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Abstract

We study a class C of ℵ0-categorical simple structures such that every M in C has
uncomplicated forking behavior and such that definable relations in M which do
not cause forking are independent in a sense that is made precise; we call structures
in C independent. The SU-rank of such M may be n for any natural number n > 0.
The most well-known unstable member of C is the random graph, which has SU-
rank one. The main result is that for every strongly independent structure M in
C, if a sentence ϕ is true in M then ϕ is true in a finite substructure of M . The
same conclusion holds for every structure in C with SU-rank one; so in this case the
word ’strongly’ can be removed. A probability theoretic argument is involved and
it requires sufficient independence between relations which do not cause forking. A
stable structure M belongs to C if and only if it is ℵ0-categorical, ℵ0-stable and
every definable strictly minimal subset of M eq is indiscernible.

Introduction

As our starting point we can take the complete theory Trg of the random graph (see [8],
Section 7.4, for a definition of it). Trg is countably categorical and unstable, but simple
with uncomplicated forking behavior: for example, Trg is 1-based, has SU-rank 1 and
trivial forking. Every model M of Trg also has the finite submodel property, by which
we mean that if ϕ is a sentence which is true in M then ϕ is true in a finite substructure
of M . This result owes to the fact that definable relations in a model of Trg which do
not cause forking are “sufficiently independent” and this allows one to prove the finite
submodel property by a probability theoretic argument. In some cases, like the random
graph, the independence of relations imply a stronger result, a 0-1 law for a set of finite
structures. In the more general settings studied in [5] and in this paper, 0-1 laws are not
necessarily a consequence of our arguments, but we get the finite submodel property.1

We will encounter three different ways of making precise the idea of sufficient in-
dependence: the n-embedding of types property, the n-independence hypothesis and
the n-amalgamation property. The last two notions have been studied in [5] and [10],
respectively. Without assuming sufficient independence we encounter some difficulties
with respect to proving or refuting the finite submodel property, even if the theory un-
der consideration has very uncomplicated forking behavior. For example, the random
pyramid-free (3)-hyper graph (see [6] for instance) is ℵ0-categorical, simple, 1-based, has

1When considering limit laws we have to decide (in a given context) which finite structures to take
into account and what probability measure to use on them. For instance, there is a strongly independent
structure M , in the sense of this paper, with SU-rank 1 (so algebraic closure is trivial) and the following
property: Let Kn be the set of all structures with universe {1, . . . , n} which are isomorphic to some
substructure of M . There is ϕ such that M |= ϕ, so ϕ is true in a finite substructure of M , but the
proportion of structures in Kn in which ϕ is true approaches 0 as n→∞. However, there is another, in
the context natural, probability measure (than the uniform one) on Kn such that for every ψ ∈ Th(M)
the probability that ψ is true in a member of Kn approaches 1 as n→∞. Results concerning 0-1 laws
and finite substructures of ℵ0-categorical structures will appear in a forthcoming paper of the author.
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SU-rank 1 and trivial forking, but it is unknown (as far as the author knows) whether it
has the finite submodel property. The random pyramid-free (3)-hyper graph does not,
however, satisfy any of the three “sufficient independence” conditions considered in this
article.

Here, we call a structure strongly independent if its complete theory T has the fol-
lowing properties: countable categoricity, simplicity, 1-basedness, trivial forking (which
implies that T has finite SU-rank) and the n-embedding of types property (with respect
to all generators) for every natural number n; in addition we will assume that the lan-
guage of T has a finite upper bound on the arity of its function symbols. The main
result is that every strongly independent structure has the finite submodel property. In
the course of proving this we prove that every independent structure with SU-rank 1 has
the finite submodel property. The difference between ’independent’ and ’strongly inde-
pendent’ is that in the former case we only require the n-embedding of types property
to hold with respect to simple generators; definitions are given in sections 3 and 4.

The class of independent structures includes as a subclass all ℵ0-categorical ℵ0-stable
structures which satisfy that every definable strictly minimal set is indiscernible. The
latter class was studied in [12] and contains all (infinite) countable finitely homogeneous
stable structures (see [13] for a survey). Note that an ℵ0-categorical ℵ0-stable structure
need not be independent since it need not have trivial forking, and an independent
structure need not be smoothly approximable (a property which holds for every ℵ0-
categorical ℵ0-stable structure [2], [9], [1]) since the bipartite random graph may be
definable in it. But if an independent structure M is stable, then it is ℵ0-stable and
every definable strictly minimal subset of M eq is indiscernible. In Section 7 an example
is given of an unstable strongly independent structure with SU-rank n+1, for arbitrarily
chosen 0 < n < ℵ0. More examples of unstable strongly independent structures are given
in Section 7 and in Section 6 of [6].

The proof that a strongly independent structure has the finite submodel property
is carried out in Sections 4 and 5 and it uses the main results from [5] and [6]. A
rough outline of the proof goes as follows: Given a strongly independent M we find
(by results in [6]) a canonically embedded structure N of M eq which has the property
that (N, aclN ) is a pregeometry (where aclN is the algebraic closure operator on N) and
M ⊆ aclMeq(N). Then we are able to apply results from [5], an article which studies
structures on which the algebraic closure forms a pregeometry, to prove that N has the
finite submodel property. When this is done, we apply a result from [6] which roughly
says that if M0 is canonically embedded in M eq, M ⊆ aclMeq(M0) and M0 has the finite
submodel property, then M also has it. In this way we conclude that every strongly
independent structure has the finite submodel property.

In Section 3, we introduce different variants of the n-embedding of types property and
prove that every stable theory has the strong n-embedding of types property with respect
to simple generators, for every 2 ≤ n < ℵ0; this is a consequence of the stationarity of
types over algebraically closed sets in stable theories. In Section 6 we prove that if T is
simple with SU-rank one, the algebraic closure coincides with the definable closure (when
imaginaries are involved) and T has the k-amalgamation property for every k ≤ n+ 1,
then T has the k-embedding of types property for real types (where the free variables
are of sort ’=’) with respect to simple generators, for every 2 ≤ k ≤ n. If, in addition,
forking is trivial, then the conclusion may be strengthened by removing the part “for
real types”. From this and [10] it follows that Trg has the n-embedding of types property
with respect to simple generators, for every 2 ≤ n < ℵ0. In fact, Trg has the (strong)
n-embedding of types property with respect to all generators, for every 2 ≤ n < ℵ0,
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which is explained in Section 7.
Section 2 reviews the main notions and results from [5] and Section 7 gives examples

which illustrate the new concepts of this paper.
I would like to thank the anonymous referee for observing an error in an earlier

version of the article.

1 Preliminaries

Notation and terminology. We use notation and terminology which is more or less
standard. By ā, b̄, x̄, ȳ etc., we denote sequences of elements or variables; unless said
otherwise, sequences will be finite. For any sequences ā and b̄ the concatenation of them
is denoted by āb̄. Occasionally we may consider a sequence ā as a set (by disregarding
the order of the elements in the sequence). With the notation ā ∈ A we mean that each
element in the sequence ā belongs to A. For a sequence ā, |ā| denotes its length; for a
set A, |A| denotes its cardinality. Sometimes we use the notation rng(ā) to denote the
set of all elements that occur in ā. Given sets A and B we sometimes write AB instead
of A ∪B.

For a structure M , the complete theory of M is denoted by Th(M). We write
dclM (A), aclM (A) and tpM (ā/A) for the definable closure ofA inM , the algebraic closure
of A in M and the type of ā over A in M ; if the subscript ‘M ’ is clear from the context
we may drop it. Two elements a and b are called interalgebraic if aclM (a) = aclM (b)
where M is the model under consideration. For a complete theory T , let Sn(T ) be the
set of complete n-types of T . For a subset A ⊆M , let SM

n (A) denote the set of n-types
over A (which are realized in some elementary extension of M).

We say that M is ℵ0-categorical/simple/supersimple if Th(M) is it. We will fre-
quently use the well-known characterization of ℵ0-categorical theories (see [8] for exam-
ple). An important consequence of this characterization is that if M is ℵ0-categorical
and A ⊆M is finite then aclM (A) is finite.

If ā ∈M eq and A ⊆M eq then SU(ā/A) denotes the SU-rank of the type tpMeq(ā/A);
and SU(ā) means SU(ā/∅). We define the SU-rank of a simple structure M to be
sup{SU(p(x)) : p(x) ∈ S1(Th(M))}, if the supremum exists. We say that M has finite
SU-rank if this supremum is finite.

If T is supersimple, or ℵ0-categorical and simple, then T has elimination of hy-
perimaginaries (see [16] for instance), so in this setting it is sufficient to consider the
algebraic closure in situations where the general case (of simple theories) would require
considerations of the bounded closure.

If we talk about sets or sequences of elements from some structure without specifying
a structure, then we assume that the elements in these sets and sequences come from
Mhyp where M is the monster model of the theory under consideration and Mhyp is the
extension by hyperimaginaries. For a simple theory T and set A, bdd(A) denotes the
bounded closure in Mhyp. However, except for in a couple of definitions, the theories
under consideration will have elimination of hyperimaginaries, so Mhyp may be replaced
by Meq and bdd may be replaced by acl taken in Meq.

Let T be simple. We say that T is 1-based if for all sets A and B, A and B are
independent over bdd(A) ∩ bdd(B). We say that T has trivial dependence (also called
trivial forking) if whenever A |̂�

B
C1C2, then A |̂�

B
Ci for i = 1 or for i = 2.

Suppose that L and L′ are first order languages with vocabularies (or signatures)
V and V ′, respectively. We say that L′ is a sublanguage of L if V ′ ⊆ V . If L is a
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sublanguage of the language of M , then M�L denotes the reduct of M to L. Whenever
M is ℵ0-categorical we assume that its language is countable.

Definition 1.1 Let M be an L-structure.
(i) For every 0 < n < ℵ0 and every equivalence relation E on Mn which is ∅-definable
(i.e. definable without parameters) Leq contains a unary relation symbol PE (not in L)
which, in M eq, is interpreted as the set of E-classes. By a sort (in M eq) we mean a set
of the form SE = {a ∈M eq : M eq |= PE(a)} for some E as above. If A ⊆M eq and there
are only finitely many E such that A∩SE 6= ∅ then we say that only finitely many sorts
are represented in A.
(ii) Any ∅-definable set N ⊆M eq may be considered as a structure in a language which,
for every 0 < n < ℵ0 and every relation R ⊆ Nn which is ∅-definable in M eq, contains
a relation symbol which is interpreted as R; and we assume that the language of N has
no other relation (or function or constant) symbols. If a ∅-definable set N ⊆ M eq is
considered as a structure in this way, then we say that N is canonically embedded in
M eq.

Now we collect some facts that will be used in sections 4 and 5. More explanation
concerning these facts is given in Section 1 of [6].

Fact 1.2 Suppose that M is ℵ0-categorical and that N is canonically embedded in M eq.
Then:
(i) M eq is ℵ0-homogeneous.
(ii) For every ā ∈M eq, tp(ā) is isolated.
(iii) For all ā, b̄ ∈ N , tpN (ā) = tpN (b̄) ⇐⇒ tpMeq(ā) = tpMeq(b̄).
(iv) If A ⊆ M eq, only finitely many sorts are represented in A and B ⊂ M is finite,
then, for every 0 < n < ℵ0, only finitely many types from SMeq

n

(
aclMeq(B)

)
are realized

by n-tuples from An.
(v) If only finitely many sorts are represented in N , then N is ℵ0-categorical.
(vi) If M has finite SU-rank, then, for every ā ∈M eq, SU(ā) < ℵ0.

Definition 1.3 An L-theory T has the finite submodel property if the following holds
for any M |= T and sentence ϕ ∈ L: If M |= ϕ then there is a finite substructure N ⊆M
such that N |= ϕ. A structure M has the finite submodel property if whenever ϕ is a
sentence such that M |= ϕ, then there is a finite substructure N ⊆M such that N |= ϕ.

If Th(M) has the finite submodel property then clearly M has it. The opposite direction
holds if the language contains only finitely many relation, function and constant symbols;
this is easy to see, but is also explained in Observation 1.6 in [5]. The next result is
Corollary 2.5 in [6].

Theorem 1.4 Suppose that M is ℵ0-categorical and that N ⊆ M eq is a canonically
embedded structure such that only finitely many sorts are represented in N and M ⊆
aclMeq(N). Also assume that for some r < ℵ0, every function symbol in the language of
M has arity at most r.
(i) If N has the finite submodel property then so does M .
(ii) Suppose that for every formula ϕ(x̄) (without parameters) in the language of M , there
is a relation symbol R in the language of M such that RM = {ā : M |= ϕ(ā)}. Then M
has the finite submodel property if and only if N has the finite submodel property.
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2 Polynomial k-saturation and the k-independence hypoth-
esis

In this section we review the main notions and results from [5], which will be essential for
the proof of the main theorem (Theorem 5.1), which is carried out in Sections 4 and 5.
These notions, polynomial k-saturation and the k-independence property, apply only to
structures M such that (M, aclM ) is a pregeometry; the definition of a pregeometry can
be found in [5] and in [8], for instance. If (M, aclM ) is a pregeometry, then we call it
trivial (or degenerate) if, for every A ⊆M , aclM (A) =

⋃
a∈A aclM (a).

Definition 2.1 (i) If M is a structure such that (M, aclM ) forms a pregeometry and
A ⊆M then we define the dimension of A to be

dimM (A) = inf
{
|B| : B ⊆ A and A ⊆ aclM (B)

}
.

(ii) For a structure M and a type p(x̄) over A ⊆ M , we say that p(x̄) is algebraic if it
has only finitely many realizations (in any elementary extension of M); otherwise we
say that p(x̄) is non-algebraic.

Definition 2.2 Let 0 < k < ℵ0 and suppose that M is a structure such that (M, aclM )
forms a pregeometry. We say that M is polynomially k-saturated if there is a polyno-
mial P (x) such that for every n0 < ℵ0 there is a natural number n ≥ n0 and a finite
substructure N ⊆M such that:

(1) n ≤ |N | ≤ P (n).

(2) N is algebraically closed (in M).

(3) Whenever ā ∈ N , dimM (ā) < k and q(x) ∈ SM
1 (ā) is non-algebraic, then there are

distinct b1, . . . , bn ∈ N such that M |= q(bi) for each 1 ≤ i ≤ n.

The random graph and infinite vector spaces over a finite field are examples of structures
which are polynomially k-saturated for every 0 < k < ℵ0; see [5] for more information
about examples. We have the following implication (see Lemma 1.8 in [5]):

Lemma 2.3 If M is polynomially k-saturated for every 0 < k < ℵ0, then M has the
finite submodel property.

Lemma 2.4 Suppose that M is an ℵ0-categorical structure such that (M, aclM ) is a
pregeometry and suppose that L is a sublanguage of the language of M . If aclM�L
coincides with aclM and M is polynomially k-saturated then so is M�L.

