (see for example Chapter 5.1 in [30], in particular Theo-
rem 5.1.6).

Suppose that B,C ⊆ D, ā = (a1, . . . , an) ∈ Dn and

(3.2) ā |̂�
CE
B.

If ā is not independent over CE, then (since SU(d/E) = 1 for all d ∈ D) there is
a proper subsequence ā′ of ā such that rng(ā) ⊆ acl(ā′CE) and hence ā′ |̂�

CE
B. If, in

addition, B′ ( B and ā′ |̂�
CE
B′, then ā |̂�

CE
B′. Therefore we may assume that

(3.3) ā is independent over CE.

Moreover, we may assume that

(3.4) SU(ai/CE) = 1 for every i.

For otherwise, ai ∈ acl(CE) for some i, which implies that ā is not independent over
CE, contradicting (3.3).

Now (3.3), (3.4) and the Lascar equalities (for �nite ranks) give

(3.5) SU(ā/CE) = n.

Then (3.2) and (3.5) (together with Lemma 5.1.4 in [30] for example) give

SU(ā/BCE) < n,

so ā is not independent over BCE and hence there is i such that

ai |̂�
BCE

({a1, . . . , an} \ {ai}),
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so (by monotonicity of dependence)

ai |̂�
CE
B ∪ ({a1, . . . , an} \ {ai}),

and by (3.4),

ai ∈ acl(BCE ∪ ({a1, . . . , an} \ {ai})).
By Theorem 3.3, there is X ⊆ BC ∪ ({a1, . . . , an} \ {ai}) such that |X| < ρ and ai ∈
acl(XE). Then

ai ∈ acl
(
(X ∩B) ∪ CE ∪ ({a1, . . . , an} \ {ai})

)
.

Let ā′ be the proper subsequence of ā in which ai removed. Then, using (3.5),

SU(ā/(X ∩B) ∪ CE) = SU(ā′/(X ∩B) ∪ CE) < n = SU(ā/CE),

and hence ā |̂�
CE

(X ∩B) where |X ∩B| < ρ. �

Remark 3.7. Suppose that M is homogeneous and simple and that E ⊆ M is �nite.
Let ME be the expansion of M with a unary relation symbol Pe for each e ∈ E and
interpret Pe as {e}. It is straightforward to verify that any isomorphism between �nite
substructures ofME can be extended to an automorphism ofME , so it is homogeneous.
Moreover, since the notion of simplicity only depends on which relations are de�nable
with parameters and exactly the same relations are de�nable with parameters in ME

as inM it follows thatME is simple (see for example [2, Remark 2.26]). For the same
reason, ifM has trivial dependence, then so hasME .

Corollary 3.8. Suppose that M is countable, homogeneous, simple with a �nite rela-
tional vocabulary with maximal arity ρ, and with the ρ-dimensional amalgamation prop-
erty for strong types. Let D ⊆ M eq be E-de�nable for �nite E ⊆ M , suppose that only
�nitely many sorts are represented in D and that SU(d/E) = 1 for all d ∈ D. Moreover,
suppose that if n < ω, a1, . . . , an, b1, . . . , bn ∈ D and

tpMeq(ai1 , . . . , aiρ/E) = tpMeq(bi1 , . . . , biρ/E) for all i1, . . . , iρ ∈ {1, . . . , n},
then tpMeq(a1, . . . , an/E) = tpMeq(b1, . . . , bn/E).

Then D has (ρ− 1)-degenerate dependence over E.

Proof. Suppose that M, D and E satisfy the assumptions of the corollary. Let ME

be the expansion of M by a unary relation symbol Pe for every e ∈ E where Pe is
interpreted as {e}. By Remark 3.7, ME is homogeneous and simple. Moreover, D
is ∅-de�nable in (ME)eq, so it is the universe of a canonically embedded structure D
in (ME)eq over ∅. By 2.14, D is ω-categorical and hence ω-homogeneous. As M,
and thus D, is countable it follows that if 0 < n < ω, a1, . . . , an, b1, . . . , bn ∈ D and
tpD(a1, . . . , an) = tpD(b1, . . . , bn), then there is an automorphism f of D such that
f(ai) = bi for all i. By assumption and Fact 2.10, if n < ω, a1, . . . , an, b1, . . . , bn ∈ D
and tpD(ai1 , . . . , aiρ) = tpD(bi1 , . . . , biρ) for all i1, . . . , iρ ∈ {1, . . . , n}, then

tpD(a1, . . . , an) = tpD(b1, . . . , bn).

Hence the reduct D0 of D to the relation symbols of arity at most ρ is homogeneous
(and D is a reduct of D0). Clearly, D is an ∅-de�nable subset in D and by Fact 2.13 we
have SU(d/∅) = 1 for all d ∈ D when `SU' is computed in D, as well as in D0 (since D
is a reduct of D0). Hence, Theorem 3.6 applied toM = D0 implies that D has (ρ− 1)-
degenerate dependence when we consider D as a ∅-de�nable set within D0, and hence
when D is considered as a ∅-de�nable set within D. From Fact 2.13 it follows that D has
(ρ− 1)-degenerate dependence when we consider D as a ∅-de�nable set within (ME)eq.
It follows that D has (ρ − 1)-de�nable dependence over E when we consider D as an
E-de�nable set withinMeq. �



SIMPLE HOMOGENEOUS STRUCTURES 11

Remark 3.9. As mentioned earlier, every ω-categorical simple theory has the 2-dimen-
sional amalgamation property for strong types. So ifM in Corollary 3.8 is binary, that
is, if ρ ≤ 2, then the assumption thatM has the ρ-dimensional amalgamation property
can be removed and the conclusion still holds.

