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Abstract

We prove, by a probabilistic argument, that a class of w-categorical structures, on
which algebraic closure defines a pregeometry, have the finite submodel property.
This class includes any expansion of a pure set or of a vector space, projective
space or affine space over a finite field such that the new relations are sufficiently
independent of each other and over the original structure. In particular, the random
graph belongs to this class, since it is a sufficiently independent expansion of an
infinite set, with no structure. The class also contains structures for which the
pregeometry given by algebraic closure is non-trivial.

Introduction

The random graph, random bipartite graph and random structure have the finite sub-
model property, which means that every first-order sentence which is true in the structure
is also true in a finite substructure of it. This follows from the 0-1 law for each one of
them, the proof of which uses a probabilistic argument (see [8], [9], for example). It is
also known that all smoothly approximable structures have the finite submodel prop-
erty, which follows rather easily from the definition [11]. The hard part is to show that
certain structures are smoothly approximable. It has been shown that all w-categorical
w-stable structures are smoothly approximable [4] and later that a structure is smoothly
approximable if and only if it is Lie coordinatizable ([5]; partially proved in [11]).

All above mentioned structures are w-categorical and simple. If M is simple with
SU-rank 1, then (M, acl), where ‘acl’ denotes the algebraic closure operator, is a prege-
ometry. The random (bipartite) graph and random structure have SU-rank 1. Every
smoothly approximable structure M has finite SU-rank and can be nicely described, via
Lie coordinatizability, in terms of definable subsets of M9 (so-called Lie geometries in
[5]) of SU-rank 1.

A pregeometry (G, cl) can be viewed as a first-order structure M = (G, Py;n < w),
where M = P,(ai,...,an41) if and only if a1 € cl({a1,...,a,}). In such a structure
we have a notion of dimension, defined in terms of the closure operator cl. In this article
we will study w-categorical structures M such that (M, acl) is a pregeometry. Since M
may have relations which are not expressible in terms of the P,’s (now defined with cl
= acl), we will view such M as an expansion of (M, P,;n < w).

We will prove (Theorem 2.2) that if M is an L-structure and there is a sublanguage
L C L such that, for every k < w, the following three points (which will be made precise
later) are satisfied, then M has the finite submodel property:

(1) The algebraic closure operator in M is the same as the algebraic closure operator in
ML, where ML is the reduct of M to L.

(2) The relations on tuples of dimension < k which are definable in M but not in M[L
are sufficiently independent of each other.



(3) There is a polynomial P(z) such that, for any nyg < w there is n > ng and a (finite)
substructure A of ML such that |A| < P(n) and

(a) A is algebraically closed in ML (and hence in M by (1)), and

(b) any non-algebraic 1-type (in M [L) over a subset of A of dimension < k is realized

by n distinct elements in A.
We will say that a structure which satisfies the precise version of condition (2) satisfies the
k-independence hypothesis over L. If N = ML satisfies the precise version of condition
(3) then we say that N is polynomially k-saturated. We will see (Lemma 1.8) that being
polynomially k-saturated, for every k < w, implies having the finite submodel property.
So above, we are implicitly assuming that M [L£ has the finite submodel property. The
point is that under conditions (1)-(3) also M will have it; in fact M will satisfy the
stronger condition of being polynomially k-saturated for every k < w, so this property is
transferred from M[L to M. If we only assume that (the precise versions of) conditions
(1)-(3) hold for some particular k (and hence for all [ < k) then we get a weaker conclusion
(Theorem 2.1) which only says that every unnested sentence, in which at most k distinct
variables occur, which is true in M has a finite model, but here we are not able to prove
that the finite model can be emedded into M.

Structures which are Lie coordinatizable, or equivalently ‘smoothly approximable’,
have the finite submodel property [5]. In the special cases of vector spaces, projective
spaces or affine spaces over a finite field we can strengthen this and show (in Section 3.2)
that these structures are polynomially k-saturated for every k < w. Hence any vector
space over a finite field (or its projective or affine variants) is a good “base structure”
which can potentially be expanded in a non-trivial way without loosing the finite sub-
model property and polynomial k-saturatedness; a particularly simple example of this is
the “well-behaved” structure in Section 3.3. A vector space over a finite field is a linear
geometry in the sense of [5]. A natural question, not answered in this article, is whether
every linear geometry is polynomially k-saturated for every k < w.

In Section 3 we give two examples which do not satisfy the premises of Theorem 2.2
which where roughly stated as (1)-(3) above. One of the examples shows that if we
remove these premises then the theorem fails, even if we assume that the structures
under consideration are simple with SU-rank 1. For other results concerning expansions
of non-trivial structures, including vector spaces over a finite field, see [1].

The main theorems and their proofs are given in Section 2; the prerequisites, which
are stated in Section 1, include only basic model theory. In Section 3 examples are given
of structures which have or don’t have the main properties considered in this paper;
here basic results about simple theories will be used as well as some more specialized
results about structures obtained by amalgamation constructions, with or without a
predimension.

I would like to thank Gregory Cherlin and Ehud Hrushovski for helpful comments,
including pointing out an error in an earlier version of this article and suggesting the
example of the random pyramid-free hypergraph in Section 3.1. Also, my thanks go to
the anonymous referee for his/her close reading of the article.