Proof. Suppose that M is polynomially k-saturated, so there is a polynomial P (x) and
for every j < ℵ0 a number j ≤ nj < ℵ0 and a substructure Nj ⊆M such that Nj satisfies
(1) - (3) in the definition of polynomial k-saturation, with Nj in place of N and nj in
place of n. Then every Nj is algebraically closed in M�L and hence in M ; moreover,
dimM (ā) = dimM�L(ā) for every ā ∈M . If q(x) ∈ SM�L

1 (ā) is non-algebraic with respect
to Th(M�L), then q(x) is included in some q′(x) ∈ SM

1 (ā) which is non-algebraic with
respect to Th(M). It follows that, for every j < ℵ0, (1) - (3) holds if M is replaced
by M�L, N is replaced by Nj�L and n is replaced by nj . Hence M�L is polynomially
k-saturated. �
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Notation 2.5 (i) If s̄ = (s1, . . . , sn) is a sequence of objects and I = {i1, . . . , im} ⊆
{1, . . . , n}, where we assume i1 < . . . < im, then s̄I denotes the sequence (si1 , . . . , sim).
(ii) If p(x̄) is a type and x̄′ is a subsequence of x̄, then p�{x̄′} is the set of all formulas
ϕ(x̄′) such that ϕ(x̄′) ∈ p(x̄); so p�{x̄′} is a type.

Definition 2.6 Suppose that M is an ℵ0-categorical L-structure such that (M, aclM )
is a pregeometry. Let L be a sublanguage of L. We say that M satisfies the k-
independence hypothesis over L if the following holds for any ā = (a1, . . . , an) ∈ Mn

such that dimM (ā) ≤ k:
If I = {i1, . . . , im} ⊆ {1, . . . , n} and p(x̄I) ∈ Sm(Th(M)) (where x̄I = (xi1 , . . . xim)) are
such that

(a) aclM (āI) = rng(āI), dimM (āI) < k, p(x̄I) ∩ L = tpM�L(āI) and for every J ⊂ I
with dimM (āJ) < dimM (āI), p�{x̄J} = tpM (āJ),

then there is b̄ = (b1, . . . , bn) ∈Mn such that

(b) tpM�L(b̄) = tpM�L(ā), tpM (b̄I) = p(x̄I) and, for every J ⊂ {1, . . . , n} such that
āI 6⊆ aclM (āJ), tpM (āJ) = tpM (b̄J).

In [5] examples are given of structures which either satisfy or fail to satisfy the k-
independence hypothesis over some sublanguage, for various k.

From [5] (Theorem 2.2) we have the following:

Theorem 2.7 Let M be an ℵ0-categorical L-structure such that (M, aclM ) forms a
pregeometry. Suppose that there is a sublanguage L ⊆ L such that aclM�L coincides
with aclM and, for every 0 < k < ℵ0, M�L is polynomially k-saturated and M satisfies
the k-independence hypothesis over L. Then M is polynomially k-saturated, for every
0 < k < ℵ0, and M has the finite submodel property.

Remark 2.8 The properties of polynomials which are used when applying the as-
sumption of ’polynomial k-saturation’ in the proof of Theorem 2.7 (given in [5]) are
that polynomials are closed under composition and that if P (x) is a polynomial and
0 < c < 1, then limn→∞ P (n)cn = 0. Any other class F of functions which is closed
under composition with a polynomial (i.e. if f(x) ∈ F and P (x) is a polynomial, then
f(P (x)), P (f(x)) ∈ F) and satisfies that limn→∞ |f(n)|cn = 0, for every f(x) ∈ F and
every 0 < c < 1, would do; in fact it would be sufficient that the limit exists and is less
than one.

3 The n-embedding of types property

In this section we introduce the n-embedding of types property (where 2 ≤ n < ℵ0), or
rather, a few variants of it. This notion is a way of making precise the idea that definable
relations which do not cause forking are independent of each other. All stable theories
have the (strong) n-embedding of types property with respect to simple generators, for
every 2 ≤ n < ℵ0, which is proved below. This is a consequence of the stationarity
of strong types in stable theories. The random graph has the (strong) n-embedding of
types property (with respect to all generators) for every 2 ≤ n < ℵ0; this is explained in
Example 7.1. Another simple unstable example, with SU-rank k for arbitrarily chosen
1 < k < ℵ0, which has the (strong) n-embedding of types property (with respect to all
generators) for every 2 ≤ n < ℵ0 is given in Section 7.
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A related notion, studied in [10] and [4], is the n-amalgamation property, which
generalizes a similar property from [11]. In Section 6 we will prove a relationship between
the n-amalgamation property and the n-embedding of types propery in the case when
the theory has SU-rank one. Throughout this section we assume that T is simple, with
monster model M, although this may be repeated; and we work in Mhyp, or in Meq if
the theory under consideration has elimination of hyperimaginaries.

Definition 3.1 Let S be a partially ordered set with a least element 0, such that the
greatest lower bound s∧ t of any two s, t ∈ S exists, and if s, t ∈ S have an upper bound,
then there is a least upper bound s ∨ t of s and t.

(i) We call ({As : s ∈ S}, {πs
t : s ≤ t ∈ S}) a directed family of boundedly closed sets

if for each s ∈ S, πs
t : As → At is an elementary map whenever s ≤ t ∈ S and πs

s

is the identity map for each s ∈ S.

(ii) A directed family of boundedly closed sets ({As : s ∈ S}, {πs
t : s ≤ t ∈ S}) is

called an independent system of boundedly closed sets indexed by S if the following
hold for every s ∈ S:

(1) If u, v ≤ s and t = u ∧ v, then πu
s (Au) |̂

πt
s(At)

πv
s (Av).

(2) If there is t ∈ S such that 0 < t < s then As = bdd
( ⋃

t<s π
t
s(At)

)
.

If all the maps πs
t are inclusions then we write {As : s ∈ S} instead of ({As : s ∈

S}, {πs
t : s ≤ t ∈ S}).

(iii) For every n < ℵ0, n also denotes the set {0, . . . , n − 1} (or ∅ if n = 0). Let P(n)
be the power set of n and let P−(n) = P(n) − {n}. Note that P(n) and P−(n)
are partially ordered by inclusion and that (P(n),⊆) and (P−(n),⊆) satisfy the
requirements on S mentioned above.

(iv) Let A = {Aw : w ∈ P−(n)} be an independent system of boundedly closed sets
with inclusion maps and suppose that A and A0

i , i ∈ n, are such that A ⊆ A∅

and for every i ∈ n, A{i} = bdd
(
A ∪ A0

i

)
and whenever |w| = n − 1, then

Aw = bdd
( ⋃

i∈w A
0
i

)
. Then we call GA = {A0

i : i ∈ n} a set of generators of A
over A, or say that A is generated by GA = {A0

i : i ∈ n} over A. We may also
express this by saying that (A,GA) is an independent system of boundedly closed
sets generated by GA over A. If GA is a generator of A over A and A ⊆ A0

i for
every i ∈ n, then we call GA a simple generator of A (over A).

(v) An independent system of algebraically closed sets A (generated by GA) is defined
in the same way as an independent system of boundedly closed sets A (generated
by GA), except that we replace ‘boundedly closed’ by ‘algebraically closed’ in (ii)
and (iv).

(vi) Suppose that (A,GA) and (B,GB) are independent systems of algebraically closed
sets, indexed by P−(n), with inclusion maps and generated by GA = {A0

i : i ∈ n}
over A and GB = {B0

i : i ∈ n} over B, respectively. If for every w ∈ P−(n), fw is
an elementary map from Aw onto Bw, fw�

⋃
i∈w A

0
i extends fv�

⋃
i∈v A

0
i whenever

w ⊇ v, and f{i}(A0
i ) = B0

i for every i ∈ n, then we call {fw : w ∈ P−(n)} a system
of elementary maps from (A,GA) onto (B,GB).

7



Definition 3.2 Let n ≥ 2.

(i) Let (A,GA) and (B,GB) be independent systems of algebraically closed sets indexed
by P−(n), with inclusion maps and generated by GA = {A0

i : i ∈ n} over A and
GB = {B0

i : i ∈ n} over B, respectively. Moreover suppose that F = {fw : w ∈
P−(n)} is a system of elementary maps from (A,GA) onto (B,GB). We say that
the triple

(
(A,GA), (B,GB),F

)
has the embedding of types property if whenever

(1) rng(ā) ∩ acl
( ⋃

w∈P−(n)Aw

)
= ∅ and

(2) a ∈ rng(ā) and a ∈ acl
(
(rng(ā) − {a}) ∪

⋃
w∈P−(n)Aw

)
implies that a ∈

acl
(
rng(ā)− {a}

)
,

then

(3) there are b̄ and for every w ∈ P−(n) an elementary map gw from rng(ā)∪Aw

onto rng(b̄) ∪ Bw such that gw(ā) = b̄, if w ⊇ v then gw�
⋃

i∈w A
0
i extends

gv�
⋃

i∈v A
0
i , and g{i}�A0

i = f{i}�A
0
i for every i ∈ n.

(ii) We say that
(
(A,GA), (B,GB),F

)
has the strong embedding of types property if (1)

implies (3).

(iii) We say that
(
(A,GA), (B,GB),F

)
has the embedding of types property for real types

(or strong embedding of types property for real types) if whenever ā is a sequence of
real elements (i.e. elements of sort ’=’) and (1) and (2) hold (or (1) holds), then
(3) holds.

(iv) We say that T has the (strong) n-embedding of types property (for real types) with
respect to all generators if whenever (A,GA) and (B,GB) are independent systems
of algebraically closed sets indexed by P−(n), with inclusion maps, with generators
GA over A and GB over B, respectively, and F = {fw : w ∈ P−(n)} is a system
of elementary maps from (A,GA) onto (B,GB), then

(
(A,GA), (B,GB),F

)
has the

(strong) embedding of types property (for real types).

(v) We say that T has the (strong) n-embedding of types property (for real types)
with respect to simple generators if whenever A and B are independent systems of
algebraically closed sets indexed by P−(n), with inclusion maps and with simple
generators GA∅ over A∅ and GB∅ over B∅, respectively, and F = {fw : w ∈ P−(n)}
is a system of elementary maps from (A,GA∅) onto (B,GB∅) such that fw�A∅ = fv�
A∅ for all w, v ∈ P−(n), then

(
(A,GA∅), (B,GB∅),F

)
has the (strong) embedding

of types property (for real types). Note: If n ≥ 3 then the condition that all
fw ∈ F agree on A∅ follows from the other assumptions.

The next result will be used in Sections 6 and 7.

Lemma 3.3 If T has the strong n-embedding of types property for real types with respect
to all generators, then T has the strong n-embedding of types property with respect to all
generators. The same implication holds if ’with respect to all generators’ is replaced by
’with respect to simple generators’.

Proof. Suppose that T has the strong n-embedding of types property for real types
with respect to all generators. Let (A,GA) and (B,GB) be two independent systems of
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algebraically closed sets indexed by P−(n), with inclusion maps and with generators
GA = {A0

i : i ∈ n} over A and GB = {B0
i : i ∈ n} over B, respectively, and let

F = {fw : w ∈ P−(n)} be a system of elementary maps from (A,GA) onto (B,GB).
Suppose that ā = (a1, . . . , ak) ∈ (Meq)k is such that

rng(ā) ∩ acl
( ⋃

w∈P−(m)

Aw

)
= ∅. (∗)

Then there are real tuples ā′i ∈ M such that ai ∈ dclMeq(ā′i) for each 1 ≤ i ≤ k. Let
ā∗ = ā′1 . . . ā

′
k. From (∗) we get

rng(ā∗) ∩ acl
( ⋃

w∈P−(m)

Aw

)
= ∅.

By assumption, T has the strong n-embedding of types property for real types with
respect to all generators, so there are b̄∗ ∈M, and for every w ∈ P−(n), an elementary
map gw : rng(ā∗)∪Aw → rng(b̄∗)∪Bw such that gw(ā∗) = b̄∗, if w ⊇ v then gw�

⋃
i∈w A

0
i

extends gv�
⋃

i∈v A
0
i , and g{i}�A

0
i = f{i}�A

0
i for every i ∈ n. For each 1 ≤ i ≤ k we

have (by the choice of ā′i) ai ∈ dclMeq(ā′i) and hence ā ∈ dclMeq(ā∗), so there are
b̄ = (b1, . . . , bk) ∈ dclMeq(b̄∗) and, for every w ∈ P−(n), an elementary map hw :
rng(ā∗ā) ∪ Aw → rng(b̄∗b̄) ∪ Bw which extends gw. Then clearly, hw�

⋃
i∈w A

0
i extends

hv�
⋃

i∈v A
0
i if w ⊇ v and h{i}�A

0
i = g{i}�A

0
i = f{i}�A

0
i for every i ∈ n. This proves that

T has the strong n-embedding of types property with respect to all generators. The
other statement of the theorem is proved in the same way; in this case we just assume
that GA∅ and GB∅ are simple generators over A∅ and B∅, respectively. �

Theorem 3.4 If T is stable then T has the strong n-embedding of types property with
respect to simple generators, for every 2 ≤ n < ℵ0.

Proof. We use the following notation in this proof: If f1 : A1 → B1 and f2 : A2 → B2

are maps which agree on A1 ∩ A2, then f1 ∪ f2 denotes the map from A1 ∪ A2 which
extends both f1 and f2.

Suppose that T is stable and thatA = {Aw : w ∈ P−(n)} and B = {Bw : w ∈ P−(n)}
(where 2 ≤ n < ℵ0) are two independent systems of algebraically closed sets with
inclusion maps. Moreover, assume that GA∅ = {A0

i : i ∈ n} and GB∅ = {B0
i : i ∈ n}

are simple generators of A and B over A∅ and B∅, respectively. Also suppose that
F = {fw : w ∈ P−(n)} is a system of elementary maps from (A,GA∅) onto (B,GB∅) such
that fw�A∅ = fv�A∅ for all w, v ∈ P−(n). By parts (ii) and (v) of Definition 3.2, we
need to show that

(
(B,GA∅), (B,GB∅),F

)
has the strong n-embedding of types property.

So suppose that

rng(ā) ∩ acl
( ⋃

w∈P−(n)

Aw

)
= ∅ and let w0 = n− {0} = {1, . . . , n− 1}.

Then we have A{0} |̂
A∅
Aw0 and B{0} |̂

B∅
Bw0 . Moreover, from A{0} |̂

A∅
Aw0 and the assump-

tion that A{0}, A∅ and Aw0 are algebraically closed we get A{0} ∩Aw0 = A∅; and in the
same way we get B{0} ∩Bw0 = B∅.

Since GA∅ and GB∅ are simple generators over A∅ and over B∅, respectively, we have
A∅ ⊆ A0

0 ⊆ A{0} and A∅ ⊆ A0
1 ⊆ Aw0 , so both f{0} and fw0 extend f∅ : A∅ → B∅. As A∅

and B∅ are algebraically closed and T is stable, all types over algebraically closed sets are
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stationary. Hence f{0}∪fw0 is an elementary map from A{0}∪Aw0 onto B{0}∪Bw0 which
extends f{0} and fw0 ; it follows that for every i ∈ n, (f{0}∪fw0)�A

0
i extends f{i}�A0

i . We
can extend f{0}∪fw0 to an elementary map f from acl(A{0}∪Aw0) onto acl(B{0}∪Bw0).
By (2) in Definition 3.1 (ii) we have Aw ⊆ acl(A{0} ∪ Aw0) and Bw ⊆ acl(B{0} ∪ Bw0)
for every w ∈ P−(n). Then we can find b̄ and extend f to an elementary map f ′ from
rng(ā) ∪ acl(A{0} ∪ Aw0) onto rng(b̄) ∪ acl(B{0} ∪ Bw0) such that f ′(ā) = b̄. Now let
gw = f ′�rng(ā)∪Aw for every w ∈ P−(n). Then gw(ā) = b̄ and if w ⊇ v then gw extends
gv. Moreover, for every i ∈ n, g{i}�A0

i = f ′�A0
i = f�A0

i = (f{0} ∪ fw0)�A
0
i = f{i}�A

0
i . �

Evidently, the ’(strong) n-embedding of types property (for real types) with respect to
all generators’ implies the ’(strong) n-embedding of types property (for real types) with
respect to simple generators’. The next lemma says that under the assumption n ≥ 3
and that the algebraic closure has very simple behaviour then the implication can be
reversed. The implication cannot be reversed in general, as Example 7.4 shows; we say
more about this issue in Examples 7.4 and 7.5.