4. Technical implications of trivial dependence in binary homogeneous

structures

In this section we de�ne the notion of `acl-complete set' and prove Theorem 4.6, and its
corollary, which shows, roughly speaking, that on any ∅-de�nable acl-complete subset of
Meq with rank 1 whereM is binary, homogeneous and simple with trivial dependence,
the �type structure� is determined by the 2-types.

Assumption 4.1. Throughout this section, including Theorem 4.6 and Corollary 4.7,
we assume that

(i) M is countable, binary, homogeneous, simple, with trivial dependence, and
(ii) D ⊆ Meq is ∅-de�nable, only �nitely many sorts are represented in D, and

SU(d) = 1 for every d ∈ D.

Notation 4.2. In the rest of the article, `tpMeq ', `aclMeq ' and `dclMeq ' are abbreviated
with `tp', `acl' and `dcl', respectively. (But when types, et cetera, are used with respect
to other structures we indicate it with a subscript.)

Recall the notation `F (ā, b)' explained in the beginning of Section 2.4.

Lemma 4.3. Suppose that a1, . . . , an, b1, . . . , bn ∈ M eq. Then the following are equiva-
lent:

(1) tp(a1, . . . , an) = tp(b1, . . . , bn).
(2) There are �nite sequences ā1, . . . , ān, b̄1, . . . , b̄n ∈ M and an isomorphism f :
M�ā1 . . . ān → M�b̄1 . . . b̄n such that F (āi, ai), F (b̄i, bi) and f(āi) = b̄i for all
i = 1, . . . , n.

Proof. If tp(a1, . . . , an) = tp(b1, . . . , bn), then sinceMeq is ω-homogeneous and count-
able, there is an automorphism f of Meq such that f(ai) = bi for all i. Let āi ∈ M
be such, for each i, that F (āi, ai), and let b̄i = f(āi). Then the restriction of f to
rng(ā1) ∪ . . . ∪ rng(ān) is an isomorphism fromM�ā1 . . . ān toM�b̄1 . . . b̄n.

For the other direction, note that F (āi, ai) implies that ai ∈ dcl(āi), and similarly for
b̄i and bi. So if (2) holds then, as M is homogeneous, tp(ā1, . . . , ān) = tp(b̄1, . . . , b̄n),
and therefore tp(a1, . . . , an) = tp(b1, . . . , bn). �

De�nition 4.4. We call D acl-complete if for all a ∈ D and all ā, ā′ ∈M , if F (ā, a) and
F (ā′, a), then tp(ā/acl(a)) = tp(ā′/acl(a)).

Lemma 4.5. There is D′ ⊆ M eq such that D′ satis�es Assumption 4.1 (ii), D′ is acl-
complete and

(1) for every d ∈ D there is (not necessarily unique) d′ ∈ D′ such that d ∈ dcl(d′)
and d′ ∈ acl(d), and

(2) for every d′ ∈ D′ there is d ∈ D such that d ∈ dcl(d′) and d′ ∈ acl(d).

Proof. Let p be any one of the �nitely many complete 1-types over ∅ which are realized in
D, and let the equivalence relation Ep onM

n (for some n) de�ne the sort of the elements
which realize p. By Fact 2.14, the following equivalence relation on Mn is ∅-de�nable:

E′p(x̄, ȳ) ⇐⇒ ∃z
(
p(z) ∧ FEp(x̄, z) ∧ FEp(ȳ, z) ∧ tp(x̄/acl(z)) = tp(ȳ/acl(z))

)
.

Moreover, by the same fact, every Ep-class is a union of �nitely many E′p-classes. By
replacing, for every complete 1-type p over ∅ that is realized in D, the elements realizing
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p with the elements ofMeq which correspond to E′p-classes, we get D
′. This set has the

properties stated in the lemma. �

Recall Assumption 4.1 and Notation 4.2. The following theorem is the main result of
this section.

Theorem 4.6. Suppose that D is acl-complete, 1 < n < ω, ai, bi ∈ D for i = 1, . . . , n,
{a1, . . . , an} is independent over ∅, {b1, . . . , bn} is independent over ∅ and tp(ai, aj) =
tp(bi, bj) for all i, j = 1, . . . , n. Then tp(a1, . . . , an) = tp(b1, . . . , bn).

Corollary 4.7. Suppose that D is acl-complete. Let n < ω, āi, b̄i ∈ D, i = 1, . . . , n,
and suppose that SU(āi) = SU(b̄i) = 1, acl(āi) ∩D = rng(āi) and acl(b̄i) ∩D = rng(b̄i)
for all i. Furthermore, asssume that {ā1, . . . , ān} is independent over ∅, {b̄1, . . . , b̄n} is
independent over ∅ and tp(āi, āj) = tp(b̄i, b̄j) for all i and j. Then there is a permutation
b̄′i of b̄i, for each i, such that tp(ā1, . . . , ān) = tp(b̄′1, . . . , b̄

′
n).

Proof. Suppose that āi = (ai,1, . . . , ai,ki), b̄i = (bi,1, . . . , bi,ki), i = 1, . . . , n, satisfy the
assumptions of the theorem. In particular we have tp(ai,1, aj,1) = tp(bi,1, bj,1) for all i and
j, and both {a1,1, . . . , an,1} and {b1,1, . . . , bn,1} are independent over ∅. By Theorem 4.6,

tp(a1,1, . . . , an,1) = tp(b1,1, . . . , bn,1).