1 Preliminaries

Notation and terminology If L is a (first-order) language then its vocabulary (or
signature) is the set of relation, function and constant symbols of L; we always assume
that ‘=" belongs to the vocabulary and that L is countable. If L' C L are languages and
M is an L-structure then ML’ denotes the reduct of M to the language L'. If P is a



symbol in the vocabulary of L then PM is the interpretation of P in M. For simplicity,
we will say things like “for P in L” when we actually mean “for P in the vocabulary of
L”. We will frequently speak about unnested formulas; a definition follows below. When
considering complete theories we assume that they have infinite models and hence only
infinite models.

Let M be an L-structure. Th(M) denotes the complete theory of M. We say that M
is w-categorical (simple) if Th(M) is w-categorical (simple); see [12], [13] for the basics
of simple structures. By acly;(A) (or just acl(A)) we mean the algebraic closure of A
in M. By a, b,.... we denote finite sequences of elements from some structure; rng(a)
denotes the set of elements enumerated by a and |a| is the length of the sequence; we
write acl(a) instead of acl(rng(a)). By Z, ,... we denote finite sequences of variables.
By @ € A we mean that rng(a) C A. By a € A™ we mean that rng(a) C A and |a| = n.
For sequences @, b we will sometimes write @ N b for rng(a) N rng(b), and occasionally
we will view rng(a) N rng(b) as a sequence by assuming that it is listed somehow. For
sequences @ = (ay,...,a,) and b = (by,...,by), we frequently write ab for the sequence
(a1,...,ap,b1,...,by). If X is a set then | X| denotes its cardinality. If A C M then we
say that R C M™ is A-definable if there is (Z, ) € L and @ € A such that b € R if and
only if M = ¢(b,a).

If T is a complete theory then, for 0 < n < w, S,(T) denotes the set of complete
n-types of T. If M is a structure and A C M then M4 denotes the expansion of M
obtained by adding to the language a new constant symbol for every a € A (and this
constant symbol is also denoted by a) which is interpreted as a. For A C M, the set of
complete n-types over A (with respect to M), denoted SM(A), is defined to be the set
Sn(Th(My)); if it is clear in which structure we are working we may drop the superscript
M. Ifa e M, A C M*4, then tpy(a/A) denotes the complete type of @ over A in M4,
or in other words, the type of @ in (M®Y)4; if it is clear in which structure the type is
taken then we just write tp(a/A). tp(a) is an abbreviation of tp(a/0). A type is algebraic
if it has only finitely many realizations; otherwise it is non-algebraic. If p(z) is a type and
7' is a subsequence of Z then p[{Z'} = {¢ € p: every free variable of ¢ occurs in Z'}.

The SU-rank of a complete simple theory T is the supremum (if it exists) of the
SU-ranks of types tp(a) where a ranges over elements from models of 7. The SU-rank
of a simple structure M is defined to be the SU-rank of Th(M).

Definition 1.1 An unnested atomic formula is a formula which has one of the following
forms:

where x and y are variables, T a sequence of variables, ¢ a constant symbol, f a function
symbol and P a relation symbol. A formula is unnested if all of its atomic subformulas
are unnested.

Every formula is logically equivalent to an unnested formula (by [9], Corollary 2.6.2, for
instance).

Definition 1.2 Let G be a set and let cl : P(G) — P(G) be a function, where P(G) is
the powerset of G. We call cl a closure operator and say that (G,cl) is a pregeometry if



the following conditions are satisfied:

(1) If A C G then A Ccl(A) and cl(cl(A)) = cl(A).

(2) If AC B C G then cl(A4) C cl(B).

B) If AC G, a,be G and a € cl(AU{b}) then a € cl(A) or b € cl(AU {a}).
(4) If AC G and a € cl(A) then there is a finite B C A such that a € cl(B).

The properties (1), (2) and (4) hold if we replace G by any structure M and cl by
aclpys. In Section 3 we will consider simple structures which have SU-rank 1. For such a
structure M, acly, also satisfies (4) which is a consequence of the symmetry of forking ,
so (M, aclyy) is a pregeometry.

If (M, aclys) is a pregeometry then we can speak about the dimension of any A C M,
denoted dimpys(A) (or just dim(A)), which is defined by

dimps(A) = min{|B|: B C A and A C acly(B)}.

In particular, if A C aclp/(0) then dimps(A) = 0.
The following characterization (see [9] for example) of w-categorical theories will often
be used without reference:

Fact 1.3 The following are equivalent for a complete theory T with infinite models:

(1) T is w-categorical.

(2) Sn(T) is finite for every 0 < n < w.

(8) For every 0 < n < w there are, up to equivalence in T, only finitely many formulas
with all free variables among x1,...,Ty.

(4) Every type in Sy (T) is isolated, for every 0 <n < w.

A consequence which is important in the present context is:
Fact 1.4 If M is an w-categorical structure and A C M 1is finite then aclyr(A) is finite.

Definition 1.5 An L-theory T has the finite submodel property if the following holds for
any M | T and sentence ¢ € L: If M |= ¢ then there is a finite substructure N C M
such that N | . A structure M has the finite submodel property if whenever ¢ is a
sentence and M = ¢, then there exists a finite substructure N C M such that N = .

Observation 1.6 (i) Suppose that the vocabulary of the language of M has only finitely
many symbols. Then M has the finite submodel property if and only if Th(M) has the
finite submodel property.

(1) If a complete theory T with infinite models has the finite submodel property then T
1s not finitely axiomatizable.