Definition 3.5 (i) We say that the algebraic closure and definable closure coincide if
acl(A) = dcl(A) for all A ⊂Meq.
(ii) We say that the definable closure is trivial if the following holds: Whenever a, b̄ ∈
Meq, |b̄| > 1, a ∈ dcl(b̄) and b̄ /∈ dcl(a), then there is a proper subsequence b̄′ of b̄ such
that a ∈ dcl(b̄′).

Lemma 3.6 Let T be simple. Suppose that the algebraic closure coincides with the
definable closure and that the latter is trivial. If n ≥ 3 and T has the (strong) n-
embedding of types property (for real types) with respect to simple generators, then
T has the (strong) n-embedding of types property (for real types) with respect to all
generators.

Proof. Suppose that T is simple, that acl coincides with dcl and that dcl is trivial. We
only prove (explicitly) that if n ≥ 3 and T has the n-embedding of types property with
respect to simple generators, then T has the n-embedding of types property with respect
to all generators, because the other variants of the statement are proved by making
evident modifications in the proof below.

So, suppose that n ≥ 3 and that T has the n-embedding of types property with
respect to simple generators. Suppose that (A,GA) and (B,GB) are independent sys-
tems of algebraically closed sets indexed by P−(n), with inclusion maps and with (not
necessarily simple) generators GA = {A0

i : i ∈ n} over A and GB = {B0
i : i ∈ n} over

B, respectively. Moreover, let F = {fw : w ∈ P−(n)} be a system of elementary maps
from (A,GA) onto (B,GB).

It is immediate from the definition that

G′A∅
= {A∅ ∪A0

i : i ∈ n} and G′B∅
= {B∅ ∪B0

i : i ∈ n}

are simple generators of A over A∅ and of B over B∅, respectively. Since T has the
n-embedding of types property with respect to simple generators it is sufficient to show
that there is a system of elementary maps F ′ = {f ′w : w ∈ P−(n)} from (A,G′∅) onto
(B,G′∅) such that, for every w ∈ P−(n), f ′w�

⋃
i∈w A

0
i = fw�

⋃
i∈w A

0
i . We show that this

follows from the following claim, and then prove the claim:

Claim. If a ∈ dcl(A0
i ) ∩ dcl(A0

j ) then f{i}(a) = f{j}(a).
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Since GA generates A it follows that, for every w with |w| = n − 1, A∅ ⊆ Aw ⊆
dcl

( ⋃
i∈w A

0
i

)
. Note that since A is an independent system of algebraically closed sets

generated by A we must have A0
j ∩ acl

( ⋃
i∈w A

0
i

)
= ∅ whenever j /∈ w, and it follows

that if a ∈ dcl(A0
i ) ∩ dcl(A0

j ) and i 6= j, then a is not interalgebraic with any tuple of
elements from A0

i (or from A0
j ). This together with the claim and the assumptions that

acl coincides with dcl, where the latter is trivial, and that F is a system of elementary
maps from (A,GA) onto (B,GB) implies that

if |v| = |w| = n− 1, then fv�A∅ = fw�A∅. (+)

Now we define a system of elementary maps from (A,G′A∅
) onto (B,G′B∅

). For every
u ∈ P−(n) chose (any) σu ∈ P−(n) such that u ⊆ σu and |σu| = n − 1 and then let
f ′u = fσu�Au. By (+), for all u, v ∈ P−(n), f ′u�A∅ = fσu�A∅ = fσv�A∅ = f ′v�A∅. Since,
for all u ∈ P−(n), we have f ′u�

⋃
i∈uA

0
i = fσu�

⋃
i∈uA

0
i = fu�

⋃
i∈uA

0
i , it follws that

whenever u ⊇ v, then f ′u�
⋃

i∈uA
0
i extends f ′v�

⋃
i∈v A

0
i . Hence F ′ = {f ′w : w ∈ P−(n)} is

a system of elementary maps from (A,G′A∅
) onto (B,G′B∅

) of the kind that we are looking
for.

It remains to prove the claim. So suppose that a ∈ dcl(A0
i ) ∩ dcl(A0

j ). For a con-
tradiction, suppose that f{i}(a) 6= f{j}(a), so i 6= j. Since we assume that n ≥ 3,
{i, j} ∈ P−(n) and hence f{i,j}�dcl(A0

i ∪A0
j ) extends both f{i}�dcl(A0

i ) and f{j}�dcl(A0
j );

hence f{i,j}(a) = f{i}(a) 6= f{j}(a) = f{i,j}(a), a contradiction. �

4 Independent structures and canonically embedded struc-
tures with rank one

In this section and the next we study countably categorical structures M which are
simple, with uncomplicated forking behaviour, and where Th(M) has the n-embedding
of types property for every 2 ≤ n < ℵ0. Such strucures will be called independent
or strongly independent, depending on whether we assume the ’n-embedding of types
property with respect to simple generators’ or the stronger version ’n-embedding of types
property with respect to all generators’ (definitions follow below). In this section we
prove, in rough terms, that if N is infinite and canonically embedded in M eq, where M
is an independent structure, and for every a ∈ N , SU(a) = 1, then N is polynomially
n-saturated for every n < ℵ0; consequently, every independent structure with SU-rank
1 has the finite submodel property. This result will be used in Section 5 in the proof
of the main result that every strongly independent structure, regardless of its SU-rank,
has the finite submodel property.

Definition 4.1 In this paper we call a countable complete theory T independent if it
is ℵ0-categorical, simple, 1-based, has trivial dependence, has the n-embedding of types
property with respect to simple generators for every 2 ≤ n < ℵ0, and there is m < ℵ0

such that no function symbol in the language of T has arity greater than m. If, in
addition, T has the n-embedding of types property with respect to all generators for
every 2 ≤ n < ℵ0, then we call T strongly independent. We say that a structure M is
(strongly) independent if its complete theory is (strongly) independent.

Remark 4.2 By Corollary 4.7 in [7], every simple, 1-based and ℵ0-categorical theory is
supersimple with finite SU-rank. Hence, every independent theory is supersimple with
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finite SU-rank. The most well-known example of a strongly independent structure (with
SU-rank 1) is the random graph; see Example 7.1. Section 7 gives another example,
which is a variation of the random graph and which has SU-rank n + 1 for arbitrarily
chosen 0 < n < ℵ0. Every supersimple ℵ0-categorical theory with finite SU-rank and
trivial dependence is 1-based [7], so in the above definition of independent structure one
can replace ’1-based’ with ’finite SU-rank’.

Every ℵ0-categorical ℵ0-stable structure is 1-based (by Theorem 5.12 in [14] for
example). From Corollary 3.23 in [3] and Theorem 3.5 in this paper, it follows that if
M is ℵ0-categorical and ℵ0-stable (with a finite upper bound on the arity of its function
symbols) and every definable strictly minimal subset of M eq is indiscernible, then M is
an independent structure. (See [2] for a definition of a strictly minimal set.)

Now suppose that M is independent and stable. The ℵ0-categoricity and supersim-
plicity of M implies that M is superstable and hence ℵ0-stable. Since M has trivial
dependence (and is stable, so types over algebraically closed sets are stationary), every
definable strictly minimal subset of M eq is indiscernible. Hence the structures studied
in [12] are precisely the independent structures which are stable.

Theorem 4.3 Suppose that M is an independent structure, that N is canonically em-
bedded in M eq and that only finitely many sorts are represented in N .
(i) If N is infinite and for every a ∈ N , SU(a) ≤ 1 (where SU-rank is taken with respect
to Th(M eq)) then N , as a structure in itself, has the finite submodel property.
(ii) Suppose that N is infinite and for every a ∈ N , SU(a) = 1 and aclN (a) = {a}.
Then N , as a structure in itself, is polynomially k-saturated for every k < ℵ0.

Remark 4.4 From Theorem 4.3 (i) it follows that if M is independent with SU-rank
1, then M has the finite submodel property.

Proof of Theorem 4.3. Suppose that M is an independent structure, that N is
canonically embedded in M eq and that only finitely many sorts are represented in N .
We first show that (ii) implies (i). So suppose (ii) holds and that N is infinite and
for every a ∈ N , SU(a) ≤ 1. In order to use the assumption that (ii) holds we will
look at a quotient of N . Let N ′ be the set of all equivalence classes of the relation
aclN (x) = aclN (y) on N − aclN (∅). Since M is ℵ0-categorical and only finitely many
sorts are represented in N , N is ℵ0-categorical (see Fact 1.2) and this equivalence re-
lation is ∅-definable in N and in M eq; and each class of the relation is finite, so N ′ is
infinite. Hence N ′ ⊆ N eq, and since N ′ is ∅-definable in N eq we can consider N ′ as a
canonically embedded structure in N eq, and hence in (M eq)eq. As M eq has elimination
of imaginaries, each element of N ′ is interdefinable (in M eq) with an element of M eq.
Thus N ′ may be identified with a ∅-definable subset of M eq, and hence we can also see
N ′ as a canonically embedded structure in M eq; moreover, only finitely many sorts are
represented in N ′. The assumption that M is an independent structure (so dependence
is trivial) and the definition of N ′ implies that for every a ∈ N ′, aclN ′(a) = {a} and
SU(a) = 1. By the assumption that (ii) holds, N ′ is polynomially k-saturated for every
k < ℵ0. By Lemma 2.3, N ′ has the finite submodel property and, by Theorem 1.4 and
the fact N ⊆ aclNeq(N ′), it follows that N has the finite submodel property.

It remains to prove (ii). Recall that we assume that M is an independent structure,
that N is canonically embedded in M eq and that only finitely many sorts are repre-
sented in N . Moreover assume that N is infinite and for every a ∈ N , SU(a) = 1
and aclN (a) = {a}. Also note that since N is canonically embedded in M eq we have
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aclN (A) = aclMeq(A) ∩ N for every A ⊆ N ; by trivial dependence it follows that for
every A ⊆ N , aclN (A) = A and hence dimN (A) = |A|.

We will show that an expansion of N which we call N ′ is polynomially k-saturated
for every k < ℵ0. Since for this expansion N ′ we will have aclN (A) = aclN ′(A) for every
A ⊆ N it follows from Lemma 2.4 that N is polynomially k-saturated.

For each n < ℵ0 and every aclMeq(∅)-definable n-ary relation R on N , the language
of N ′, which we call L, contains a relation symbol which is interpreted as R; there are no
other relation (or function or constant) symbols in L. By Fact 1.2, N ′ is ℵ0-categorical.

We will now prove that N ′ is polynomially k-saturated, for every k < ℵ0, by proving
that a reduct of N ′ is polynomially k-saturated (for every k < ℵ0), that the algebraic
closure in the reduct coincides with the algebraic closure in N , and that N ′ satisfies the
k-independence hypothesis over the language of the reduct; then we apply Theorem 2.7
to conclude that N ′ is polynomially k-saturated.

Let L= be the language with vocabulary {=}, so the reduct N ′�L= is just an infinite
set with the identity relation. N ′�L= has elimination of quantifiers and it is straightfor-
ward to verify that N ′�L= is polynomially k-saturated for every k < ℵ0. Note that, for
every A ⊆ N , aclN ′�L=(A) = A = aclN (A) = aclN ′(A). We will prove that N ′ satisfies
the k-independence hypothesis over L= for every k < ℵ0; then Theorem 2.7 gives us the
conclusion of (ii).

Fix some k < ℵ0. Let ā = (a0, . . . , ad−1) ∈ Nd be such that dimN ′(ā) = d ≤ k, so
no element occurs twice in ā, and assume that I = {i1, . . . , im} ⊆ {0, . . . , d − 1} and
p(x̄I) ∈ Sm(Th(N ′)) (where x̄I = (xi1 , . . . , xim)) are such that

(a) |āI | < k, p(x̄I) ∩ L= = tpN ′�L=(āI) and for every proper subset J ⊂ I, p�{x̄J} =
tpN ′(āJ).

We must show that there is b̄ = (b0, . . . , bd−1) ∈ Nd such that

(b) tpN ′�L=(b̄) = tpN ′�L=(ā), tpN ′(b̄I) = p(x̄I) and, for every J ⊂ {0, . . . , d − 1} such
that rng(āI) 6⊆ rng(āJ), tpN ′(āJ) = tpN ′(b̄J).

Observe that, by (a), m = |āI | = dimN ′(āI) and m < k; and since we assume that
p(x̄I) has at least one free variable (because otherwise there is nothing to prove) we
have m > 0. We get two cases to consider, the first being rather trivial. Recall that
d = |ā| = dimN ′(ā).

Case 1. m = d.
Then we have āI = ā (and x̄I = x̄ = (x0, . . . , xd−1)), so d < k. Let b̄ = (b0, . . . , bd−1) ∈
Nd realize p(x̄I). The conditions in (a) imply that tpN ′�L=(b̄) = tpN ′�L=(ā) and, if
J ⊂ {0, . . . , d − 1} and rng(āI) 6⊆ rng(āJ) (which in this case implies that |āJ | < m)
then tpN ′(āJ) = tpN ′(b̄J). Hence (b) is satisfied.

Case 2. 0 < m < d.
By reordering if necessary, we may assume that āI = (a0, a1, . . . , am−1) and x̄I =
(x0, x1, . . . , xm−1). Let (b0, b1, . . . , bm−1) ∈ Nm realize p(x̄I).

If m = 1, then let b0 be a realization of p(x0) = p(x̄I) which is different from all
a1, . . . , ad−1; then the tuple b̄ = (b0, a1, . . . , ad−1) satisfies (b).

In the rest of the proof we assume that 1 < m < d. For every w = {j0, . . . , jl} ∈
P−(m) (where we assume j0 < . . . < jl) let

āw = (aj0 , . . . , ajl
), b̄w = (bj0 , . . . , bjl

),

13



Aw = acl(āw) and Bw = acl(b̄w),

where in the rest of the proof, acl denotes the algebraic closure in Meq, where M is the
monster model of Th(M).

Claim 1. For all v, w ∈ P−(m), Av
|̂

Av∩w

Aw and Bv
|̂

Bv∩w

Bw.

Proof of Claim 1. Suppose that Av
|̂�

Av∩w

Aw, which implies āv
|̂�

Av∩w

āw. By trivial depen-

dence and symmetry, there are i ∈ v−w and j ∈ w−v such that i 6= 0 and ai
|̂�

Av∩w

aj and

hence ai
|̂�ajAv∩w and ai

|̂�aj āv∩w By trivial dependence, there is j′ ∈ (v∩w)∪{j} such
that ai

|̂�aj′ . Since SU(ai) = 1 it follows that ai ∈ acl(aj′) and hence ai ∈ aclN (aj′) so
ai = aj′ . This contradicts the assumption that no element occurs twice in the sequence
ā = (a0, . . . , ad−1). Hence we must have Av

|̂
Av∩w

Aw for all v, w ∈ P−(m).