By ω-homogeneity ofMeq (and Fact 2.6) there is an automorphism f ofMeq such that
f(ai,1) = bi,1 for all i = 1, . . . , n. From SU(āi) = 1 it follows that āi ∈ acl(ai,1) for every
i, and for the same reason b̄i ∈ acl(bi,1) for every i. Hence f(rng(āi)) = rng(b̄i) for all i
and consequently there is a permutation b̄′i of b̄i for each i such that tp(ā1, . . . , ān) =
tp(b̄′1, . . . , b̄

′
n). �

4.1. Proof of Theorem 4.6. Let D ⊆ M eq and ai, bi ∈ D, i = 1, . . . , n, satisfy the
assumptions of the theorem. We prove that tp(a1, . . . , an) = tp(b1, . . . , bn) by induction
on n = 2, 3, 4, . . .. The case n = 2 are trivial, so we assume that n > 2 and, by the
induction hypothesis, that

(4.1) tp(a1, . . . an−1) = tp(b1, . . . , bn−1).

Suppose that we can �nd āi, b̄i ∈ M , i = 1, . . . , n, such that F (āi, ai), F (b̄i, bi) for all i
and

tp(ā1, . . . , ān) = tp(b̄1, . . . , b̄n).

Then Lemma 4.3 implies that

tp(a1, . . . , an) = tp(b1, . . . , bn)

which is what we want to prove. Our aim is to �nd ā1, . . . , ān, b̄1, . . . , b̄n as above. We
now prove three technical lemmas. Then a short argument which combines these lemmas
proves the theorem.

Lemma 4.8. There are āi ∈ M for i = 1, . . . , n such that F (āi, ai) for every i and
{ā1, . . . , ān} is independent over ∅.

Proof. By induction we prove that for each k = 1, . . . , n, there are ā′1, . . . , ā
′
k ∈ M such

that F (ā′i, ai) for every i and {ā′1, . . . , ā′k} is independent over ∅. The case k = 1 is
trivial, so we assume that 0 < k < n and that we have found ā1, . . . , āk ∈ M such that
F (āi, ai) for every i and {ā1, . . . , āk} is independent over ∅.

Choose any a∗k+1 ∈ D such that tp(a∗k+1/a1, . . . , ak, ā1, . . . , āk) is a nondividing exten-
sion of tp(ak+1/a1, . . . , ak), so in particular tp(a∗k+1, a1, . . . , ak) = tp(ak+1, a1, . . . , ak)
and

a∗k+1
|̂

a1,...,ak
ā1, . . . , āk
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and, since (by assumption) {a1, . . . , ak+1} is independent over ∅, a∗k+1
|̂ a1, . . . , ak. By

transitivity of dividing,

a∗k+1
|̂ a1, . . . , ak, ā1, . . . , āk

so by monotonicity

(4.2) a∗k+1
|̂ ā1, . . . , āk.

As tp(a∗k+1, a1, . . . , ak) = tp(ak+1, a1, . . . , ak) and Meq is ω-homogeneous (and count-
able) there is an automorphism f ofMeq which maps (a∗k+1, a1, . . . , ak) to (ak+1, a1, . . . , ak).
Let f(āi) = ā′i for i = 1, . . . , k. Then F (ā′i, ai) for i = 1, . . . , k and

tp(a∗k+1, a1, . . . , ak, ā1, . . . , āk) = tp(ak+1, a1, . . . , ak, ā
′
1, . . . , ā

′
k),

so in view of (4.2),

(4.3) ak+1
|̂ ā′1, . . . , ā′k,

and as {ā1, . . . , āk} is independent over ∅ (by induction hypothesis),

(4.4) {ā′1, . . . , ā′k} is independent over ∅.

Choose any āk+1 ∈M such that F (āk+1, ak+1). There are ā∗1, . . . , ā
∗
k ∈M eq such that

tp(ā∗1, . . . , ā
∗
k/ak+1, āk+1) is a nondividing extension of tp(ā′1, . . . , ā

′
k/ak+1). Then

ā∗1, . . . , ā
∗
k
|̂

ak+1

āk+1

and tp(ā∗1, . . . , ā
∗
k, ak+1) = tp(ā′1, . . . , ā

′
k, ak+1), so ā∗1, . . . , ā

∗
k
|̂ ak+1. By transitivity,

ā∗1, . . . , ā
∗
k
|̂ ak+1, āk+1 and by monotonicity,

(4.5) ā∗1, . . . , ā
∗
k
|̂ āk+1.

By the ω-homogeneity ofMeq there is an automorphism g ofMeq that maps (ā∗1, . . . , ā
∗
k, ak+1)

to (ā′1, . . . , ā
′
k, ak+1). Let g(āk+1) = ā′k+1. Then

tp(ā∗1, . . . , ā
∗
k, āk+1, ak+1) = tp(ā′1, . . . , ā

′
k, ā
′
k+1, ak+1),

so F (ā′k+1, ak+1) and, by (4.5),

ā′1, . . . , ā
′
k
|̂ ā′k+1.