Proof. (i) The direction from right to left is immediate from the definitions and does
not need the given assumption about the language. Now suppose that the vocabulary of
the language of M has only finitely many symbols and that M has the finite submodel
property. Suppose that M’ = Th(M) and M’ = ¢. Then M | ¢, so ¢ is true in a
finite substructure A, C M. By the assumption about the language, the isomorphism
type of A, is described by a quantifier free formula ¢(z) and we have 3z (z) € Th(M),
so A, can be embedded in M’. Part (ii) is immediate since a finite structure cannot be
elementarily equivalent with an infinite one. g

Below we give the definitions of the main notions of this article.



Definition 1.7 Let 0 < k& < w and suppose that M is a structure such that (M, acl) is
a pregeometry. We say that M is polynomially k-saturated if there is a polynomial P(x)
such that for every ng < w there is a natural number n > ng and a finite substructure
N C M such that:

(1) n <[N| < P(n).
(2) N is algebraically closed.

(3) Whenever @ € N, dimy/(a) < k and g(z) € S}M(a) is non-algebraic there are
distinct by, ...,b, € N such that M = q(b;) for each 1 < i <mn.

Examples of structures which are polynomially k-saturated, for every 0 < k < w, include
infinite vector spaces over finite fields and the random graph; more will be said about
this in Section 3.

Lemma 1.8 If M 1is polynomially k-saturated for every 0 < k < w, then M has the
finite submodel property.

Proof. The proof uses Observation 1.10 below. Suppose that M is polynomially k-
saturated for every 0 < k£ < w. By Observation 1.10, it is sufficient to show that for any
k < w there is a finite substructure N such that condition (ii) in Observation 1.10 holds.
So we fix an arbitrary k. Then there is n > 1 and a finite substructure N C M for which
(2) and (3) of Definition 1.7 hold. The notation ‘L¥’ is explained in Observation 1.10
below. Let o(z,y) € L*, where we may assume that |Z| < k, and suppose that @ € N,
be M and M = ¢(a,b). If b € aclys(a) then (2) implies that b € N and we are done.
Otherwise letting p(Z,y) = tpa(a,b), p(a,y) is non-algebraic so by (3) there is ¥’ € N
such that M [= p(a,b’) which implies M | ¢(a,b). O

Remark 1.9 Note that, in the proof of Lemma 1.8, we only needed parts (2) and (3)
from Definition 1.7.

Observation 1.10 (Tarski-Vaught test for L¥) Let M be an L-structure and let L*
denote the set of L-formulas in which at most k distinct variables occur, whether free or
bound. If N is a substructure of M then the following are equivalent:

(i) For every o(z) € L* and a € NI, M |= (@) <= N = (a).

(ii) For every o(&,y) € L¥ and a € N, if M |= 3yp(a,y) then there is b € N such that
M = ¢(a,b).

Proof. Observe that if ¢(Z) € LF then any subformula of ¢(Z) also belongs to L*. As
for the proof of the original Tarski-Vaught test, one uses a straightforward induction on
the complexity of formulas, which is left for the reader. O

Notation 1.11 If § = (s1,...,5,) is a sequence of objects and I = {i1,...,in} C
{1,...,n} where we assume i; < ... < iy, then 57 denotes the sequence (s;,,...,si,,).

Definition 1.12 Suppose that M is an w-categorical L-structure such that (M, acly)
is a pregeometry. Let £ be a sublanguage of L. We say that M satisfies the k-
independence hypothesis over L if the following holds for any a = (a1,...,a,) € M"
such that dimy(a) < k:

If I ={i1,...,im} C{1,...,n} and p(Z) € Sp(Th(M)) (where Ty = (x;,,...2;,,)) are
such that



acly(ar) = mg(ay), dimpy(ar) < k, p(r) N L = tpyc(ar) and for every J C I
with dimM(dJ) < dimM(d[), pf{.’ij} = tpM(d]),

then there is b = (b1, ...,b,) € M™ such that

terL(l_)) = terﬁ((_l), tpM(E[) = p(zr) and, for every J C {1,...,n} such that
ar € aclyr(ay), tpar(ay) = tpar(by).

The above definition will be considered in the context when acly; and aclysjz coincide
(i.e. aclpy(A) = aclpyrz(A) for every A C M), so in this situation, for p(Zr) as in the
definition, any realization of p(zy) N L is algebraically closed in M.

An introductory example will illustrate the main notions introduced above. In Sec-
tion 3, more examples will be given of structures having, or not having, the properties
defined above.

An introductory example

We say that a structure M has trivial (also called degenerate) algebraic closure if for any
AC M, acly(A) = U,ea acly(a).

Suppose that M is an L-structure which is w-categorical and simple with SU-rank
1. Also assume that M has trivial algebraic closure. After adding some assumptions
on L we will show that, for a particular sublanguage £ (defined below) of L, acly; and
aclyriz coincide, ML is polynomially k-saturated for every 0 < k£ < w, and M satisfies
the 3-independence hypothesis over £. So by Theorem 2.1, for every sentence ¢ € L, if
at most 3 distinct variables occur in ¢ and M |= ¢, then ¢ has a finite model.

In order to simplify one part of the argument, we assume that for any a € M with
dimps(a) < 3, tpar(a/aclyrea()) is determined by tpas(a/aclys(0)) (where aclyseq is the
algebraic closure taken in M®?). Since M is w-categorical, if this assumption does not
hold from the beginning then it can be satisfied by considering a finite number of elements
from M® to be part of M; the new M thus obtained will be w-categorical and simple
with SU-rank 1 and have trivial algebraic closure.