Now suppose that Bv
|̂�

Bv∩w

Bw. In the same way as above we find i ∈ v−w and j′ ∈ w

such that i, j′ 6= 0 and bi |̂�bj′ , and hence bi ∈ aclN (bj′) which implies that bi = bj′ . Since
b̄I = (b0, . . . , bm−1) realizes p(x̄I) and p(x̄I) ∩ L= = tpN ′�L=(āI), we have

tpN ′�L=(b0, . . . , bm−1) = tpN ′�L=(a0, . . . , am−1).

Since bi = bj′ we get ai = aj′ which, since i 6= j′, contradicts that that no element occurs
twice in the sequence ā = (a0, . . . , ad−1). �

By Claim 1, A = {Aw : w ∈ P−(m)} and B = {Bw : w ∈ P−(m)} are independent
systems of algebraically closed sets with inclusion maps. Let A0

i = {ai} ∪ acl(∅) and
B0

i = {bi} ∪ acl(∅) for i ∈ m. Then GA∅ = {A0
i : i ∈ m} is a simple generator of A over

A∅, and GB∅ = {B0
i : i ∈ m} is a simple generator of B over B∅ (see Definition 3.1).

By assumption (a) and the choice of (b0, . . . , bm−1), whenever w ∈ P−(m) we have
tpN ′(āw) = tpN ′(b̄w) and from the definition of N ′ it follows that

tpMeq

(
āw/acl(∅)

)
= tpMeq

(
b̄w/acl(∅)

)
,

and the same holds with M eq replaced by Meq. Hence there are elementary maps fw

from Aw onto Bw, for all w ∈ P−(m), such that fw(āw) = b̄w, fw is the identity on
acl(∅) and if w ⊇ v then fw�

⋃
i∈w A

0
i extends fv�

⋃
i∈v A

0
i . It follows that F = {fw : w ∈

P−(m)} is a system of elementary maps from (A,GA∅) onto (B,GB∅).
The next claim tells us that conditions (1) and (2) from the definition of the m-

embedding of types property (Definition 3.1) hold for the sequence (am, . . . , ad−1), in
the role of the sequence called ā in that definition. This puts us in a position to use the
assumption that Th(M) has the m-embedding of types property with respect to simple
generators (as M is an independent structure).

Claim 2. If a ∈ {am, . . . , ad−1} then

a /∈ acl
(
({am, . . . , ad−1} − {a}) ∪

⋃
w∈P−(m)

Aw

)
.

Proof of Claim 2. Suppose, for a contradiction, that a ∈ {am, . . . , ad−1} and

a ∈ acl
(
({am, . . . , ad−1} − {a}) ∪

⋃
w∈P−(m)

Aw

)
.
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Then a = ai for some i ∈ {m, . . . , d− 1} and from the definition of Aw we get

ai ∈ acl
(
({am, . . . , ad−1} − {ai}) ∪

⋃
w∈P−(m)

āw

)
.

The same holds when acl is replaced with aclN ′ and hence ai ∈ {a0, . . . , ad−1} − {ai}
which contradicts that no element occurs twice in ā = (a0, . . . , ad−1). �

By Claim 2 and the assumption that Th(M) has them-embedding of types property with
respect to simple generators (as M is an independent structure), there are bm, . . . , bd−1 ∈
Meq and for every w ∈ P−(m) an elementary map gw from {am, . . . , ad−1} ∪ Aw onto
{bm, . . . , bd−1} ∪Bw such that gw(ai) = bi for i = m, . . . , d− 1, and gw�

⋃
i∈w A

0
i extends

gv�
⋃

i∈v A
0
i if w ⊇ v, and g{i}�A

0
i = f{i}�A

0
i for i = 0, . . . ,m − 1. It follows that for

every w ∈ P−(m), gw(āw) = b̄w and that gw is the identity on acl(∅). Hence, for every
w ∈ P−(m),

tpMeq

(
(bm, . . . , bd−1)b̄w/acl(∅)

)
= tpMeq

(
(am, . . . , ad−1)āw/acl(∅)

)
.

As M is ℵ0-categorical it follows that M eq is ℵ0-homogeneous and therefore we may,
without loss of generality, assume that bm, . . . , bd−1 ∈M eq which implies that bm, . . . , bd−1 ∈
N . Hence

tpN ′
(
(bm, . . . , bd−1)b̄w

)
= tpN ′

(
(am, . . . , ad−1)āw

)
for every w ∈ P−(m).

From the choice of b̄I = (b0, . . . , bm−1), being a realization of p(x̄I), and (bm, . . . , bd−1)
it follows that if b̄ = (b0, . . . , bd−1), then (b) is satisfied. �

5 Independent structures of higher rank

We will prove the article’s main result in this section:

Theorem 5.1 If M is a strongly independent structure then M has the finite submodel
property.

The general plan of the proof is to show that, given a strongly independent structure M ,
there is a canonically embedded structure N ⊆ M eq such that M ⊆ aclMeq(N), N has
the finite submodel property, and only finitely many sorts are represented in N . Then
Theorem 1.4 can be applied to conclude that M has the finite submodel property.

In order to find such N we have to do some preparatory work, most of which is
already carried out in [6]. The preparatory work will show that there are structures
N1, . . . , Nr which are canonically embedded in M eq and satisfy the following:

(1) For every 1 ≤ s ≤ r, (Ns, aclNs) is a pregeometry.

(2) For every 1 ≤ s ≤ r, only finitely many sorts are represented in Ns.

(3) M ⊆ aclMeq(Nr).

In addition, we will see that elements from
⋃

1≤s≤r Ns have some useful properties.
Then, for s = 1, . . . , r, we consider the ”quotient” N ′

s = Ns/∼ under the equivalence
relation x ∼ y ⇐⇒ acl(x) = acl(y). Since M eq has elimination of imaginaries N ′

s may
be identified with an ∅-definable subset of M eq and can thus be viewed as a canonically
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embedded structure of M eq. By induction on s, we will then show that, for each 1 ≤ s ≤
r, N ′

s is polynomially n-saturated for every n < ℵ0, and hence N ′
s has the finite submodel

property (by Lemma 2.3). It is when doing this that we will use the assumption that
Th(M) has the n-embedding of types property for every n < ℵ0 (as M is strongly
independent). When it has been shown that N ′

r has the finite submodel property we use
(2), (3) and Theorem 1.4 to conclude that M has the finite submodel property.

For the rest of this section we assume that M is a strongly independent
structure (according to Definition 4.1).

Notation for this section. If ā ∈ M eq and A ⊆ M eq then tp(ā/A) and acl(A) mean
tpMeq(ā/A) and aclMeq(A). By SU(ā/A) we denote the SU-rank of tp(a/A) with respect
to Th(M eq). If a, b ∈M eq then a < b is an abbreviation for ‘a ∈ acl(b) and b /∈ acl(a)’.

5.1 Preparatory work: finding a canonically embedded pregeometry

We will state a sequence of definitions, constructions and lemmas from Sections 3 and
5 of [6]. In addition we prove some new lemmas which are needed in this paper.

Definition 5.2 We say that a set A ⊆M eq is self-coordinatized if the following holds:

(1) If a ∈ A and SU(a) > 1 then there is b ∈ A ∩ acl(a) such that SU(a/b) = 1 (and
hence SU(b) = SU(a)− 1).

(2) If a, b ∈ A, SU(a) > 1, b ∈ A ∩ acl(a), SU(a/b) = 1 and there exists c ∈M eq such
that c < a and c /∈ acl(b) then such c exists in A.

By the Lemma 3.4 and Construction 3.5 in [6] there exists a self-coordinatized set C ⊆
M eq such that C is ∅-definable, M ⊆ C, only finitely many sorts are represented in C,
and if c ∈ C, c′ ∈M eq and tp(c) = tp(c′), then c′ ∈ C. By the ℵ0-categoricity of Th(M)
it follows that only finitely many 1-types over ∅ are realized in C (Recall Fact 1.2).

Now we can construct subsets Cn ⊆ C and Nn ⊆ Cn in the following way.

Construction 5.3 We define subsets Cn ⊆ C inductively by: C0 = ∅ and if Cn is
defined and C 6⊆ acl(Cn) then

Cn+1 = Cn ∪
{
c ∈ C − acl(Cn) : there exists no c′ ∈ C − acl(Cn) such that c′ < c

}
.

If C ⊆ acl(Cn) then Cn+1 is not defined. Since C0 = ∅ (by definition) and M is infinite
and ℵ0-categorical it follows that C1 is defined.

Remark 5.4 Since Th(M) is ℵ0-categorical with finite SU-rank and only finitely many
1-types are realized in C, there is m < ℵ0 such that whenever c0, . . . , cn ∈ C and
c0 < . . . < cn, then n ≤ m.

By Lemma 3.7 in [6], there is r < ℵ0 such that C ⊆ acl(Cr), and therefore Cr+1 is
undefined and M ⊆ acl(Cr) (by the choice of C). We fix this r for the rest of
Section 5.

Construction 5.5 For s = 1, . . . , r, let

Ns =
{
c ∈ Cs : there exists no c′ ∈ Cs such that c < c′

}
.
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Since Th(M) is ℵ0-categorical and only finitely many 1-types over ∅ are realized in
Ns (because Ns ⊆ C) it follows Ns is ∅-definable.2 Hence we can regard Ns as a
canonically embedded structure of M eq, and we will do this.

Lemmas 5.6 - 5.10 below are results from Section 3 of [6].3

Lemma 5.6 If n < r and c ∈ Cn+1 − Cn then SU(c/Cn) = 1.

Lemma 5.7 If a ∈ Cr, b ∈ C, A ⊆M eq, b < a, SU(a/b) = 1 and a |̂�
b
A then a ∈ acl(A).

Lemma 5.8 If a ∈ Cr, d1, . . . , dk ∈ M eq and a ∈ acl(d1, . . . , dk) then a ∈ acl(di) for
some 1 ≤ i ≤ k.

Lemma 5.9 Let 1 ≤ s ≤ r.
(i) Ns is ω-categorical.
(ii) If A ⊆ Ns then aclNs(A) = aclMeq(A) ∩Ns.
(iii) (Ns, aclNs) is a trivial (or degenerate) pregeometry.

Lemma 5.10 M ⊆ C ⊆ acl(Nr).

We also need the following result, which is Lemma 5.1 in [6]:

Lemma 5.11 If 1 ≤ s ≤ r and a ∈ acl(Cs) ∩ C then a ∈ acl
(
acl(a) ∩ Cs

)
.

In order to prove Theorem 5.1 we need to prove some new lemmas.

Lemma 5.12 Suppose that a, b ∈ Cn and b < a. Then there is c ∈ acl(a) ∩ Cn−1 such
that b ∈ acl(c).

Proof. Suppose that a, b ∈ Cn and b < a. If a ∈ Cn−1 then the conclusion is trivial so
assume that a ∈ Cn−Cn−1. Let c̄ enumerate acl(a)∩Cn−1. Since C is self-coordiatized
there is d ∈ acl(a) ∩ C such that SU(a/d) = 1; and consequently d < a. From the
definition of Cn and the assumption that a ∈ Cn − Cn−1 it follows that d ∈ acl(Cn−1).
Since d ∈ acl(a) it follows from Lemma 5.11 that d ∈ acl(c̄), and hence SU(a/c̄) ≤ 1.
But Lemma 5.6 says that SU(a/Cn−1) = 1 and since rng(c̄) ⊆ Cn−1 we get SU(a/c̄) = 1.

Suppose for a contradiction that b /∈ acl(c̄). Since d ∈ acl(c̄) we get b /∈ acl(d) By
assumption, b ∈ acl(a) so b |̂�

d
a and, as SU(a/d) = 1, we get a ∈ acl(b) which contradicts

the assumption that b < a. Hence we conclude that b ∈ acl(c̄).
But from b ∈ acl(c̄) and Lemma 5.8 it follows that for some c ∈ rng(c̄), b ∈ acl(c). �

Definition 5.13 For every s ≤ r and ā ∈ M eq we define crds(ā) = acl(ā) ∩ Cs and we
abbreviate crdr with crd.

Lemma 5.14 For all s ≤ r, n < ℵ0 and a0, . . . , an ∈M eq,

crds(a0, . . . , an) = crds(a0)∪. . .∪crds(an) and crd(a0, . . . , an) = crd(a0)∪. . .∪crd(an).

Proof. Immediate consequence of Lemma 5.8. �

2See Remark 3.9 in [6] for more about why every Cs and Ns is ∅-definable.
3The results in question are Lemmas 3.12, 3.14, 3.15, 3.16 and 3.18 in [6]
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Lemma 5.15 Let 1 ≤ s < r. If ā ∈ Ns+1 then crds(ā) = crds

(
acl(ā) ∩Ns

)
.

Proof. An easy consequence of the definition of Ns and Lemmas 5.14 and 5.12. �

Lemma 5.16 If ā, b̄ ∈ Cr then ā is independent from b̄ over crd(ā) ∩ crd(b̄).

Proof. Note that for any a ∈ rng(ā), crd(a) ∩ crd(b̄) ⊆ crd(ā) ∩ crd(b̄) ⊆ acl(b̄). So if
a ∈ rng(ā) and tp(a/b̄) forks over crd(ā)∩ crd(b̄) then tp(a/b̄) forks over crd(a)∩ crd(b̄).
By the assumption that independence is trivial it is therefore sufficient so prove that
whenever a, b̄ ∈ Cr then a is independent from b̄ over crd(a) ∩ crd(b̄). We will do this
by induction on SU(a/b̄).

Let a, b̄ ∈ Cr. First suppose that SU(a/b̄) = 0, that is, a ∈ acl(b̄). Then a ∈ crd(a) ⊆
crd(b̄), so a ∈ crd(a)∩ crd(b̄) and therefore a is independent from b̄ over crd(a)∩ crd(b̄).

Now suppose that SU(a/b̄) > 0. Since C0 = ∅ there is n such that a ∈ Cn − Cn−1.
Since C is self-coordinatized there is d ∈ acl(a)∩C such that SU(a/d) = 1. It follows that
d < a and, from the assumption that a ∈ Cn−Cn−1 it follows that d ∈ acl(Cn−1). Let c̄
enumerate acl(d) ∩ Cn−1. By Lemma 5.11, acl(d) = acl(c̄), so SU(a/c̄) = SU(a/d) = 1.
If we would have SU(a/c̄b̄) = 0 then SU(a/db̄) = 0 and, since SU(a/d) = 1, Lemma 5.7
would imply that a ∈ acl(b̄) so SU(a/b̄) = 0, which contradicts our assumption. Hence
SU(a/c̄b̄) = 1.

The Lascar equation now gives

SU(a/b̄) = SU(ac̄/b̄) = SU(a/c̄b̄) + SU(c̄/b̄) = 1 + SU(c̄/b̄),

and therefore SU(c̄/b̄) < SU(a/b̄).

Claim 1. If e ∈ acl(a) ∩ Cn−1 then e ∈ acl(d).

Proof of Claim 1. Suppose that e ∈ acl(a) ∩ Cn−1 and e /∈ acl(d). Then a |̂�
d
e, so by

Lemma 5.7, a ∈ acl(e) and hence SU(a/Cn−1) = 0, which contradicts the assumption
that a ∈ Cn − Cn−1 and Lemma 5.6. �

Claim 2. crd(a) ∩ crd(b̄) = crd(c̄) ∩ crd(b̄).