From (4.4) it follows that {ā′1, . . . , ā′k+1} is independent over ∅. �

Lemma 4.9. Let I ⊆ {1, . . . , n−1}. Suppose that c̄i ∈M , for i = 1, . . . , n−1, and d̄j ∈
M for j ∈ I are such that F (c̄i, bi) for every 1 ≤ i ≤ n− 1 and F (d̄j , bn) for every j ∈ I.
Then there are c̄′i,∈ M , for i = 1, . . . , n − 1, and d̄′j ∈ M for j ∈ I such that F (c̄′i, bi)

for every 1 ≤ i ≤ n − 1, F (d̄′j , bn) for every j ∈ I, tp(c̄′1, . . . , c̄
′
n−1) = tp(c̄1, . . . , c̄n−1),

tp(c̄′j , d̄
′
j) = tp(c̄j , d̄j) for all j ∈ I and bn /∈ acl(c̄′1, . . . , c̄

′
n−1).

Proof. Suppose on the contrary that bn ∈ acl(c̄′1, . . . , c̄
′
n−1) for all c̄′1, . . . , c̄

′
n−1 ∈M such

that

F (c̄′i, bi) for every i = 1, . . . , n− 1,(4.6)

tp(c̄′1, . . . , c̄
′
n−1) = tp(c̄1, . . . , c̄n−1),

for every i ∈ I there is d̄′i ∈M such that F (d̄′i, bn), and

tp(c̄′i, d̄
′
i) = tp(c̄i, d̄i).

Note that by the ω-categoricity ofM the condition

�bn ∈ acl(c̄′1, . . . , c̄
′
n−1) for all c̄′1, . . . , c̄

′
n−1 ∈M such that (4.6) holds�
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can be expressed by a formula ϕ(x1, . . . , xn) such that Meq |= ϕ(b1, . . . , bn). By as-
sumption, {b1, . . . , bn} is independent over ∅, so bn /∈ acl(b1, . . . , bn−1) and hence there
are distinct bn,i, for all i < ω, such that

tp(b1, . . . , bn−1, bn,i) = tp(b1, . . . , bn−1, bn) for all i < ω.

ThenMeq |= ϕ(b1, . . . , bn−1, bn,i) for all i < ω. Since (4.6) is satis�ed if we let c̄′i = c̄i for
i = 1, . . . , n− 1 and d̄′i = d̄i for i ∈ I, it follows that bn,i ∈ acl(c̄1, . . . , c̄n−1) for all i < ω.
This contradicts the ω-categoricity ofM (via Fact 2.11) because tp(bn,i) = tp(bn,j) for
all i and j. �

By Lemma 4.8, let āi ∈M for i = 1, . . . , n be such that F (āi, ai) for every i and

(4.7) {ā1, . . . , ān} is independent over ∅.

Lemma 4.10. Let I be a proper subset of {1, . . . , n − 1}. Suppose that b̄i ∈ M for
i = 1, . . . , n− 1 and b̄n,j ∈M for j ∈ I are such that

F (b̄i, bi) for all i = 1, . . . , n− 1, F (b̄n,j , bn) for all j ∈ I,(4.8)

tp(b̄1, . . . , b̄n−1) = tp(ā1, . . . , ān−1),

tp(b̄j , b̄n,j) = tp(āj , ān) for all j ∈ I,
bn /∈ acl(b̄1, . . . , b̄n−1).

Let j ∈ {1, . . . , n − 1} \ I and J = I ∪ {j}. Then there are b̄′i ∈ M for i = 1, . . . , n − 1
and b̄′n,j ∈M for j ∈ J such that (4.8) holds if `b̄' is replaced with `b̄′' and `I' with `J '.

Proof. Suppose that (4.8) holds. Note that the second line of it together with (4.7)
implies that

(4.9) {b̄1, . . . , b̄n−1} is independent over ∅.

Without loss of generality we assume that I = {1, . . . , k} where k < n−1. The case k = 0
is interpreted as meaning that I = ∅. By assumption (of Theorem 4.6), tp(bk+1, bn) =
tp(ak+1, an), so there are b̄∗k+1, b̄n,k+1 ∈M such that

F (b̄∗k+1, bk+1), F (b̄n,k+1, bn) and tp(b̄∗k+1, b̄n,k+1, bk+1, bn) = tp(āk+1, ān, ak+1, an).

Since tp(b̄n,k+1/b̄
∗
k+1, bn) has a nondividing extension to

b̄∗k+1, bn, b̄1, . . . , b̄k, b̄k+2, . . . , b̄n−1

we may without loss of generality assume that b̄n,k+1 realizes such a nondividing extension
and hence

(4.10) b̄n,k+1
|̂

bn,b̄∗k+1

b̄1, . . . , b̄k, b̄k+2, . . . , b̄n−1.

From tp(b̄∗k+1, b̄n,k+1) = tp(āk+1, ān) and (4.7) we get b̄∗k+1
|̂ b̄n,k+1, which since bk+1 ∈

dcl(b̄∗k+1) implies that b̄∗k+1, bk+1
|̂ b̄n,k+1 and hence

(4.11) b̄∗k+1
|̂

bk+1

b̄n,k+1.

Since bk+1 ∈ dcl(b̄k+1) it follows from (4.9) that

(4.12) b̄k+1
|̂

bk+1

b̄1, . . . , b̄k, b̄k+2, . . . , b̄n−1.

As F (b̄k+1, bk+1) and F (b̄∗k+1, bk+1), the assumption that D is acl-complete implies that

(4.13) tp(b̄∗k+1/acl(bk+1)) = tp(b̄k+1/acl(bk+1)).
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We have already concluded that b̄n,k+1
|̂ b̄∗k+1 and since bn ∈ dcl(b̄n,k+1) we get

b̄n,k+1
|̂
bn
b̄∗k+1,

which together with (4.10) and transitivity gives

(4.14) b̄n,k+1
|̂
bn
b̄∗k+1, b̄1, . . . , b̄k, b̄k+2, . . . , b̄n−1.