By the w-categoricity of M, there is m < w such that |aclys(a)| < m for every a € M.
We will suppose that L has relation symbols P, @, R1, ..., R, which are interpreted in
the following way:

PM=lae M:acacly(0)},
QM = {(a,b) € M? :a € acly(b)},
RM = {a '€ M —acly(0) : [acly(a) — acly(0)] =i} fori=1,...,m.

If such symbols are not originally in the vocabulary of L, then we can expand M so that
the above holds without destroying the other assumptions on M. Let £ be the language
with vocabulary {=, P,Q, R1,...,Rn}.

Claim 1.13 (i) M[L has elimination of quantifiers.
(i1) For any subset A C M, aclprz(A) = aclpr(A).

Proof. (i) Straightforward back and forth argument, left for the reader.

(ii) If b € aclpsc(A) then, since M[L is a reduct of M, we must have b € acly/(A4). If
b € acly(A) then, since aclyy is trivial, we get b € acly(0) or b € aclpy(a), for some
a € A, and hence ML |= P(b) or M[L = Q(b, a), for some a € A. By the w-categoricity
of M, the sets PM and {b' : (V/,a) € QM} are finite so b € aclyr(A). O



Claim 1.14 ML is polynomially k-saturated for every 0 < k < w.

Proof. Let 0 < k < w be given. Define a ~ b <= aclys(a) = aclys(b). Then every ~-
class has at most m elements. Let F'(x) = m(k+ )+ m. For any ng < w we put n = ng
and choose a finite set of ~-classes as follows: If acly/(0) is non-empty then aclys(()
is an ~-class which we choose. If there exists a ~-class different from acly (@) which
contains exactly ¢ elements, then there are infinitely many such, because the elements in
such a class do not belong to acly; (). For every i € {1,...,m} such that there exists
a ~-class different from acly; (@) which contains exactly i elements, we choose exactly
k + n distinct such ~-classes. Now let A be the union of all the chosen classes. Then
A with the L-structure induced from M [L is a substructure of M [L. The construction
of A implies that n < |A| < m(k 4+ n) + m = F(n). Also by construction, if F is a
~-class and EN A # () then E C A, so A is algebraically closed by Claim 1.13. Now
we have taken care of parts (1) and (2) of Definition 1.7. For part (3), assume that
a € A, dimyiz(a) < k and that ¢(z) € Sf\/lrﬁ((z) is non-algebraic. Then ¢(z) contains
the formula —P(z) and, for every a € rng(a), q(x) contains the formula —-Q(z,a). By
Claim 1.13, M [L has elimination of quantifiers, so the construction of A guarantees that
we find distinct by,...,b, € A (from distinct ~-classes of appropriate size) such that
ML = q(b;), for each i. O

The previous two claims do not need the assumption that M has SU-rank 1; it is sufficient
that M is w-categorical and that (M, aclys) is a trivial pregeometry. The proof of the
next claim will however use the hypothesis that M has SU-rank 1 together with the
independence theorem for simple theories.

Claim 1.15 M satisfies the 3-independence hypothesis over L.

Proof. Suppose that a = (a1,...,a,) € M™ and dimy;(a) = d < 3. Suppose that
I'={i1,...;im} C{1,...,n} and p(Z1) € Sp(Th(M)) are such that

(a) acly(ar) = rg(ay), dimpy(ar) < 3, p(Zr) N L = tpame(ar) and for every J C 1
with dimy/ (@) < dimy (@), pl{zs} = tpm (),

We must show that there is b = (b1,...,b,) € M™ such that

(b) tparc(b) = tparc(a), tpa(br) = p(zs) and, for every J C {1,...,n} such that
ar Z acly(ay), tpp(ay) = tpar(by)-

Without loss of generality we may assume that a is algebraically closed (in M), and since
algebraic closure is trivial we may assume that @ = @gay . . . ag, where ag = acly;(0)) and
fori=1,...,d, dimy(a;) = 1 and a; = aclys(a;) — aclpy(0). Let | = dimps(ay). We get
different cases depending on [; the first three (in a sense “degenerate”) cases only uses
that M is w-categorical and that (M, acly) forms a trivial pregeometry; the fourth and
last case also uses the assumption that M is simple with SU-rank 1 and the independence
theorem for simple theories.

Case 1: Suppose that | = d.
Since ay is algebraically closed we have a;f = a (and Z; = = = (z1,...,2,)), so d < 3

(because [ = dimps(ar) < 3). Let b= (by,...,b,) € M™ realize p(Z;). The conditions
in (a) imply that tpas2(b) = tpaic(a) and, if J C {1,...,n} and a; € aclpyr(ay) (which



implies dimys(@y) < d) then tpys(ay) = tpar(by). Hence (b) is satisfied.
Case 2: Suppose that 1 =0 < d.

Then a; = ag = acly(0). Let by realize p(Z;), which means that by = ag or that by is
a reordering of @g. Let b = (by,...,b,) = bo@y ...aq and observe that by = bg. Then
the first two conditions of (b) are trivially satisfied and, since a; C aclys(ay) for every
J C {1,...,n}, the last condition of (b) is vacuously fulfilled.

Case 3: Suppose that | =1 < d.