Proof of Claim 2. Since rng(c̄) ⊆ acl(a) we have crd(c̄) ∩ crd(b̄) ⊆ crd(a) ∩ crd(b̄).
Now suppose that e ∈ crd(a)∩ crd(b̄), so in particular e ∈ acl(a)∩acl(b̄). Recall that

we assume that a ∈ Cn − Cn−1 and therefore e ∈ Cn. If e ∈ Cn − Cn−1 and a /∈ acl(e)
then we have a contradiction to the assumption that a ∈ Cn − Cn−1. If e ∈ Cn − Cn−1

and a ∈ acl(e) then a ∈ acl(b̄) which contradicts the assumption that SU(a/b̄) > 0.
Hence e ∈ Cn−1 (and e ∈ crd(a) ⊆ acl(a)) so by Claim 1, e ∈ acl(d) = acl(c̄). The
assumption that e ∈ crd(a) ∩ crd(b̄) implies that e ∈ Cr and since e ∈ acl(c̄) we get
e ∈ crd(c̄) ∩ crd(b̄). �

Above we showed that SU(c̄/b̄) < SU(a/b̄), so for every c ∈ rng(c̄), SU(c/b̄) < SU(a/b̄).
By the induction hypothesis, for every c ∈ rng(c̄), tp(c/b̄) does not fork over crd(c) ∩
crd(b̄) so tp(c/acl(b̄)) does not fork over crd(c)∩ crd(b̄). Since crd(c)∩ crd(b̄) ⊆ crd(c̄)∩
crd(b̄) ⊆ acl(b̄) it follows by monotonicity that tp(c/acl(b̄)) does not fork over crd(c̄) ∩
crd(b̄). Therefore c is independent from b̄ over crd(c̄) ∩ crd(b̄), for every c ∈ rng(c̄).
By the triviality of dependence, c̄ is independent from b̄ over crd(c̄) ∩ crd(b̄). Let D =
crd(c̄) ∩ crd(b̄) = crd(a) ∩ crd(b̄) (by Claim 2). With this notation we have proved
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that SU(c̄/b̄) = SU(c̄/D). Above we proved that SU(a/c̄b̄) = 1, and since SU(a/c̄) =
SU(a/d) = 1 it follows that SU(a/c̄b̄) = SU(a/c̄). By applying the Lascar equation twice
we get:

SU(a/b̄) = SU(ac̄/b̄)
= SU(a/c̄b̄) + SU(c̄/b̄)
= SU(a/c̄) + SU(c̄/D)
= SU(a/c̄D) + SU(c̄/D) as D ⊆ acl(c̄)
= SU(ac̄/D) = SU(a/D).

This proves that a is independent from b̄ over D = crd(a) ∩ crd(b̄). �

Construction 5.17 For each s = 1, . . . , r, let N ′
s be the set of equivalence classes of

the ∅-definable equivalence relation acl(x) = acl(y) on Ns; by the ℵ0-categoricity of Ns

(Lemma 5.9) every equivalence class is finite. Since M eq has elimination of imaginaries,
N ′

s can be identified with a ∅-definable subset of M eq, so we will consider N ′
s as structure,

in its own right, which is canonically embedded in M eq. Note that every element of N ′
s is

interalgebraic with an element of Ns and vice versa. Also observe that Cs =
⋃

1≤t≤sNt.
Let C ′0 = ∅ and for s = 1, . . . , r, let C ′s =

⋃
1≤t≤sN

′
t .

Definition 5.18 For each 1 ≤ s ≤ r and ā ∈ M eq define crd′s(ā) = acl(ā) ∩ C ′s and we
abbreviate crd′r with crd′.

Since each element in N ′
s is interalgebraic with an element in Ns, and vice versa, we

have the following:

Lemma 5.19 The lemmas 5.6 - 5.16 hold when, for s = 1, . . . , r, Cs, Ns and crds are
replaced C ′s, N

′
s and crd′s.

Remark 5.20 The only assumptions on M that are used for proving the results in
Section 5.1 are that Th(M) is ℵ0-categorical, simple, 1-based and has trivial dependence.

5.2 Proof that M has the finite submodel property

In this subsection we prove that M has the finite submodel property. This will be done
by first proving inductively that, for every 0 < s ≤ r, N ′

s is polynomially k-saturated
for every k < ℵ0 and hence (by Lemma 2.3) N ′

s has the finite submodel property. When
this is proved for N ′

r, then, since N ′
r is canonically embedded in M eq, M ⊆ acl(N ′

r) (by
Lemma 5.10 and Lemma 5.19) and only finitely many sorts are represented in N ′

r, we
can apply Theorem 1.4 to conclude that M has the finite submodel property.

By lemmas 5.6 and 5.19, for every a ∈ C ′1, SU(a/C ′0) = 1 and since C ′0 = ∅ (by
definition) we have SU(a) = 1 for every a ∈ C ′1. As N ′

1 ⊆ C ′1 we get SU(a) = 1 for
every a ∈ N ′

1. Since N ′
1, as a structure, is canonically embedded in M eq it follows from

Theorem 4.3 that N ′
1 is polynomially k-saturated for every k < ℵ0.

For the induction step, suppose that N ′
s (where 1 ≤ s < r) is polynomially k-

saturated for every k < ℵ0. We will prove that N ′
s+1 is polynomially k-saturated for

every k < ℵ0. For this we will define a sublanguage L of the language of N ′
s+1 (as a

canonically embedded structure) and show that N ′
s+1�L is polynomially k-saturated for

every k < ℵ0; here we use the induction hypothesis that N ′
s is polynomially k-saturated

for every k < ℵ0. Then we show that N ′
s+1 satisfies the k-independence hypothesis over
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L for every k < ℵ0; here we use that Th(M) has the k-embedding of types property
for every k < ℵ0 (as M is a strongly independent structure). And finally we apply
Theorem 2.7 to conclude that N ′

s+1 is polynomially k-saturated for every k < ℵ0.

Definition 5.21 The sublanguage L of the language of N ′
s+1 will be defined in a few

steps.

(i) Let 0 < n < ℵ0. We define a 2n-ary relation Pn on N ′
s+1 in the following way:

Let ā = (a0, . . . , an−1) ∈ (N ′
s+1)

n and b̄ = (b0, . . . , bn−1) ∈ (N ′
s+1)

n. Then Pn(āb̄)
if and only if, for every i < n, acl(ai) ∩ N ′

s and acl(bi) ∩ N ′
s can be ordered as ā′i

and b̄′i, respectively, in such a way that

tp(ā′0 . . . ā
′
n−1) = tp(b̄′0 . . . b̄

′
n−1).

Note that Pn defines an equivalence relation on n-tuples from N ′
s+1 and that Pn

has only finitely many equivalence classes (because N ′
s is ℵ0-categorical).

(ii) Let 0 < n < ℵ0 and let A(n,0), . . . , A(n,mn) be a list of all equivalence classes of Pn

on (N ′
s+1)

n. Recall that N ′
s+1 is regarded as a canonically embedded structure in

M eq, so for every relation R on N ′
s+1 (of any arity) which is ∅-definable in M eq

there is a relation symbol in the language of N ′
s+1 which is interpreted as R. For

each i ≤ mn, let F(n,i) be the relation symbol from the language of N ′
s+1 which is

interpreted as the equivalence class A(n,i).

(iii) Let L be the language the vocabulary of which is

{=} ∪ {F(n,i) : 0 < n < ℵ0, i ≤ mn}.

Then L is a sublanguage of the language of N ′
s+1.

Remark 5.22 By the definition of N ′
s+1, L and Lemma 5.19, for every A ⊆ N ′

s+1,
aclN ′

s+1�L(A) = aclN ′
s+1

(A) = acl(A) ∩ N ′
s+1 = A and consequently dimN ′

s+1�L(A) =
dimN ′

s+1
(A) = |A|.

Lemma 5.23 Let a0, . . . , an, b0, . . . , bn ∈ N ′
s+1. Then the following are equivalent:

(i) tpN ′
s+1�L(a0, . . . , an) = tpN ′

s+1�L(b0, . . . , bn).

(ii) For all i, j ≤ n, ai = aj ⇐⇒ bi = bj, and for each i ≤ n, crd′s(ai) and crd′s(bi) can
be ordered as ā′i and b̄′i, respectively, in such a way that tp(ā′0 . . . ā

′
n) = tp(b̄′0 . . . b̄

′
n).

Proof. This is a straightforward consequence of the definition of L and Lemmas 5.14,
5.15 and 5.19. �

Lemma 5.24 N ′
s+1�L has eliminination of quantifiers.

Proof. By a back and forth argument. In this proof let ā ≡Lat b̄ mean that ā and b̄
satisfy the same atomic L-formulas. Suppose that ā, b̄, c ∈ N ′

s+1 and ā ≡Lat b̄. We need
to find d ∈ N ′

s+1 such that āc ≡Lat b̄d. The case when c ∈ rng(ā) is trivial so we assume
that c /∈ rng(ā) which implies that c /∈ aclN ′

s+1
(ā).

Let ā = (a1, . . . , an) and b̄ = (b1, . . . , bn). The assumption ā ≡Lat b̄ implies that
acl(ā) ∩N ′

s and acl(b̄) ∩N ′
s can be enumerated as ā′ and b̄′, respectively, in such a way
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that tp(ā′) = tp(b̄′). Let ā′ = a′1, . . . , a
′
m, b̄′ = b′1, . . . , b

′
m and let c̄′ = crd(c). We get two

cases.
First suppose that c̄′ ⊆ ā′, so c̄′ = a′i1 , . . . , a

′
il

for some i1, . . . , il ∈ {1, . . . ,m}. Let
d̄′ = b′i1 , . . . , b

′
il
. If it would be the case that c ∈ N ′

s then, since aclN ′
s

defines a trivial
pregeometry on N ′

s, we would have c ∈ acl(c) ∩ N ′
s = c̄′ ⊆ ā′ ⊆ acl(ā), contradicting

that c /∈ aclN ′
s+1

(ā). Hence c /∈ N ′
s which, since c ∈ N ′

s+1 and c̄′ ∈ N ′
s, implies that

tp(c/c̄′) is non-algebraic. As tp(c̄′) = tp(d̄′) there is d ∈ N ′
s+1 − aclN ′

s+1
(b̄) such that

tp(dd̄′) = tp(cc̄′), and consequently acl(d) ∩ N ′
s = d̄′. Since, by lemmas 5.8 and 5.19,

acl(b̄d) ∩N ′
s = acl(b̄) ∩N ′

s and acl(āc) ∩N ′
s = acl(ā) ∩N ′

s it follows that āc ≡Lat b̄d.
Now suppose that c̄′ 6⊆ ā′. Let c̄1 be the subsequence of elements of c̄′ which belong

to ā′ and let c̄2 be the subsequence of elements of c̄′ which do not belong to ā′. Let
d̄1 be the subsequence of b̄′ which corresponds to c̄1 in ā′; i.e. if c̄1 = a′j1 , . . . , a

′
jm

then
d̄1 = b′j1 , . . . , b

′
jm

. Since tp(ā′) = tp(b̄′) there is d̄2 ∈ N ′
s such that tp(ā′c̄2) = tp(b̄′d̄2).

As tp(c̄1c̄2) = tp(d̄1d̄2) there is d ∈ N ′
s+1 such that acl(d) ∩N ′

s = d̄1d̄2. By lemmas 5.8
and 5.19, acl(āc) ∩ N ′

s = ā′c̄2 and acl(b̄d) ∩ N ′
s = b̄′d̄2 where, by the choice of d̄2,

tp(ā′c̄2) = tp(b̄′d̄2). Hence āc ≡Lat b̄d. �

Lemma 5.25 N ′
s+1�L is polynomially k-saturated for every k < ℵ0.

Proof. By assumption (the induction hypothesis), N ′
s is polynomially k-saturated for

every k < ℵ0. Fix any k < ℵ0. We will show that N ′
s+1�L is polynomially k-saturated.

Let

k0 = max
{
|acl(a) ∩Ns| : a ∈ Ns+1

}
,

k1 = 1 + max
{
|acl(ā) ∩Ns| : ā ∈ Ns+1, dimNs+1(ā) < k

}
.

Since N ′
s is polynomially k1-saturated it is sufficient to show that if P (x) is a poly-

nomial then there is a polynomial Q(x) (depending only on P (x), k, k0) such that if
A ⊆ N ′

s satisfies

(a) A is algebraically closed in N ′
s,

(b) n ≤ |A| ≤ P (n), and

(c) whenever d̄ ∈ A, dimN ′
s+1

(d̄) < k1 and p(x) ∈ SN ′
s

1 (d̄) is non-algebraic, then p has
at least n distinct realizations in A,

then there is B ⊆ N ′
s+1 satisfying

(a’) B is algebraically closed in N ′
s+1�L,

(b’) n ≤ |B| ≤ Q(n), and

(c’) whenever d̄ ∈ B, dimN ′
s+1

(d̄) < k and p(x) ∈ S
N ′

s+1�L
1 (d̄) is non-algebraic, then p

has at least n distinct realizations in B.

So let a polynomial P (x) be given. Then we take Q(x) = P (x)+P (x)k0(k+x). This
choice will be understood when we have constructed an appropriate B (satisfying (a’) -
(c’)) for a given A (satisfying (a) - (b)).

Let A ⊆ N ′
s satisfy (a), (b) and (c). We construct B ⊆ N ′

s+1 as follows:

(1) If a ∈ A ∩N ′
s ∩N ′

s+1, then put a into B.
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(2) For every D ⊆ A such that there is a ∈ N ′
s+1 − N ′

s such that acl(a) ∩ N ′
s = D,

we choose (any) distinct a1, . . . , ak+n ∈ N ′
s+1−N ′

s such that acl(ai)∩N ′
s = D, for

each 1 ≤ i ≤ k + n and put a1, . . . , ak+n into B.

The set B contains only elements as specified by (1) and (2) above. Since aclN ′
s+1�L(X) =

aclN ′
s+1

(X) = X for every X ⊆ N ′
s+1, it follows that B is algebraically closed in N ′

s+1�L,
so (a’) holds. The construction implies that

n ≤ |B| ≤ |A|+ |A|k0(k + n) ≤ P (n) + P (n)k0(k + n) = Q(n),

so (b’) holds. It remains to prove (c’).

Suppose that d̄ ∈ B, dimN ′
s+1

(d̄) < k and that p(x) ∈ SN ′
s+1

1 (d̄) is non-algebraic. Let
d̄′ = acl(d̄) ∩N ′

s, so d̄′ ∈ A. Let a ∈ N ′
s+1 realize p. We consider two cases.

Case 1. a ∈ N ′
s.

By the choice of k1, dimN ′
s
(d̄′) < k1. Since A satisfies (c) there are distinct a1, . . . , an ∈ A

such that for each i, tpN ′
s
(aid̄

′) = tpN ′
s
(ad̄′) and hence tp(aid̄

′) = tp(ad̄′). Since in partic-
ular, tp(ai) = tp(a), we must have ai ∈ A ∩N ′

s ∩N ′
s+1, so a1, . . . , an ∈ B, by clause (1).