Now we claim that

(4.15) b̄n,k+1
|̂

bk+1

b̄1, . . . , b̄k, b̄k+2, . . . , b̄n−1.

Suppose on the contrary that (4.15) is false. Then b̄n,k+1
|̂� bk+1, b̄1, . . . , b̄k, b̄k+2, . . . , b̄n−1.

Since b̄n,k+1
|̂ b̄∗k+1 (as we have seen above) and bk+1 ∈ dcl(b̄∗k+1) we get b̄n,k+1

|̂ bk+1.

By the triviality of dependence we must have b̄n,k+1
|̂� b̄i for some i 6= k + 1, so

b̄n,k+1, bn |̂� b̄i.

Since SU(bn) = 1 it follows from the last line of (4.8) that bn |̂ b̄i. From (4.14) we
get b̄n,k+1

|̂
bn
b̄i, so by transitivity b̄n,k+1, bn |̂ b̄i which contradicts what we got above.

Hence (4.15) is proved.
By the independence theorem (Fact 2.15) applied over acl(bk+1) together with (4.11),

(4.12), (4.13) and (4.15), there is b̄′k+1 such that

tp(b̄′k+1, b̄n,k+1) = tp(b̄∗k+1, b̄n,k+1) = tp(āk+1, ān) and

tp(b̄1, . . . , b̄k, b̄
′
k+1, b̄k+2, . . . , b̄n−1) = tp(b̄1, . . . , b̄n−1) = tp(ā1, . . . , ān−1).

By applying Lemma 4.9 with I = {1, . . . , k}, c̄i = b̄i for i ∈ {1, . . . , n − 1} \ {k + 1},
c̄k+1 = b̄′k+1 and d̄i = b̄n,i for i ∈ I, we �nd b̄′i for i ∈ {1, . . . , n − 1} and b̄′n,j for

j ∈ J = I ∪ {k + 1} such that (4.8) holds with `b̄′', and `J ' in the place of `b̄' and `J ',
respectively. �

Now we are ready to complete the proof of Theorem 4.6. By induction on k = 1, . . . , n−1
and applying Lemma 4.10 with I = {1, . . . , k} for k < n − 1, we �nd b̄1, . . . , b̄n−1 ∈ M
and b̄n,1, . . . , b̄n,n−1 ∈M such that (4.8) holds with I = {1, . . . , n−1}. With use of (4.7)
it follows that b̄n,i |̂ b̄i for all i = 1, . . . , n− 1 and since bn ∈ dcl(b̄n,i) we get

(4.16) b̄n,i |̂
bn
b̄i for all i = 1, . . . , n− 1.

Since D is acl-complete we have

(4.17) tp(b̄n,i/acl(bn)) = tp(b̄n,j/acl(bn)) for all i, j = 1, . . . , n− 1.

Moreover, we claim that

(4.18) {b̄1, . . . , b̄n−1} is independent over {bn}.
Suppose on the contrary that (4.18) is false. By triviality of dependence, b̄i |̂�

bn
b̄j for some

i 6= j, and hence b̄i |̂�bnb̄j . By triviality of dependence again, b̄i |̂�bn or b̄i |̂�b̄j . But b̄i |̂�bn
implies bn ∈ acl(b̄i) (since SU(bn) = 1), which contradicts the choice of b̄1, . . . , b̄n−1.
And b̄i |̂�b̄j also contradicts the choice of b̄1, . . . , b̄n−1 since tp(b̄i, b̄j) = tp(āi, āj) where
āi |̂ āj . Hence (4.18) is proved.

The independence theorem (Corollary 2.16) together with (4.16), (4.17) and (4.18),
imply that there is b̄n ∈ M such that F (b̄n, bn) and tp(b̄n, b̄i) = tp(b̄n,i, b̄i) = tp(ān, āi)
for all i = 1, . . . , n − 1. Moreover, by the choice of b̄1, . . . , b̄n−1, tp(b̄1, . . . , b̄n−1) =
tp(ā1, . . . , ān−1). As the language is binary, there is an isomorphism f fromM�ā1 . . . ān
to M�b̄1 . . . b̄n such that f(āi) = b̄i for each i, so by Lemma 4.3, tp(a1, . . . , an) =
tp(b1, . . . , bn) and the proof of Theorem 4.6 is �nished.
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5. Trivial dependence implies that any canonically embedded geometry

is a reduct of a binary random structure

We use the conventions of Notation 4.2 throughout this section.

Theorem 5.1. LetM be countable, binary, homogeneous and simple with trivial depen-
dence. Suppose that G ⊆ M eq is A-de�nable where A ⊆ M is �nite, only �nitely many
sorts are represented in G, SU(a/A) = 1 and acl({a} ∪ A) ∩ G = {a} for every a ∈ G.
Let G denote the canonically embedded structure in Meq over A with universe G. Then
G is a reduct of a binary random structure.