Without loss of generality, we may assume that a; = aga;. Let ¢ realize p(Z;). By the
assumptions on p(Zy) in (a), it follows that ¢ has the form byb; where by = ag or by is
a reordering of @g. Since tpys(bo) = tpas(dg) (because of the last condition in (a)), we
may assume that é = agby, where by = acly;(€) — aclps(0). As rng(by) Nacly (0) = 0
and dimps(by) = 1, we may also assume that rng(b1) Nrng(a;) = 0 for i = 2,...,d. Let
b= (by,...,by) = Ggbias . ..ag, so by = agb; and hence tpys(br) = p(Z7). By the choice
of by and the triviality of algebraic closure we get tpyrc(b) = tparic(a). If J C {1,...,n}
and a; Z acly(ay) then ay contains no element from aj, so rng(ay) C rng(apas . . .aq)
and hence by = @y so tpas(by) = tpa(ay). Hence, b satisfies (b).

Case 4: Suppose that | = 2 < d.

Then d = 3 Without loss of generality, we may assume that a; = agaias. Let ¢ realize
p(Z7). As in the previous case we may assume that ¢ = agbiba, where aclys(b;) —
acly (@) = b; for i = 1,2. By the assumptions on p(Z;) in (a), we have tpy(ag,b;) =
tpar(ap, a;) for i = 1,2. Hence, by the w-categorcity of M, there are Eg,l_)g’ € M such
that

tpar(do, b1, by) = tpar(ao, ar,az) and  tpar(ao, be, by) = tpar(ao, az, as).

Recall that @y = acly/(()). By the assumption that, for any d € M, tpys(d/aclyea (D)) is
determined by tp(d/acly(0)), it follows that

tpar (b /aclyrea () = tpar (b /aclyrea (D)),

and consequently, b5 and b} realize the same strong type over g (= acly(0)).

Since M has trivial algebraic closure and the SU-rank of M is 1, it follows from
the assumptions on p(z;) (in (a)) and the choices of the involved sequences that by is
independent from by over @g, and the types tpas(bs/aob1) and tpys (b4 /agbs) do not fork
over ag. Since M is w-categorical, Lascar strong types in Th(M) are the same as strong
types in Th(M) ([13], Corollary 6.1.11) so the independence theorem for simple theories
([12], Theorem 5.8 or [13], Theorem 2.5.20) implies that there exists bs € M such that

(*) tpam(@o, b1, b3) = tpar(ao, @1, as) and  tpas(do, ba, bs) = tpar(ao, az, as).

Let b = (b1,...,b,) = agbibabs. The triviality of acly; and the choices of by, bs, b3
imply that tpar2(b) = tparc(@). Since by = dgb1by was chosen to realize p(Z1) we have
tpa (br) = p(Zr). If J C {1,...,n} is such that a; € acly/(ay) then a; C aoa;as where
i =1 ori=2,so the last part of (b) follows from (x).



Now we have proved that M satisfies the 3-independence hypothesis over L. O

Under the assumptions on M (and its language L) we get, by Theorem 2.1, the following:

Conclusion 1.16 If ¢ is a sentence in the language of M such that at most 3 distinct
variables occur in ¢ and M = ¢, then ¢ has arbitrarily large finite models.

2 Results

Theorem 2.1 Let 0 < k < w and let M be an w-categorical L-structure such that
(M, aclyr) forms a pregeometry. Suppose that there is a sublanguage £ C L such that
aclyrz coincides with aclyr, ML is polynomially k-saturated and M satisfies the k-
independence hypothesis over L. If ¢ € L is an unnested sentence, in which at most k
distinct variables occur, and M = ¢, then ¢ has arbitrarily large finite models.

Proof. Combine Lemma 2.15 and Proposition 2.8. More precisely: Under the assump-
tions of the theorem we get part (3) of the conclusion of Lemma 2.15, for arbitrary
ng < w. This serves as input for Proposition 2.8 which gives the desired conclusion. [

Note that Theorem 2.1 only speaks about arbitrarily large finite models, but does not
claim that these are embeddable in M.

Theorem 2.2 Let M be an w-categorical L-structure such that (M,aclys) forms a pre-
geometry. Suppose that there is a sublanguage £ C L such that aclyryz coincides with
aclyr and, for every 0 < k < w, ML is polynomially k-saturated and M satisfies
the k-independence hypothesis over L. Then M is polynomially k-saturated, for every
0 <k <w, and M has the finite submodel property.

Proof. Combine Lemma 2.15 and Proposition 2.14. More precisely: The assumptions of
the theorem allow us to use Lemma 2.15 for every k < w. The conclusions of this lemma,
for every k, serve as input to Proposition 2.14 which gives the desired conclusions. [J

Remark 2.3 If, in Theorem 2.2, we remove the assumptions that there is £ C L such
that aclyspz coincides with acly, and, for every 0 < k < w, M[L is polynomially k-
saturated and M satisfies the k-independence hypothesis over £, then the conclusion
fails, even if we assume that M is simple of SU-rank 1; an example showing this is given
in section 3.3.

Definition 2.4 Let M and N be structures with the same language.

(i) Forany 0 <n <w, and a1,...,a, € N, tpi*(a1,...,a,) denotes the set of unnested
atomic formulas ¢(x1,...,2,), such that N = ¢(ai,...,a,); we don’t insist that all
x; actually occur in ¢, so ¢(x1,...,2z,) may for example have the form P(x1) for a

unary relation symbol P even if n > 1. We call p(z) an unnested atomic type of N if
p(z) = tpi&(a) for some @ € N7, If the structure N is clear from the context then we
may write ‘tp"?” instead of ‘tpR?’.