Since a, ai, d̄
′ ∈ N ′

s, our conclusion that tp(aid̄
′) = tp(ad̄′) implies that aid̄ and ad̄ satisfy

the same atomic formulas in L, for each i. As N ′
s+1�L has elimination of quantifiers

(Lemma 5.24) it follows that tpN ′
s+1�L(aid̄) = tpN ′

s+1�L(ad̄) for each i, so all a1, . . . , an

are realizations of p.

Case 2. a /∈ N ′
s.

Recall that a realizes p(x) (so a ∈ N ′
s+1) and that d̄′ = acl(d̄) ∩N ′

s, where rng(d̄) is the
domain of p. Let ā′ = acl(a) ∩N ′

s. We have two subcases.
First, assume that ā′ ⊆ d̄′. Then, by clause (2) in the construction of B, there are

distinct a1, . . . , an ∈ B − aclN ′
s+1

(d̄) such that acl(ai)∩N ′
s = acl(a)∩N ′

s = ā′ for each i.
Hence, for each i, the sequences aid̄ and ad̄ satisfy the same atomic L-formulas, so by
elimination of quantifiers for N ′

s+1�L each ai realizes p.
Now assume that ā′ 6⊆ d̄′. Let ā1 contain all elements in ā′ which belong to d̄′, and

let ā2 contain all elements in ā′ which do not belong to d̄′. (Our assumption implies
that ā2 is non-empty.) By the choice of k1 we have |ā2d̄

′| < k1. Since every subset of
N ′

s is algebraically closed in N ′
s and rng(ā2) ∩ rng(d̄′) = ∅ it follows that tpN ′

s
(ā2/d̄

′) is
non-algebraic. By (c), repeated times, there are distinct ā1

2, . . . , ā
n
2 ∈ A which realize

tpN ′
s
(ā2/d̄

′). Since N ′
s is canonically embedded in M eq we have

(∗) tp(āi
2d̄
′) = tp(ā2d̄

′) for each i.

In particular, tp(āi
2ā1) = tp(ā2ā1) for each i, so there are e1, . . . , en ∈ N ′

s+1 − N ′
s with

acl(ei)∩N ′
s = āi

2ā1 for each i. By Clause (2) in the construction of B, there are distinct
a1, . . . , an ∈ B − aclN ′

s+1
(d̄) such that acl(ai)∩N ′

s = āi
2ā1 for each i. From (∗) it follows

that the sequences aid̄ and ad̄ satisfy the same atomic L-formulas, for every i. By
elimination of quantifiers for N ′

s+1�L, each ai realizes p. Now we have verified (c’). �

Lemma 5.26 N ′
s+1 satisfies the k-independence hypothesis over L for every k < ℵ0.

Proof. Recall that by the definitions of N ′
s+1 and L we have, for every A ⊆ N ′

s+1,
aclN ′

s+1�L(A) = aclN ′
s+1

(A) = acl(A)∩N ′
s+1 = A and hence dimN ′

s+1�L(A) = dimN ′
s+1

(A) =
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|A|. We verify that for arbitrary k < ℵ0, N ′
s+1 satisfies the k-independence hypothesis

over L. Recall Notation 2.5. Let ā = (a0, . . . , ad−1) ∈ (N ′
s+1)

d be such that dimN ′
s+1

(ā) =
d ≤ k, so no element occurs twice in ā. Suppose that I = {i1, . . . , im} ⊆ {0, . . . , d − 1}
and that p(x̄I) ∈ Sm(Th(N ′

s+1)), where x̄I = (xi1 , . . . xim), is such that

(a) |āI | < k, p(x̄I) ∩ L = tpN ′
s+1�L(āI) and for every proper subset J ⊂ I,

p�{x̄J} = tpN ′
s+1

(āJ).

We must show that there is b̄ = (b0, . . . , bd−1) ∈ (N ′
s+1)

d such that

(b) tpN ′
s+1�L(b̄) = tpN ′

s+1�L(ā), tpN ′
s+1

(b̄I) = p(x̄I) and, for every J ⊂ {0, . . . , d − 1}
such that rng(āI) 6⊆ rng(āJ), tpN ′

s+1
(āJ) = tpN ′

s+1
(b̄J).

By reordering if necessary, we may assume that āI = (a0, . . . , am−1) and x̄I = (x0, . . . , xm−1).
We assume that p(x̄I) has at least one free variable and, as noted above, any

nonempty subset of N ′
s+1 has dimension at least one. Hence, we must have m > 0.

If m = d then I = {0, . . . , d − 1} and letting b̄ = (b0, . . . , bd−1) realize p(x̄I) then,
trivially, all conditions in (b) are satisfied.

Now assume that 0 < m < d. If m = 1, then by the assumption that p(x̄I) ∩ L =
tpN ′

s+1�L(āI) in (a) and the definition of L, we find b0 that realizes p(x0) = p(x̄I) and
satisfies crd′(b0) = crd′(a0). If we take b̄ = (b0, a1, . . . , ad) then (b) is satisfied.

In the rest of the proof we assume that 1 < m < d. Observe that, by the definition
of L, if c̄, d̄ ∈ N ′

s+1 ∩ N ′
s and tpN ′

s+1�L(c̄) = tpN ′
s+1�L(d̄), then tp(c̄) = tp(d̄). Suppose

that for every i < m, ai ∈ N ′
s (so ai ∈ N ′

s+1 ∩ N ′
s). Then the assumption that p(x̄I) ∩

L = tpN ′
s+1�L(āI) implies that āI = (a0, . . . , am−1) realizes p(x̄I). Hence, if b̄ = ā =

(a0, . . . , ad−1) then (b) is trivially satisfied.
Now suppose that for some i < m, ai /∈ N ′

s. By reordering if necessary, we may
assume that there is 0 < m0 ≤ m such that for every i < m, ai ∈ N ′

s if and only
if i ≥ m0. Let a∗0, . . . , a

∗
m0−1 ∈ N ′

s+1 − {a0, . . . , ad−1} be distinct (and hence non-
interalgebraic) elements such that, for each 0 ≤ i < m0, acl(a∗i ) ∩ N ′

s = acl(ai) ∩ N ′
s.

Then let b̄I = (b0, . . . , bm−1) realize p(x̄I). Whenever w = {i1, . . . , iµ} ∈ P(m) and
i1 < . . . < iµ, let āw = (ai1 , . . . , aiµ) and b̄w = (bi1 , . . . , biµ).

From now on the proof consists of two steps. First we will find b∗0, . . . , b
∗
m0−1 such

that, for i < m0, acl(b∗i ) ∩N ′
s = acl(bi) ∩N ′

s and

for every w ∈ P−(m), tp((b∗0, . . . , b
∗
m0−1)b̄w) = tp((a∗0, . . . , a

∗
m0−1)āw). (1)

(This step is made for the purpose that the final tuple b̄ that we are looking for will
have the same type as ā in N ′

s+1�L.) Then we will be able to find bm, . . . bd−1 ∈ N ′
s+1

such that

for every w ∈ P−(m),
tp

(
(bm, . . . , bd−1)b̄w(b∗0, . . . , b

∗
m0−1)

)
= tp

(
(am, . . . , ad−1)āw(a∗0, . . . , a

∗
m0−1)

)
. (2)

From (2), with u = {m0, . . . ,m− 1} (so u = ∅ if m0 = m), we get in particular that

tp
(
(bm, . . . , bd−1)b̄u(b∗0, . . . , b

∗
m0−1)

)
= tp

(
(am, . . . , ad−1)āu(a∗0, . . . , a

∗
m0−1)

)
,

and from this, and the definition of L, it follows that

tpN ′
s+1�L(b0, . . . , bd−1) = tpN ′

s+1�L(a0, . . . , ad−1). (3)
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If we now take b̄ = (b0, . . . , bd−1) then it follows from (2) and (3) that b̄ satisfies the
requirements in (b) above. We start by finding b∗0, . . . , b

∗
m0−1 ∈ N ′

s+1 which satisfy (1).
Define

A =
⋂ {

crd′(āw) : w ∈ P−(m), |w| = m− 1
}
,

B =
⋂ {

crd′(b̄w) : w ∈ P−(m), |w| = m− 1
}
.

Since A ⊆ acl(āw)∩C ′r and B ⊆ acl(b̄w)∩C ′r if |w| = m−1 and only finitely many sorts
are represented in C ′r it follows that A and B are finite. Note that by the definition of
crd′ and Lemma 5.8, we have

A = {a ∈ C ′r : ∃i, j ∈ m, i 6= j, a ∈ crd′(ai) ∩ crd′(aj)},
B = {b ∈ C ′r : ∃i, j ∈ m, i 6= j, a ∈ crd′(bi) ∩ crd′(bj)}.

Also observe that crd′(A) = A and crd′(B) = B. For every w ∈ P−(m) let

Aw = acl(āwA), Bw = acl(b̄wB).

Now we will show that A = {Aw : w ∈ P−(m)} and B = {Bw : w ∈ P−(m)} are
independent systems of algebraically closed sets with inclusion maps.

Claim 1. For all v, w ∈ P−(m) the following holds:
(i) āv is independent from āw over āv∩wA, and hence Av

|̂
Av∩w

Aw.

(ii) b̄v is independent from b̄w over b̄v∩wB, and hence Bv
|̂

Bv∩w

Bw.

Proof of Claim 1. Let v, w ∈ P−(m). Parts (i) and (ii) are proved in the same way
so we only prove (i). Suppose for a contradiction that āv is not independent from āw

over āv∩wA. By the triviality of dependence (and symmetry) there are i ∈ v − w and
j ∈ w − v such that

ai is not independent from aj over āv∩wA. (∗)

As noted above, we have crd′(A) = A and if i′, j′ < m and i′ 6= j′ then crd′(ai′) ∩
crd′(aj′) ⊆ A. It follows (with the use of Lemmas 5.14 and 5.19) that

crd′(ai) ∩ crd′(aj āv∩wA)

=
(
crd′(ai) ∩ crd′(aj)

)
∪

( ⋃
i′∈v∩w

(
crd′(ai) ∩ crd′(ai′)

))
∪

(
crd′(ai) ∩ crd′(A)

)
⊆ A.

Since {ai, aj} ∪ rng(āv∩w) ∪ A ⊆ C ′r, it follows from Lemmas 5.16 and 5.19 that ai is
independent from aj āv∩wA over crd′(ai) ∩

(
crd′(aj āv∩wA

)
. But as shown above,

crd′(ai) ∩ crd′(aj āv∩wA) ⊆ A ⊆ āv∩wA,

so by monotonicity, ai is independent from aj āv∩wA over āv∩wA and hence ai is inde-
pendent from aj over āv∩wA, which contradicts (∗). �

By Claim 1, A = {Aw : w ∈ P−(m)} and B = {Bw : w ∈ P−(m)} are independent
systems of sets with inclusion maps. Let GA =

{
{ai} : i ∈ m

}
and GB =

{
{bi} : i ∈ m

}
.

Then A is generated by GA over A, and B is generated by GB over B.
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By assumption we have tp(āw) = tp(b̄w) for every w ∈ P−(m) and if |w| = m − 1
then A ⊆ acl(āw) and B ⊆ acl(b̄w). Hence, for every w ∈ P−(m) with |w| = m− 1 there
is an elementary map fw from Aw = acl(āwA) = acl(āw) onto Bw = acl(b̄wB) = acl(b̄w)
such that fw(āw) = b̄w. For every v ∈ P−(m) with |v| < m − 1 choose (arbitrary)
w ∈ P−(m) such that |w| = m − 1 and v ⊆ w and let fv = fw�Av; then fv is an
elementary map from Av onto Bv and fv(āv) = b̄v. From the definition it follows that
if v, w ∈ P−(m) and v ⊆ w, then fw�

⋃
i∈w{ai} extends fv�

⋃
i∈v{ai}. It follows that

{fw : w ∈ P−(m)} is a system of elementary maps from (A,GA) onto (B,GB). The next
claim shows that conditions (1) and (2) in the definition of the m-embedding of types
property (Definition 3.2) are satisfied for the sequence (a∗0, . . . , a

∗
m0−1).

Claim 2. For every i < m0,

a∗i /∈ acl
(
({a∗0, . . . , a∗m0−1} − {a∗i }) ∪

⋃
w∈P−(m)

Aw

)
.

Proof of Claim 2. Suppose that i < m0 and

a∗i ∈ acl
(
({a∗0, . . . , a∗m0−1} − {a∗i }) ∪

⋃
w∈P−(m)

Aw

)
.

By definition, Aw = acl(āwA) and if |w| = m− 1 then A ⊆ acl(āw), so we get

a∗i ∈ acl
(
({a∗0, . . . , a∗m0−1} − {a∗i }) ∪

⋃
w∈P−(m)

āw

)
.

From the fact that every subset ofN ′
s+1 is algebraically closed inN ′

s+1 and that a∗0, . . . , a
∗
m0−1

are distinct, it follows that there is j ∈ {0, . . . ,m− 1} such that a∗i = aj . But this con-
tradicts that each a∗i was chosen so that it does not belong to {a0, . . . , ad−1}. �

By Claim 2 and the assumption that Th(M) has the m-embedding of types property
with respect to all generators (as M is a strongly independent structure), it follows that
there are b∗0, . . . , b

∗
m0−1 ∈Meq, where M is the monster model of Th(M), and, for every

w ∈ P−(m), an elementary map gw from {a∗0, . . . a∗m0−1} ∪Aw onto {b∗0, . . . b∗m0−1} ∪Bw

such that, for i = 0, . . . ,m0 − 1, gw(a∗i ) = b∗i , if w ⊇ v then gw�
⋃

i∈w{ai} extends
gv�

⋃
i∈v{ai}, and for every i = 0, . . . ,m− 1, g{i}�{ai} = f{i}�{ai}. Hence

for every w ∈ P−(m), tpMeq

(
(b∗0, . . . , b

∗
m0−1)b̄w

)
= tpMeq

(
(a∗0, . . . , a

∗
m0−1)āw

)
. (4)

Since M eq is ℵ0-homogeneous we may assume that b∗0, . . . , b
∗
m0−1 ∈M eq and hence they

belong to N ′
s+1. Note that, by the choice of a∗0, . . . , a

∗
m0−1 and lemmas 5.8 and 5.19,

b∗i /∈ acl
(
({b∗0, . . . , b∗m0−1} − {b∗i }) ∪ {b0, . . . , bm−1}

)
, for every i < m0.

Now we will find bm, . . . , bd−1 ∈ N ′
s+1 such that (2) and (3) hold. For every w ∈ P−(m)

define

A′w = acl
(
āw(a∗0, . . . , a

∗
m0−1)A

)
,

B′w = acl
(
b̄w(b∗0, . . . , b

∗
m0−1)B

)
.
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The next claim shows that A′ = {A′w : w ∈ P−(m)} and B′ = {B′w : w ∈ P−(m)} are
independent systems of algebraically closed sets with inclusion maps.

Claim 3. For all v, w ∈ P−(m) the following hold:
(i) āv is independent from āw over āv∩w(a∗0, . . . , a

∗
m0−1)A, and hence A′v |̂

A′
v∩w

A′w.

(ii) b̄v is independent from b̄w over b̄v∩w(b∗0, . . . , b
∗
m0−1)B, and hence B′v |̂

B′
v∩w

B′w.