5.1. Proof of Theorem 5.1. Let M, G ⊆ M eq and A ⊆ M be as assumed in the
theorem. By Remark 3.7, we may without loss of generality assume that A = ∅, implying
that G is ∅-de�nable inMeq and that G is a canonically embedded structure inMeq over
∅. By Lemma 4.5 applied to G, there is D ⊆M eq with rank 1 such that D is ∅-de�nable,
acl-complete and

for every a ∈ G there is d ∈ D such that a ∈ dcl(d) and d ∈ acl(a), and(5.1)

for every d ∈ D there is a ∈ G such that a ∈ dcl(d) and d ∈ acl(a).

Remark 5.2. Observe that the independence theorem implies the following: Suppose
that n < ω, {a1, . . . , an} ⊆ D is independent over ∅, b1, . . . , bn ∈ D and bi |̂ ai for
all i = 1, . . . , n and tp(bi/acl(∅)) = tp(bj/acl(∅)) for all i and j. Then there is b ∈ D
such that tp(b/acl(∅)) = tp(bi/acl(∅)) and tp(b, ai) = tp(bi, ai) for all i = 1, . . . , n, and
b |̂ {a1, . . . , an}.

Let p1, . . . , pr be all complete 1-types over acl(∅) which are realized in D, and let
pr+1, . . . , ps be all complete 2-types over ∅ which are realized inD and, for each r < i ≤ s,
have the property that if pi(a, b), then a 6= b and {a, b} is independent. For each
i = 1, . . . , s, let Ri be a relation symbol with arity 1 if i ≤ r and otherwise with ar-
ity 2. Let V = {R1, . . . , Rs} and let D denote the V -structure with universe D such that
for every ā ∈ D, D |= Ri(ā) if and only ifMeq |= pi(ā).

Now de�ne K to be the class of all �nite V -structures N such that there is an embed-
ding f : N → D such that f(N) is an independent set. Let P2 be the class of all N ∈ K
such that |N | ≤ 2. Recall the de�nition of RP2 in Section 2.3.

Lemma 5.3. K = RP2, where RP2 has the hereditary property and the amalgamation
property.

Proof. P2 is clearly a 1-adequate class, so (as observed in Section 2.3) RP2 has the
hereditary property and amalgamation property. We clearly have K ⊆ RP2, so it re-
mains to prove that RP2 ⊆ K. For this it su�ces to show that if N ⊂ N ′ ∈ RP2,
N ′ = N ∪ {a} and f : N → D is an embedding such that f(N) is independent, then
there is an embedding f ′ : N ′ → D which extends f and f ′(N ′) is independent. But
this follows immediately from Remark 5.2 together with the de�nitions of the involved
structures. �

By Lemma 5.3,K = RP2 has the hereditary property and the amalgamation property, so
let F be the Fraïssé limit of K. Hence F is homogeneous and a binary random structure.
Since F is the Fraïssé limit of K, it follows that if N ⊆ N ′ ∈ K and f : N → F is an
embedding, then there is an embedding f ′ : N ′ → F which extends f . By using this
together with the de�nition of K and Remark 5.2 it is straightforward to prove, by a
back and forth argument, that there is D′ ⊆ D such that

(a) D′ is independent,
(b) F ∼= D�D′, and
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(c) for every d ∈ D there is d′ ∈ D′ such that acl(d) = acl(d′).

Let a ∈ G. By (5.1), a ∈ dcl(d) for some d ∈ D. By (c), there is d′ ∈ D′ such
that acl(d) = acl(d′) and hence a ∈ acl(d′). For a contradiction suppose that there
is a′ ∈ G such that a′ 6= a, tp(a′) = tp(a) and a′ ∈ acl(d′). By (5.1) and (c) there
is d′′ ∈ D′ ∩ acl(a′). As a′ ∈ acl(d′) this implies that d′′ ∈ acl(d′), which by the
independence of D′ gives d′′ = d′. Then a ∈ acl(d′) = acl(d′′) ⊆ acl(a′) which contradicts
the assumptions about G. Thus we conclude that

(d) every a ∈ G belongs to dcl(d′) for some d′ ∈ D′.
From the assumptions about G, D and (a) it follows that for every a ∈ G, acl(a) ∩D′
contains a unique element which we denote g(a). It also follows from the assumptions
about G, D and (a) that g : G→ D′ is bijective, and, using (d), that

(e) for every a ∈ G, a ∈ dcl(g(a)).

Observe that we are not assuming, and we have not proved, that D′ or g are de�nable
(over any set).

Now we de�ne a V -structure G′ with universe G as follows. For each Ri ∈ V and every
ā ∈ G, let

G′ |= Ri(ā) if and only if D�D′ |= Ri(g(ā)).

Since g is bijective it is clear that G′ ∼= D�D′ and by (b) we get G′ ∼= F so G′ is a binary
random structure. From the de�nition of G′ (through the de�nitions of D, D′ and F)
it follows that for every a ∈ G there is Ri, 1 ≤ i ≤ r, such that G |= Ri(a), and for all
distinct a, b ∈ G there is Ri, r < i ≤ s, such that G |= Ri(a, b).

Lemma 5.4. If n < ω, a1, . . . , an, b1, . . . , bn ∈ G and tpG′(a1, . . . , an) = tpG′(b1, . . . , bn),
then tpG(a1, . . . , an) = tpG(b1, . . . , bn).

Proof. Suppose that a1, . . . , an, b1, . . . , bn ∈ G and tpG′(a1, . . . , an) = tpG′(b1, . . . , bn).
Since G is a canonically embedded structure in Meq, it follows that tpG(ā) = tpG(b̄)
if and only if tp(ā) = tp(b̄), for all �nite tuples ā, b̄ ∈ G. So it su�ces to prove that
tp(a1, . . . , an) = tp(b1, . . . , bn). We may assume that all a1, . . . , an are distinct and that
all b1, . . . , bn are distinct.