(ii) N is atomicly k-compatible with M if every a € N* realizes an unnested atomic type
of M, or in other words, there is b € M* such that tp42(a) = tpia(b).

(i) N is atomicly k-saturated with respect to M if, whenever m < k and q(x1,...,Zm)
and p(x1,...,Tmy1) are unnested atomic types of M, ¢ C p and ay, ..., a, € N realizes



q, then there is a,,+1 € N such that aq, ..., am, amny1 realizes p.

(iv) If p(Z, y) is an unnested atomic type of M, @ € MI*| and there are only finitely many
b € M such that M |= p(a,b) then we say that p(b, y) is algebraic; otherwise we say that
p(b,y) is non-algebraic.

Observe the following:

Lemma 2.5 Let M be an L-structure and let L C L be a sublanguage. Suppose that

1. M 1is w-categorical,

2. (M, acly) is a pregeometry

3. aclyz coincides with aclyy,

4. ML is polynomially k-saturated, and

5. M satisfies the k-independence hypothesis over L.
Let M’ be the expansion of M which is obtained by adding, for every n < w and every
(0-definable (in M) relation R C M™, a relation symbol which is interpreted as R. Let L'
be the language of M’ and let L' C L' be the language which we get from L by adding to
it, for every n < w and every relation R C M™ which is O-definable in ML, a relation
symbol from L' which is interpreted as R in M'. Then 1-5 hold with M' and L' in place
of M and L.

Proof. Straightforward consequence of the w-categoricity of M (using Fact 1.3) and the
definitions of the notions involved. g

From now on M is an w-categorical L-structure such that (M,acl) forms a
pregeometry. Moreover, we fix a sublanguage L C L; we allow the possibili-
ties that L = L or that the vocabulary of L contains only ‘=".

By Lemma 2.5 the following assumption is harmless for our purposes of proving Theo-
rems 2.1 and 2.2:

Assumption 2.6 (a) For every 0 < n < w and every relation R C M" which is -
definable in M [L, £ has a relation symbol which is interpreted as R.

(b) For every 0 < n < w and every relation R C M"™ which is (-definable in M, L has a
relation symbol which is interpreted as R.

Now we define the parts of L in which we will work most of the time.
Definition 2.7 For any k£ < w let
k = max {laclr (a1, ..., ax)| : a1,... a5 € M}.

Observe that for any a,b € M, if tpy(a) = tpas(b) then dimys(a) = dimps(b). Define
inductively, for every —1 < k < w, a sublanguage Ly C L by:

L=L.

When Ly, is defined let Lgy1 O Ly be obtained from Lj; by adding, for every 0 <
n < k+1 and every p(z) € S,(Th(M)) such that dimps(a) =k + 1 if M = p(a),
one (and only one) relation symbol P from L such that PM = {a € M : M = p(a)}.

Note that L — £ has only finitely many relation symbols and no function or constant
symbols.
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Proposition 2.8 Let 0 < k < w. Suppose that there are arbitrarily large finite Ly-
structures which are atomicly k-compatible with MLy and atomicly k-saturated with
respect to M[Ly. If ¢ is an unnested sentence, in which at most k distinct variables
occur, and M |= ¢, then ¢ has arbitrarily large finite models.

Proof. Suppose that there are arbitrarily large finite Lj-structures which are atomicly
k-compatible with M and atomicly k-saturated with respect to M. Let A’ be such an
Ly-structure. Let L, 2 Lj be obtained from L; by adding to (the vocabulary of) Ly
every symbol occuring in ¢ which is not already in Lj. For every unnested atomic
formula ¢(z) € L, there are atomic Py(Z),...,Pa(Z) € Ly, such that M | VZ(¢(z) <
(Pi(Z) V...V Py(z))). Expand A’ to an Lg-structure A by interpreting each symbol
in L, — Ly in such a way that for every ¢(z) and P;, 1 < i < n, as above, A |=
VZ(¢(z) < (Pi(Z)V...VP,(z))). For relation symbols of arity > k, their interpretations
on sequences containing more than k distinct elements can be made arbitrarily. For
function symbols of arity > k, their interpretations on sequences containing more than
k — 1 distinct elements can be made arbitrarily. Since A’ is atomicly k-compatible with
MLy it follows that A is atomicly k-compatible with MT[L,. Also, A is atomicly k-
saturated with respect to M[L, because, in both A and MT[L,, the unnested atomic
L,-type of any [-tuple, I <k, is determined by its restriction to Ly (by Assumption 2.6).

We will prove that if v is an unnested L,-sentence in which at most k distinct
variables occur, then M | ¢ if and ounly if A = ; clearly the proposition follows
from this. It is sufficient to show that for any @ € A, b € M, if |a| = |b| < k and
tpR(a) = tp}{}w(g) then @ and b satisfy the same unnested L,-formulas in which at
most k distinct variables occur; then taking @ = b = () gives the desired conclusion. This
we show by induction on the complexity of formulas. We need only consider formulas in
which V does not occur since ‘vz’ can be replaced by ‘—=dz—’.

The base case concerning unnested atomic L,-formulas is trivial. The inductive step
involving the connectives is also obvious so we only treat the case involving 3. Let
Jxp(x,y) be an Ly-formula in which at most & distinct variables occur and x does not
occur in g, so || < k. Suppose that a € Al b € MW and tpi2(a) = toiT L, (b) = q(7).