Proof of Claim 3. The proof is similar to the proof of Claim 1. Parts (i) and (ii) are
proved in the same way so we only prove (i). Let ā∗ = (a∗0, . . . , a

∗
m0−1). By the triviality

and symmetry of dependence it is sufficient to prove that if i ∈ v − w and j ∈ w − v
then ai is independent from aj over āv∩wā

∗A.
Let i ∈ v − w and j ∈ w − v. By Lemma 5.16 and Lemma 5.19, ai is inde-

pendent from aj āv∩wā
∗A over crd′(ai) ∩ crd′

(
aj āv∩wā

∗A
)
. Since for any D ⊆ M eq,

crd′(D) ⊆ acl(D), it follows that ai is independent from aj āv∩wcrd′(ā∗)A over crd′(ai)∩
crd′

(
aj āv∩wcrd′(ā∗)A

)
.

As shown in the proof of Claim 1, we have

crd′(ai) ∩
(
crd′(aj āv∩wA)

)
⊆ A.

Note that crd′(crd′(D)) = crd′(D) for every D ⊆ M eq. It follows (using Lemma 5.14)
that

crd′(ai) ∩ crd′
(
aj āv∩wcrd′(ā∗)A

)
=

(
crd′(ai) ∩ crd′(aj āv∩wA)

)
∪

(
crd′(ai) ∩ crd′(ā∗)

)
⊆ A ∪ crd′(ā∗)
⊆ āv∩w ∪ crd′(ā∗) ∪A.

By monotonicity it now follows that ai is independent from aj āv∩wcrd′(ā∗)A over āv∩wcrd′(ā∗)A
and therefore ai is independent from aj over āv∩wcrd′(ā∗)A and hence also over āv∩wā

∗A.
�

By Claim 3, A′ = {A′w : w ∈ P−(m)} and B′ = {B′w : w ∈ P−(m)} are independent
systems of algebraically closed sets with inclusion maps. For every i ∈ m let

Â0
i = {ai} ∪ {a∗0, . . . , a∗m0−1} and B̂0

i = {bi} ∪ {b∗0, . . . , b∗m0−1}.

Then A is generated by G′A = {Â0
i : i ∈ m} over A, and B is generated by G′B = {B̂0

i :
i ∈ m} over B.

From (4) it follows that, for every w ∈ P−(m) with |w| = m−1, there is an elementary
map f ′w from A′w onto B′w such that f ′w(āw) = b̄w and f ′w(a∗i ) = b∗i for i = 0, . . . ,m0− 1.
For every v ∈ P−(m) with |v| < m − 1 we choose (arbitrary) w ∈ P−(m) such that
|w| = m − 1 and v ⊆ w and let f ′v = f ′w�Av; then f ′v is an elementary map from Av

onto Bv. It follows that whenever v, w ∈ P−(m) and v ⊆ w, then f ′w�
⋃

i∈w Â
0
i extends

f ′v�
⋃

i∈v Â
0
i . Hence {fw : w ∈ P−(m)} is a system of elementary maps from (A′,G′A)

onto (B′,G′B).
The next claim show that conditions (1) and (2) from the defintion of m-embedding

of types property (Definition 3.2) hold for the sequence (am, . . . , ad−1).
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Claim 4. If a ∈ {am, . . . , ad−1} then

a /∈ acl
(
({am, . . . , ad−1} − {a}) ∪

⋃
w∈P−(m)

A′w

)
.

Proof of Claim 4. Suppose for a contradiction that a ∈ {am, . . . , ad−1} and

a ∈ acl
(
({am, . . . , ad−1} − {a}) ∪

⋃
w∈P−(m)

A′w

)
.

Since A′w = acl(āw(a∗0, . . . , a
∗
m0−1)A) and |w| = m− 1 implies A ⊆ acl(āw), we get

a ∈ aclN ′
s+1

(
({am, . . . , ad−1} − {a}) ∪ {a∗0, . . . , a∗m0−1} ∪

⋃
w∈P−(m)

āw

)
,

and as every subset of N ′
s+1 is algebraically closed in N ′

s+1 we get either a = ai for some
i ∈ {0, . . . , d− 1} or a = a∗i for some i ∈ {0, . . . ,m0 − 1}. But in either case we have a
contradiction because all elements in ā are distinct and a∗0, . . . , a

∗
m0−1 where chosen to

be different from all elements in ā. �

Since Th(M) has the m-embedding of types property with respect to all generators,
Claim 4 implies that there are bm, . . . , bd−1 ∈ Meq and, for every w ∈ P−(m), an
elementary map g′w from {am, . . . , ad−1}∪A′w onto {bm, . . . , bd−1}∪B′w such that g′w(ai) =
bi for i = m, . . . , d− 1, g′w�

⋃
i∈w Â

0
i extends g′v�

⋃
i∈v Â

0
i if w ⊇ v, and g′{i}�Â

0
i = f ′{i}�Â

0
i

for i = 0, . . . ,m−1. It follows that, for every w ∈ P−(m), g′w(āw) = b̄w and gw(a∗i ) = b∗i
for i = 0, . . . ,m0 − 1. Therefore,

for every w ∈ P−(m),
tpMeq

(
(bm, . . . , bd−1)b̄w(b∗0, . . . , b

∗
m0−1)

)
=

tpMeq

(
(am, . . . , ad−1)āw(a∗0, . . . , a

∗
m0−1)

)
. (5)

By the ℵ0-homogeneity ofM eq we may assume that bm, . . . , bd−1 ∈M eq, so bm, . . . , bd−1 ∈
N ′

s+1. As N ′
s+1 is canonically embedded in M eq it follows from (5) that

for every w ∈ P−(m), tpN ′
s+1

(
(bm, . . . , bd−1)b̄w

)
= tpN ′

s+1

(
(am, . . . , ad−1)āw

)
. (6)

Let u = {m0, . . . ,m− 1} (so u = ∅ if m0 = m). Since, by assumption, m0 > 0, we have
u ∈ P−(m), so from (5) we get

tp
(
(bm, . . . , bd−1)b̄u(b∗0, . . . , b

∗
m0−1)

)
= tp

(
(am, . . . , ad−1)āu(a∗0, . . . , a

∗
m0−1)

)
. (7)

From the choice of a∗0, . . . , a
∗
m0−1, b

∗
0, . . . , b

∗
m0−1 and u (and lemmas 5.8 and 5.19) it follows

that

acl(a0, . . . , ad−1) ∩N ′
s = acl((a∗0, . . . , a

∗
m0−1)āu) ∩N ′

s, and
acl(b0, . . . , bd−1) ∩N ′

s = acl((b∗0, . . . , b
∗
m0−1)b̄u) ∩N ′

s.

The definition of L and (7) now gives

tpN ′
s+1�L(b0, . . . , bd−1) = tpN ′

s+1�L(a0, . . . , ad−1). (8)

Let b̄ = (b0, . . . , bd−1). Since b̄I = (b0, . . . , bm−1) realizes p(x̄I) it follows from (6) and
(8) that b̄ satisfies the conditions in (b), so the lemma is proved. �
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Lemma 5.27 N ′
s+1 is polynomially k-saturated for every k < ℵ0.

Proof. By the definition of L, aclN ′
s+1�L and aclN ′

s+1
coincide. By Lemma 5.25, N ′

s+1�L
is polynomially k-saturated for every k < ℵ0. By Lemma 5.26, N ′

s+1 satisfies the k-
independence hypothesis over L for every k < ℵ0. Hence, by Theorem 2.7, N ′

s+1 is
polynomially k-saturated for every k < ℵ0. �

Corollary 5.28 N ′
r is polynomially k-saturated for every k < ℵ0.

Proof. This follows by induction, since N ′
1 is polynomially k-saturated for every k < ℵ0,

as pointed out in the beginning of Section 5.2, and we have proved that N ′
s+1 is poly-

nomially k-saturated for every k < ℵ0 under the assumption that N ′
s is polynomially

k-saturated for every k < ℵ0. �

Now we can complete the proof of the main theorem:

Theorem 5.1 If M is a strongly independent structure then M has the finite submodel
property.

Proof. Under the assumption that M is a strongly independent structure we have
derived that M eq has a canonically embedded structure N ′

r which, by Corollary 5.28, is
polynomially k-saturated for every k < ℵ0. It follows (by Lemma 2.3) that N ′

r has the
finite submodel property. Since M is a strongly independent structure, there is a finite
bound on the arity of function symbols in the language of M , so Theorem 1.4 and the
fact that (by construction) M ⊆ aclMeq(N ′

r) and only finitely many sorts are represented
in N ′

r implies that M has the finite submodel property. �

Remark 5.29 Recall that the difference between ’independent structure’ and ’strongly
independent structure’ is that in the latter case we assume the n-embedding of types
property with respect to all generators, while in the former case we only assume the
n-embedding of types property with respect to simple generators over the ”base sets”
A∅ and B∅. By Theorem 3.4, all stable theories have the n-embedding of types property,
and from Theorem 4.3 it follows that every independent (not necesserarily strongly
independent) structure with SU-rank 1 has the finite submodel property. It would be
pleasing if one could show that every independent structure has the finite submodel
property, or show that the assumption on strong independence is necessary; an issue not
settled in this paper.

6 The n-amalgamation property

The n-amalgamation property was introduced and studied in [10] and generalizes an
earlier variant of it studied in [11]. Here we will prove a result which relates the n-
embedding of types property and the n-amalgamation of types property in the case
when the theory under consideration has SU-rank one.

We start by giving the definition of the n-amalgamation property as well as the
definition of a coherent system of types, a notion also comming from [10].

Definition 6.1 We say that T has the n-amalgamation property if whenever

({As : s ∈ P−(n)}, {πs
t : s ⊆ t ∈ P−(n)})
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is an independent system of boundedly closed sets indexed by P−(n), there exist a
boundedly closed An and elementary maps πu

n : Au → An for every u ∈ P−(n) such that
({As : s ∈ P(n)}, {πs

t : s ⊆ t ∈ P(n)}) is an independent system of boundedly closed
sets indexed by P(n).

Definition 6.2 Let {Aw : w ∈ P−(n)} be an independent system of boundedly closed
sets with inclusion maps. We say that {pw(x̄w) : w ∈ P−(n)}, where pw(x̄w) ∈ S(Aw)
for each w ∈ P−(n), is a coherent system of types over {Aw : w ∈ P−(n)} if the following
hold:

(1) If Cw realizes pw then Cw ⊃ Aw (so x̄w is an infinite sequence of variables).

(2) If w ⊆ v then x̄w ⊆ x̄v and pw ⊆ pv.

(3) For every w ∈ P−(n) there is a bijection fw : Cw → x̄w such that if C∅w =
f−1

w ◦ f∅(C∅), then

(4) Cw = bdd(Aw ∪ C∅w) and C∅w |̂
A∅
Aw (for every w ∈ P−(n)).

From [10] we have:

Theorem 6.3 Let T be simple and let n ≥ 3. Then the following are equivalent:

(i) T has the k-amalgamation property for every k ≤ n+ 1.

(ii) For every k ≤ n and coherent system of types {pw(x̄w) : w ∈ P−(k)} over an
independent system of boundedly closed sets {Aw : w ∈ P−(k)}, there is Ck which
realizes pw for every w ∈ P−(k) and C∅k |̂A∅

⋃
i∈k A{i}.

Now we can use Theorem 6.3 to prove the following lemma which has the technical
content of the next theorem:

Lemma 6.4 Let T be simple with SU-rank 1 and with the k-amalgamation property for
every k ≤ n + 1, where n ≥ 3. Suppose that A = {Aw : w ∈ P−(k)} and B = {Bw :
w ∈ P−(k)} are independent systems of algebraically closed sets with inclusion maps
and that, for every w ∈ P−(k), fw is an elementary map from Aw onto Bw, and fw

extends fv whenever w ⊇ v. Let ā be such that

(1) rng(ā) ∩ acl
( ⋃

w∈P−(k)Aw

)
= ∅.

(i) If T has trivial dependence then there are b̄ and, for every w ∈ P−(k), an elementary
map from Aw ∪ rng(ā) onto Bw ∪ rng(b̄) such that fw extends gw.
(ii) If ā is a real tuple which i addition to (1) also satisfies that

(2) if a ∈ rng(ā) and a ∈ acl
(
(rng(ā)−{a})∪

⋃
w∈P−(k)Aw

)
then a ∈ acl

(
rng(ā)−{a}

)
,

then there are b̄ and, for every w ∈ P−(k), an elementary map from Aw ∪ rng(ā) onto
Bw ∪ rng(b̄) such that fw extends gw. (Here we do not assume trivial dependence.)
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Proof. Let n ≥ 3 and suppose that T is simple with SU-rank 1 and with the k-
amalgamation property for every k ≤ n + 1. Let k ≤ n. We will prove (ii) and then
tell how to modify the proof so that it becomes a proof of (i). Let A, B and fw, for
w ∈ P−(k), be as in the assumptions of the lemma. Then let ā be a tuple of real
elements satisfying (1) and (2).

Since T has SU-rank 1, we have ā |̂ Aw for every w ∈ P−(k). For every w ∈ P−(k),
let Cw = acl(āAw). Since each fw is an elementary map, there are, for every w ∈ P−(k),
b̄w and an elementary map f ′w from Cw onto Dw = acl(b̄wBw) such that f ′w extends fw

and f ′w(ā) = b̄w.
We now transform the above data into a coherent system of types over {Bw : w ∈

P−(k)}. For each w ∈ P−(k), let

pw(x̄w) = tp(Dw/Bw),

so x̄w is an infinite sequence of (distinct) variables of length |Dw|. The assumption that
fw extends fv if w ⊇ v implies that we may assume that if v ⊆ w then x̄v ⊆ x̄w and
pv ⊆ pw. For every w ∈ P−(k), let hw : Dw → x̄w be the bijection which is implicit in
the definition of pw, and let D∅

w = h−1
w ◦ h∅(D∅); it follows that D∅

w = acl(b̄wB∅) and
hence b̄w ⊆ D∅

w. We need to verify that Dw = acl
(
Bw ∪ D∅

w

)
and D∅

w
|̂

B∅
Bw, for every

w ∈ P−(k).
Let w ∈ P−(k). Since Dw = acl(b̄wBw) and D∅

w = acl(b̄wB∅) we get Dw = acl
(
Bw ∪

D∅
w

)
. We already noted that ā |̂ Aw and hence ā |̂

A∅
Aw, and sincef ′w is an elementary

map it follows that b̄w |̂
B∅
Bw; as D∅

w = acl(b̄wB∅) we get D∅
w
|̂

B∅
Bw.

Now we have proved that {pw(x̄w) : w ∈ P−(k)} is a coherent system of types
over {Bw : w ∈ P−(k)}. By assumption, T has the k-amalgamation property for every
k ≤ n+1, so Theorem 6.3 implies that there is D which realizes pw for every w ∈ P−(k).
But then there is a sequence of elements b̄ ∈ D and, for every w ∈ P−(k), an elementary
map gw : rng(ā)∪Aw → rng(b̄)∪Bw such that gw extends fw. This completes the proof
of (ii).