The assumptions and the de�nitions of G, D and D′ imply that tp(g(ai), g(aj)) =
tp(g(bi), g(bj)) for all i and j. Since g : G → D′ is bijective and D′ is independent it
follows from Theorem 4.6 that

tp(g(a1), . . . , g(an)) = tp(g(b1), . . . , g(bn)).

By (e) we have ai ∈ dcl(g(ai)) and bi ∈ dcl(g(bi)) for each i, and therefore tp(a1, . . . , an) =
tp(b1, . . . , bn). �

To prove that G is a reduct of G′ it su�ces to show that for every 1 < n < ω and every
complete n-type over ∅ of G there is a V -formula ϕp(x̄) such that for all n-tuples ā ∈ G,
G |= p(ā) if and only if G′ |= ϕp(ā). As G′ has elimination of quanti�ers it has only
�nitely many complete n-types over ∅, say q1, . . . , qm. Let qi be isolated by ϕi(x̄). By
Lemma 5.4, for each i either

• for all ā ∈ G, if G′ |= ϕi(ā), then G |= p(ā), or
• for all ā ∈ G, if G′ |= ϕi(ā), then G 6|= p(ā)

Let I be the set of all i for which the �rst case holds. If ϕp(x̄) =
∨
i∈I ϕi(x̄) then, for

all n-tuples ā ∈ G, G |= p(ā) if and only if G′ |= ϕp(ā). This concludes the proof of
Theorem 5.1.

Remark 5.5. The conclusion of Theorem 5.1 is that

(f) G is a reduct of a binary random structure.
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A stronger conclusion, essentially saying that G is a binary random structure would be:

(g) If G0 is the reduct of G to all relation symbols with arity at most 2, then G is a
reduct of G0, and G0 is a binary random structure.

What extra assumptions do we need in order to get the conclusion (g)? It is straightfor-
ward to verify the following implications, where we use notation from the above proof:

D′ is ∅-de�nable inMeq

⇐⇒ (the graph of) g is ∅-de�nable
=⇒ g(a) ∈ dcl(a) for every a ∈ G
=⇒ for all 0 < n < ω and all a1, . . . , an, b1, . . . , bn ∈ G,

tp(a1, . . . , an) = tp(b1, . . . , bn) if and only if

tp(g(a1), . . . , g(an)) = tp(g(b1), . . . , g(bn)).

It follows that the condition that D′ is de�nable over ∅ inMeq, as well as the equivalent
condition, guarantees that the conclusion of the proof of Theorem 5.1 is (g). The next
example shows that (g) does not in general follow from the assumptions of Theorem 5.1.

Example 5.6. This example, due to the anonymous referee, shows that there are M
and G ⊆M eq which satisfy the assumptions of Theorem 5.1 but for which (g) fails if we
let G be the canonically embedded structure (in Meq) with universe G. Consequently,
for suchM and G every D′ as in the proof of Theorem 5.1 is not ∅-de�nable.

Let F be the random graph, that is, F is the Fraïssé limit of the class of all �nite
undirected loopless graphs. We now construct a new graph M (viewed as a �rst-order
structure) as follows. The universe of M is M = F × {0, 1} (where F is the universe
of F). If a, b ∈ F are adjacent then (a, i) and (b, i) are adjacent in M for i = 0, 1. If
a, b ∈ F are nonadjacent (so in particular if a = b) then (a, i) and (b, 1− i) are adjacent
inM for i = 0, 1. There are no other adjacencies inM.

Now we de�ne

for (a, i), (b, j) ∈M , E((a, i), (b, j)) if and only if a = b.

Clearly E is an equivalence relation such that each one of its classes has cardinality 2.
Moreover, it is straightforward to see that E(x, y) is ∅-de�nable by the formula

x = y ∨
(
x 6= y ∧ ¬∃z

(
z ∼M x ∧ z ∼M y

))
,

where `∼M' denotes adjacency inM. For every u ∈ M let u′ denote the unique v 6= u
such that E(u, v) holds (or in other words, for u = (a, i) ∈M , u′ = (a, 1− i)). Note that
for all u ∈M , (u′)′ = u and u ∼M u′. Let

M0 = {(a, 0) : a ∈ F} and M1 = {(a, 1) : a ∈ F}

and note that the set M is the disjoint union of M0 and M1 and thatM�Mi is a copy
of the random graph for i = 0, 1. The following is a straightforward consequence of the
de�nition ofM:

Claim 1: For all distinct u, v ∈M ,

u ∼M v ⇐⇒ u′ ∼M v′ ⇐⇒ u 6∼M v′ ⇐⇒ u′ 6∼M v.

We now prove thatM is homogeneous. The above claim tells that if n < ω, u1, . . . , un,
v1, . . . , vn ∈ M and f(ui) = vi for i = 1, . . . , n is a partial isomorphism, then f can be
extended to a partial isomorphism which maps u′i to v′i for all i = 1, . . . , n. So to
prove thatM is homogeneous it su�ces (by the symmetry of M0 and M1) to prove the
following:
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Claim 2: Let u1, . . . un, v1, . . . , vn ∈M0 and suppose that the map f(ui) = vi and f(u′i) =
v′i for i = 1, . . . , n is a partial isomorphism. Then for every un+1 ∈ M0 there is vn+1 ∈
M0 such that f can be extended to a partial isomorphism g such that g(un+1) = vn+1

and g(u′n+1) = g(v′n+1).