Suppose that A |= 9¥(a,a) for some a € A. Let p(z,y) = tp'\(a,a). Since A is
atomicly k-compatible with ML, p is realized in M. By Assumption 2.6, ¢ determines
the (complete first-order) type of b in M, so there exists b € M such that bb realizes
p(z, 7). By the induction hypothesis we get M = (b, b).

Now suppose that M = (b, b) for some b € M. Let p(z,7) = tparyr, (b, b). Since a
realizes ¢ and A is atomicly k-saturated with respect to ML, there exists a € A such
that aa realizes p(x, 7). By the induction hypothesis we get A = ¥ (a,a). O

From now on we assume that acly; coincides with acly ..

Observation 2.9 Since £ C L, C L, aclysyr, is the same as acly, and as aclyyz, for
any r < w.

By Assumption 2.6, there is, for every r < w, an (r + 1)-ary relation symbol
P, in £ which is interpreted in M[L so that for any ai,...,ar,a,41 € M, ML |
P.(ai,...,ar,a;41) if and only if a,4;1 € acl(aq,...,a,).

Definition 2.10 Suppose that A is a structure (finite or infinite) such that the language
of A includes L. Let P, r < w, be the symbols from Observation 2.9. For B C A define

c(B)={a€ A: A P.(b,a) for some r <w and b € B"}.
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For a sequence a € A define cl(a) = cl(rng(a)). The meanlng of ‘cl(a) = a’ is ‘cl(
rng(a)’. We say that B C A (or a € A) is closed if cl(B) = B (or cl(a) = a). For B
define

N &
=l

dim®(B) = min {|C| : C C B and B C cl(C)}.

Observe that if B C M then cl(B) = acl(B) and dim(B) = dim®(B). Hence ‘closed’
and ‘algebraically closed’ mean the same thing in M. The idea of introducing ‘cl’ is that,
when we use it, it will imitate, in a finite structure, the behaviour of ‘acl’ on M.

Definition 2.11 Let 0 < r < k < w. Suppose that A is an L,-structure. We say that
A is strongly atomicly k-compatible with M [L, if for any a € A such that dimd((z) <k
there is b € M such that tp%(a) = N 7»(b)

Clearly, being strongly atomicly k-compatible with M[L, implies being atomicly k-
compatible with M [L,..

Remark 2.12 In the proof of the next lemma it will be convenient to use the following
consequence of M satisfying the n-independence hypothesis over £, under the standing
assumptions, such that acly; coincides with aclysz. So assume that M satisfies the n-
independence hypothesis over £. Then, by the definition of L_1, Lo, ..., L, the following
holds:

If

e £ C B C M|Lg where E and B are closed, 1 < dimps(F) < k < n, dimp/(B) < n,
and

e [ is an Ly-structure which is strongly atomicly k-compatible with MLy and f is
an isomorphism from E’[Lg to E[Lg, such that whenever E” C E’ is closed and
dim®(E") < dim®(E") then the restriction of f to E” is an isomorphism from E”
to E’, as L-structures,

then there exists a substructure C C M [L; and an isomorphism g : B[L — CTL such
that

e ¢f is an isomorphism from E’ to gf(E’), as Li-structures, and

e whenever G C B is closed and E Z G, then the restriction of g to G is an isomor-
phism from G to g(G), as Ly-structures.

From the assumption that acly; coincides with aclysiz it follows that C' must be closed
in M. From the last point above above it follows that g is, in fact, an isomorphism from
B [LQ to CTLO

Lemma 2.13 Let k < w. Suppose that A is a finite Ly-structure which is strongly
atomicly k-compatible with M| Ly, and that AlLg is isomorphic to a substructure of M [Lg
which is algebraically closed. If M satisfies the (|A| 4 1)-independence hypothesis over L
then A is isomorphic to a substructure of M [Ly.

Proof. Let k < w and suppose that A is a finite Lg-structure which is strongly atomicly
k-compatible with M [Ly. Let f : ALy — B C MLy be an isomorphism, where B
is algebraically closed (and hence closed). Since B C M we may also regard B as a
substructure of M [L; and hence as an Lg-structure. We will show, by induction on
n, that for every n = 0,1,...,k, there are a closed substructure B, C M[L; and an
isomorphism f,, : A[Ly — B, [Lg such that,
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(*)n for every closed E C A with dim®(E) < n, the restriction of f, to E is an isomor-
phism from E to f,(E), as Ly-structures.

By the definition of L_1, Ly, ..., Lg, it follows that when a closed substructure By C M|
Lj and an isomorphism f; : A[Ly — By[Lo has been found such that (*,) holds with
n =k, then A is isomorphic to By and the lemma is proved.

Step n = 0. Take By = B, where B and By are now regarded as Lj-structures. Then
take fo = f. Suppose that E C A is closed with dim®(E) = 0. Then E = cl(f) (where
cl is taken in A). Let € enumerate E. Observe that, by the definition of L_1, Ly, ..., L,
for any a € M with dimy(a) = 0 we have tpy7,; (a) = tp4f,., (@). Since A is strongly
atomicly k-compatible with MLy we have tpi(a) = tpYi; (a) for any a € A such
that dim®(a) = 0. By the assumption that fy (= f) is an isomorphism from A[Lg
to B[Lo = BolLo it follows that tp}y*(€) = tpiii, (€) = P71, (fo(€)) = tpif L, (fo(€)).
Therefore the restriction of fy to E' is an isomorphism from E to fo(E), as Ly-structures.