Part (i) is proved essentially in the same way as (ii). Since we now assume that
T has trivial dependence, if ā is a real tuple which satisfies (1) then ā |̂ Aw for every
w ∈ P−(k). Then we can argue precisely as in the proof of (ii) to find b̄ and elementary
maps gw from Aw ∪ rng(ā) onto Bw ∪ rng(b̄) such that for each w, gw extends fw. But
by an analogous argument as in the proof of Lemma 3.3 it follows that the assumption
that ā is a real tuple is not necessary. �

Theorem 6.5 Suppose that T is simple with SU-rank 1. Moreover, suppose that acl(A) =
dcl(A) for every A ⊂Meq, where M is the monster model of T . Let n ≥ 3.
(i) If T has the k-amalgamation property for every k ≤ n+1, then T has the k-embedding
of types property for real types with respect to simple generators, for every 2 ≤ k ≤ n.
(ii) If T has trivial dependence and the k-amalgamation property for every k ≤ n + 1,
then T has the strong k-embedding of types property with respect to simple generators,
for every 2 ≤ k ≤ n.

Proof. Let n ≥ 3 and suppose that T is simple with SU-rank 1. Then T is supersimple
and therefore it has elimination of hyperimaginaries, so we can replace the bounded clo-
sure by the algebraic closure in the definition of the n-amalgamation property. Moreover,
assume that the algebraic closure coincides with the definable closure.

By Lemma 6.4, it is sufficient to show the following for k ≤ n: Whenever
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(a) (A,GA) and (B,GB) are independent systems of algebraically closed sets, indexed
by P−(k) with inclusion maps and simple generators GA∅ = {A0

i : i ∈ k} over A∅
and GB∅ = {B0

i : i ∈ k} over B∅, respectively, and

(b) {fw : w ∈ P−(k)} is a system of elementary maps from (A,GA∅) onto (B,GB∅),

then, for every w ∈ P−(k), fw extends fv if w ⊇ v.
By the definitions of independent system of algebraically closed sets and of simple

generators (so A∅ ⊆ A0
i , B∅ ⊆ B0

i ) and the assumption that acl coincides with dcl we
have the following for every w ∈ P−(k):

Aw = acl
( ⋃

i∈w

A{i}

)
= acl

( ⋃
i∈w

(
A∅ ∪A0

i

))
= acl

( ⋃
i∈w

A0
i

)
= dcl

( ⋃
i∈w

A0
i

)
.

In the same way we get Bw = dcl
( ⋃

i∈w B
0
i

)
for every w ∈ P−(k). So for every

w ∈ P−(k), every elementary map from
⋃

i∈w A
0
i onto

⋃
i∈w B

0
i can be extended to an

elementary map from Aw onto Bw in one unique way. Since we assume that {fw : w ∈
P−(k)} is a system of elementary maps from (A,GA∅) onto (B,GB∅) it follows that fw

extends fv whenever w ⊇ v. �

7 Examples

In all examples, when passing from statements concerning real elements (those of sort
’=’) to imaginary elements, we tacitly use the fact (see [14] or [15] for example) that
T eq is determined by T in the sense that for every ϕ(x1, . . . , xm) ∈ Leq and ∅-definable
equivalence relations Si, i = 1, . . . ,m, on Msi (where M is the monster model of T )
with corresponding functions fi sending ā ∈ Msi to its Si-class, there is a formula
ψ(ȳ1, . . . , ȳm) ∈ L such that

T eq |= ∀ real ȳ1 . . . ȳm

(
ψ(ȳ1, . . . , ȳm) ↔ ϕ(f1(ȳ1), . . . , fm(ȳm))

)
.

When this needs to be used in the examples, ψ can be chosen to be quantifier free.

Example 7.1 The random graph: In [10] it is shown that the complete theory of the
random graph, denoted Trg, has the n-amalgamation property for every n < ℵ0. By
Theorem 6.5 (ii) and Lemma 3.6, Trg has the strong n-embedding of types property with
respect to all generators, for every 3 ≤ n < ℵ0; and one can verify ”by hand” that the
same holds for n = 2. Hence Trg is strongly independent.

Example 7.2 The strong 4-embedding of types property with respect to simple gener-
ators does not imply the 4-amalgamation property: According to Theorem 3.4 every
stable theory has the strong n-embedding of types property with respect to simple gen-
erators for every 2 ≤ n < ℵ0. In [4] an example is given of a stable theory without the
4-amalgamation property.

Example 7.3 A strongly independent structure with SU-rank k + 1, k > 0 arbitrary:
We have seen that random graph is an example of a strongly independent structure of
SU-rank 1. Another example, of SU-rank k+ 1, for arbitrary k > 0, can be constructed
as follows. We use the basic theory of Fräıssé-limits; see [8], Chapter 7 (in particular,
Theorems 7.1.2 and 7.4.1). Let the vocabulary of the language L be {=, E0, . . . , Ek, R}
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and let K be the class of all finite L-structures A such that E0, . . . , Ek are interpreted
as equivalence relations, where Ei+1 refines Ei for each i < k, and R is interpreted as a
symmetric and irreflexive binary relation. It is easy to verify that K has the hereditary
property and amalgamation property, which implies that K has the joint embedding
property, so K has a so-called Fräıssé-limit M . The Fräıssé-limit M has the properties
that Th(M) eliminates quantifiers (so it is ℵ0-categorical) and

(1) every finite substructure of M belongs to K, and

(2) for every finite substructure A ⊂M (where we may have A = ∅) and B ∈ K such
that A ⊆ B, there is an embedding f : B →M such that f�A is the identity map.

Let M be the monster model of Th(M) and for a ∈ M, let [a]i denote the Ei-class
to which a belongs, so [a]i ∈ Meq, and let fi be the function which sends a ∈ M to its
Ei-class. It follows that if ā ∈ M and A ⊆ B ⊆Meq, then tp(ā/B) forks over A if and
only if, for some a ∈ rng(ā),

∃b ∈ B −A
(
b = a ∨ ∃i ∈ {0, . . . , k}[(
Ei(a, b) ∧ ∀a′ ∈ A(¬Ei(a, a′))

)
∨

(
fi(a) = b ∧ ∀a′ ∈ A(fi(a) 6= a′)

)])
.

From this, one can show that Th(M) is simple with SU-rank k + 1, that Th(M) is
1-based and has trivial dependence. From the definition of K and (2) it follows that
algebraic closure and definable closure always coincide (also when imaginary elements are
involved) and that the latter is trivial. In order to verify that Th(M) has the strong n-
embedding of types property with respect to all generators, it is, by Lemma 3.3 sufficient
to consider real types, and for n > 2 it is, by Lemma 3.6, sufficient to consider simple
generators.

Example 7.4 The random bipartite graph has the 2-embedding of types property with
respect to simple generators, but not with respect to all generators; this happens for trivial
reasons and the discrepancy disappears in a natural expansion of the random bipartite
graph: Let the language L have two binary relation symbols E and R. Let Krb be
the class of all of all finite L-structures A in which E is interpreted as an equivalence
relation with exactly two classes and such that A |= ∀xy

(
R(x, y) → ¬E(x, y)

)
. We call

the Fräıssé limit Mrb of Krb the random bipartite graph and let Trb = Th(Mrb). Then Trb

has the (strong) 2-embedding of types property with respect to simple generators, but
not with respect to all generators. To see the latter, first observe that any two distinct
elements are independent of each other over ∅ and then consider distinct elements a0, a1

in the same E-class, and distinct elements b0, b1 not in the same E-class. Then the
unique maps f{i} : {ai} → {bi}, for i = 0, 1, are elementary and there exists a which
is adjacent (with respect to R) to both a0 and a1, but there is no b which is adjacent
to both b0 and b1, since they are in different E-classes. This problem vanishes when we
consider the (strong) 2-embedding of types property with respect to simple generators
since in this case we must assume that ai has the same type as bi over acl(∅) and this
puts ai and bi in the same E-class for i = 0, 1.

Now suppose that n ≥ 3 and that A = {Aw : w ∈ P−(n)} and B = {Bw : w ∈
P−(n)} are systems of algebraically closed sets with (not necessarily simple) generators
GA = {A0

i : i ∈ n} and GB = {B0
i : i ∈ n} over A and B, respectively. Assume that

F = {fw : w ∈ P−(n)} is a system of elementary maps from (A,GA) onto (B,GB). If
ai ∈ A0

i and aj ∈ A0
j are in the same E-class then, since f{i,j} is elementary, f{i,j}(ai)
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and f{i,j}(ai) are in the same E-class, and vice versa. So for n ≥ 3 the problem that
appeared when n = 2 (with respect to all generators) does not appear. From this, one
can deduce that Trb has the strong n-embedding of types property with respect to all
generators for every n ≥ 3.

Now consider the expansion M ′
rb of Mrb obtained by adding a unary predicate which

is interpreted as (exactly) one of the E-classes and let T ′rb = Th(M ′
rb). So if a and b

have the same type with respect to T ′rb, then they are in the same E-class, and in fact
they have the same type over acl(∅) where acl is taken in Meq for a monster model M
of T ′rb. From this it follows that T ′rb has the strong n-embedding of types property with
respect to all generators for every 2 ≤ n < ℵ0.

The author lacks an example of a complete theory T such that, for some n, T has
the n-embedding of types property for simple generators, but not for all generators, and
there does not exist a theory T ′ ⊇ T , in an expanded language, such that T ′ has the
n-embedding of types property for all generators. In other words, I don’t know of an
example where a discrepancy between n-embedding of types property with respect to
simple generators, and with respect to all generators, appears and cannot be fixed by
just expanding the language in a way that preserves all other relevant properties of T
(simplicity, ℵ0-categoricity, 1-basedness etc).

Example 7.5 Failure to extend generators and systems of elementary maps in general:
Here we construct a theory T and systems of algebraically closed sets A = {Aw : w ∈
P−(n)} and B = {Bw : w ∈ P−(n)} with (nonsimple) generators GA = {A0

i : i ∈ n}
and GB = {B0

i : i ∈ n} over A and B, respectively. It will easily follow that there
is a system of elementary maps from (A,GA) onto (B,GB). However, we will show
that whenever G′A∅

and G′B∅
are simple generators for A and B, respectively, then there

is no elementary system of maps from from (A,G′A∅
) onto (B,G′B∅

). The example T
will have very uncomplicated behaviour of forking and algebraic closure, but algebraic
and definable closures will not coincide. Since T has the strong n-embedding of types
property for every 2 ≤ n < ℵ0 with respect to all generators, it does not show that
the assumptions on algebraic and definable closures in Lemma 3.6 are necessary, but
only that the method of ”extending” systems of elementary maps to simple generators,
applied in the proof of that lemma, may fail if algebraic and definable closures are
different.

Let the language L0 have unary relation symbols P , Q, a ternary relation symbol R,
a binary relation symbol S and unary function symbols f1 and f2. Let K0 consist of all
finite L0-structures A which satisfy the following axioms:

A : ∀x
(
P (x) ∨Q(x)

)
,

B : ∀x
(
P (x) → ¬Q(x)

)
,

C : ∀x
(
P (x) →

(
Q(f1(x)) ∧Q(f2(x)) ∧ f1(x) 6= f2(x)

))
,

D : ∀x
(
Q(x) →

(
f1(x) = x ∧ f2(x) = x

))
,

E : ∀xy
(
S(x, y) ↔

(
P (x) ∧Q(y) ∧

(
f1(x) = y ∨ f2(x) = y

)))
,

F : ∀xyz
(
R(x, y, z) →

(
P (x) ∧ P (y) ∧Q(z)

)
.

Then K0 is closed under substructures and has the amalgamation property, so the Fräıssé
limit M0 of K0 exists and has elimination of quantifiers. Since M0 is uniformly locally
finite it is ℵ0-categorical. Note that, as M0 is the Fräıssé limit of K0, we have the
following: Whenever A is a substructure of B ∈ K0 and f : A → M0 is an embedding,
then there is an embedding g : B → M0 which extends f ; it follows that for any two
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a1, a2 ∈ QM0 there are infinitely many b ∈ PM0 such that f1(b) = a1 and f2(b) = a2.
The theory T0 = Th(M0) is simple with SU-rank 3, 1-based and with trivial dependence
and with the strong n-amalgamation of types property with respect to all generators,
for every 2 ≤ n < ℵ0 (left for the reader to verify).

Now let L ⊆ L0 be the language with the symbols P , Q, R and S (but not f1 and
f2). Then let M = M0�L and T = Th(M). Note that, by axioms C and E, whenever
a ∈ PM , then there are exactly two elements b1, b2 such that (a, bi) ∈ SM and both
these elements belong to QM . Let’s call a subset A ⊆ M closed if it is the universe
of a substructure of M0, or equivalently, if it satisfies that whenever a ∈ A ∩ PM and
(a, b) ∈ SM then b ∈ A. It follows (using properties of N) that every isomorphism
σ : A → B where A and B are closed substructures of M can be extended to an
automorphism of M ; hence the quantifier-free type of a tuple ā ∈M such that rng(ā) is
closed determines its type over ∅. Also, if K consists of all L-reducts of structures in K0,
then it follows that whenever A ∈ K and A is a substructure of B ∈ K and f : A→M
is an embedding, then there is an embedding g : B →M which extends f .

Thus there are distinct a0, a1, a2 ∈ PM and distinct a′0, a
′
1 ∈ QM such that the sub-

structure of M with universe {a0, a1, a2, a
′
0, a

′
1} satisfies the following atomic relations,

and no others:

S(ai, a
′
j) for every i ∈ {0, 1, 2} and every j ∈ {0, 1}, and

R(a0, a1, a
′
0) and R(a1, a2, a

′
0).

Then we can also find b0, b1, b2 ∈ PM and distinct b′0, b
′
1 ∈ QM such that the substructure

of M with universe {b0, b1, b2, b′0, b′1} satisfies the following atomic relations, and no
others:

S(bi, b′j) for every i ∈ {0, 1, 2} and every j ∈ {0, 1}, and

R(b0, b1, b′0) and R(b1, b2, b′1).

Note that the with respect to the mapping ai 7→ bi, a′i 7→ b′i, the only difference is that
we have R(a1, a2, a

′
0) for the first set of elements and R(b1, b2, b′1) for the other set. Also

observe that for all i, j ∈ 3, (ai, aj , a
′
0, a

′
1) and (bi, bj , b′0, b

′
1) are closed, and hence their

quantifier-free type determines their type over ∅. It follows that (ai, aj) has the same
type as (bi, bj) over ∅. But there does not exist elementary maps

g{0,1} : {a0, a1, a
′
0, a

′
1} → {b0, b1, b′0, b′1}, and

g{1,2} : {a1, a2, a
′
0, a

′
1} → {b1, b2, b′0, b′1}

such that g{0,1}�{a′0, a′1} = g{1,2}�{a′0, a′1}, g{0,1} maps (a0, a1) to (b0, b1) and g{1,2} maps
(a1, a2) to (b1, b2).

Now let M be the monster model in which M is elementarily embedded and let acl
the algebraic closure in Meq. From the above it follows that the claims made in the
beginning of this example about A, GA, B and GB hold if we let n = 3, A = {a′0, a′1},
A0

i = {ai} for i ∈ 3, and Aw = acl
( ⋃

i∈w A
0
i

)
for w ∈ P−(3); and the same with ’b’ and

’B’ in place of ’a’ and ’A’.
One can also show that T has the strong n-embedding of types property with respect

to all generators for every 2 ≤ n < ℵ0. The construction of M could have been carried
out in the same fashion with a k-ary relation R, for any k ≥ 3, and the requirement that
if R(x1, . . . , xk) holds then P (xi) holds for i = 1, . . . , k − 1 and Q(xk) holds. Then the
assertions in the beginning of the example would follow for n = k.
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