We do not give the details of the proof of this claim but just note that the argument is
straightforward and uses that F is the random graph, the construction of M and the
�rst claim.

By representing 0 and 1 with two distinct elements of a0, a1 ∈ F it is straightforward
to verify thatM is interpretable in F with the parameters a0 and a1. It follows (from
[2, Remarks 2.26 and 2.27]) that M is simple. The natural way of interpreting M in
F (with the parameters a0, a1) is by letting F− = F \ {a0, a1}, so F�F− ∼= F , and
then identifying the universe of M with F− × {a0, a1}. Then SU(u/{a0, a1}) = 1 for
every u ∈M (where SU-rank is with respect to F) and it follows thatM is supersimple
with SU-rank 1. Moreover, since F has trivial dependence it follows that the same is
true for M. Because if there where subsets of N eq for some N ≡ M that witnessed
nontrivial dependence, then, by supersimplicity, we may assume that they are �nite, so
by ω-categoricity ofM we may assume that they are subsets ofMeq, and �nally the same
sets with a0 and a1 added would witness nontrivial dependence in F , a contradiction.
HenceM satis�es the assumptions of Theorem 5.1.

For every u ∈M let [u] be its equivalence class with respect to E. Let

G = {[u] : u ∈M}.

Then G ⊆M eq and G satis�es the assumptions of Theorem 5.1. Let G be the canonically
embedded structure with universe G and let G0 be the reduct of G to the relation symbols
of arity at most 2. It remains prove that G is not a reduct of G0.

First we show the following:

Claim 3: For all distinct u1, u2 ∈ G and all distinct v1, v2 ∈ G, tpG(u1, u2) = tpG(v1, v2).

Let g1, g2, h1, h2 ∈ G be such that g1 6= g2 and h1 6= h2. Then there are u1, u2, v1, v2 ∈M0

such that gi = {ui, u′i} and hi = {vi, v′i} for i = 1, 2.
We consider four cases: (1) u1 ∼M u2 and v1 ∼M v2, (2) u1 6∼M u2 and v1 6∼M v2,

(3) u1 ∼M u2 and v1 6∼M v2, and (4) u1 6∼M u2 and v1 ∼M v2. In the �rst two
cases the map given by ui 7→ vi and u′i 7→ v′i for i = 1, 2 is a partial isomorphism,
so by the homogeneity of M it extends to an automorphism of M and hence we get
tpM(u1, u2, u

′
1, u
′
2) = tpM(v1, v2, v

′
1, v
′
2) which in turn gives tpG(g1, g2) = tpG(h1, h2)

(since gi ∈ dclMeq(ui) and similarly for hi). In the third and fourth case the map
given by u1 7→ v1, u

′
1 7→ v′1, u2 7→ v′2 and u′2 7→ v2 is a partial isomorphism so we get

tpM(u1, u2, u
′
1, u
′
2) = tpM(v1, v

′
2, v
′
1, v2) and hence tpG(g1, g2) = tpG(h1, h2) (as h2 ∈

dclMeq(v′2)). This concludes the proof of Claim 3.
Observe that Claim 3 implies that every isomorphism between �nite substructures of

G0 can be extended to an automorphism of G0, so G0 is a binary homogeneous structure
(with �nite vocabulary). This and Claim 3 easily implies the following:

Claim 4: For every n < ω, all distinct g1, . . . , gn ∈ G and all distinct h1, . . . , hn ∈ G,
tpG0(g1, . . . , gn) = tpG0(h1, . . . , hn).

To prove that G is not a reduct of G0 it now su�ces to show that there are distinct
g1, g2, g3 ∈ G and distinct h1, h2, h3 ∈ G such that tpG(g1, g2, g3) 6= tpG(h1, h2, h3).
SinceM restricted toM0 is a copy of the random graph it follows that there are distinct
u1, u2, u3 ∈M0 and distinct v1, v2, v3 ∈M0 such that

u1 ∼M u2, u1 ∼M u3, u2 6∼M u3 and v1, v2, v3 forms a 3-cycle.
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By Claim 1 we see that

M�{u1, u2, u3, u
′
1, u
′
2, u
′
3} 6∼=M�{v1, v2, v3, v

′
1, v
′
2, v
′
3}.

Let gi = [ui] and hi = [vi] for i = 1, 2, 3. Then g1, g2, g3 are distinct and the same holds
for h1, h2, h3. Moreover,

aclMeq(g1, g2, g3) ∩M = {u1, u2, u3, u
′
1, u
′
2, u
′
3} and

aclMeq(h1, h2, h3) ∩M = {v1, v2, v3, v
′
1, v
′
2, v
′
3}.

It follows that tpG(g1, g2, g3) 6= tpG(h1, h2, h3) and this �nishes the proof that this ex-
ample has the claimed properties.

We know from Theorem 5.1 that G is a reduct of a binary random structure. In
this example we can explicitly describe such a binary random structure. We can simply
expand M with a unary relation symbol interpreted as M0. Call this expansion M∗.
Let G∗ be the canonically embedded structure of (M∗)eq with universe G. Let G∗0 be the
reduct of G∗ to the relation symbols of arity at most 2. One can now prove that G∗0 is a
binary random structure and that G is a reduct of G∗0 .

Acknowledgement. We thank the anonymous referee for supplying Example 5.6 and
for careful reading of the article.
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