Step n + 1, where 0 < n < k. Suppose that we have found a closed substructure
B, € MLy and an isomorphism f, : A|Ly — B, [Lg such that, for every closed £ C A
with dim®(E) < n, the restriction of f, to E is an isomorphism from E to f,(E), as
Ly-structures.

Let m be the number of (distinct) closed subsets E of A (recall that A is finite) with
dim®(E) = n 4 1, and let Ey, ..., E,,_; enumerate all such subsets of A. Inductively
we will find, for = 0,...,m — 1, a closed substructure C; C M[Lj; and an isomorphism
h; : A | Ly — C;[Lg such that

(a); for j < i, the restriction of h; to Ej is an isomorphism from Ej; to h;(E;), as
Lj-structures, and

(b); whenever G C A is closed and dim®(G) < n, then the restriction of h; to G is an
isomorphism from G to h;(G), as Lg-structures.

Clearly, when we have found C,,_1 € M [L; and an isomorphism h,,_1 : A[Ly — MLy
such that (a); and (b); hold with i = m — 1, then B, 11 = Cp,—1 and f, 41 = hy,—1 satisfy
(*#)n+1 (that is, (x), above with n replaced by n 4+ 1). We first show how to find Cjy;
and h;11 which satisfy (a);4+1 and (b);4+1 (that is, (a); and (b); above with i replaced by
i+ 1), provided that we are given C; and h; which satisfy (a); and (b);. Then we explain
how to slightly modify the argument to find Cyp and hy which satisfy (a); and (b); for
1=0.

Induction step. Suppose that 0 < i < m — 1 and that we have found a closed
substructure C; C M|Ly and an isomorphism h; : A[Ly — C;[Lg such that (a);
and (b); hold. Let Fj11 = h;j(F;+1). Since C; is closed (in M) and

h; : AlLg — C;[Lg is an isomorphism and aclys coincides with aclysz, it follows
that Fjy1 is closed (in M) and dimd(FiH) =n+ 1. Since F;y1 is strongly atom-
icly k-compatible with ML (because A is), it follows from the assumption that
M satisfies the (|A| + 1)-independence hypothesis over £, applied in the form de-
scribed in Remark 2.12) that there is a closed substructure C;11 € M[L; and an
isomorphism g; 1 : C;[Lo — Cjy1] Lo such that

e the restriction of g;+1 to Fjy; is an isomorphism from Fjiq to giy1(Fit1), as
Lj-structures, and
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e whenever G C C} is closed and F;11 € G then the restriction of g;41 to G is
an isomorphism from G to g;+1(G), as Lg-structures.

If we let hj11 = g;+1h; then h;yq is an isomorphism from A[Lg to Cy[Lg and, since
hi(Fit1) € hi(Fj) if j < i, it follows that (a)i+1 and (b)i41 (that is, (a); and (b);
above with ¢ replaced by i + 1) are satisfied.

Base case: i = 0. We argue as in the induction step, except that we use B,, and f,
instead of C; and h;. In other words, we start by letting Fy = f,,(Ep). In the same
way as in the induction step we find a closed substructure Cy C M [L; and an
isomorphism gg : B, [Lo — Co[Lg such that the two points in the induction step
hold if we replace ¢ + 1 by 0, C; by B,, and C;y1 by Cy. Then, letting hg = go fn,
ho is an isomorphism from A[Ly to Cy|Lg and (a); and (b); are satisfied for i = 0.

g

Proposition 2.14 Suppose that, for every 0 < k < w, M satisfies the k-independence
hypothesis over L. Moreover, assume that, for every 0 < k < w, there is a polynomsial
Qr(z) such that for any ng < w there is n > ng and a finite Ly-structure A such that
the following conditions are satisfied:

(1) n < |A] < Qr(n).
(2) ALy is isomorphic to a substructure of M [Lo which is algebraically closed.
(8) A is strongly atomicly k-compatible with M| Ly.

(4) Whenever a € A, bb € M, tp*(a) = tplﬁrLk(B), dim®(a) < k, p(z,y) =
tp“MarLk(l_), b) and p(b,y) is non-algebraic, then there are distinct cy,...,c, € A
such that A |= p(a,c;) for each 1 < i <n.

Then M has the finite submodel property and is polynomially k-saturated, for every 0 <
k<w.

Proof. By Lemma, 1.8 it is sufficient to show that M is polynomially k-saturated for every
0 < k < w. Fix arbitrary 0 < k < w and let Q(z) be as in the proposition and assume
that for every ng there is n > ng and a finite Ly-structure A for which (1)-(4) hold. By
Assumption 2.6 and the definition of Lj it is sufficient to show that every A satisfying
(1)-(4) can be embedded into M[Lg, but this follows from (2), (3) and Lemma 2.13
because M satisfies the k-independence hypothesis over £ for every 0 < k < w. O

Theorems 2.1 and 2.2 follow from Proposition 2.8, Proposition 2.14 and:

Lemma 2.15 Let 0 < k < w. Suppose that aclyriz coincides with aclyr, ML is poly-
nomially k-saturated and that M satisfies the k-independence hypothesis over L. Then
there is a polynomial Q(x) and for any ny < w there is n > ny and a finite Ly-structure
A such that:

(1) n <|A| <Q(n).
(2) AL is isomorphic to a substructure of M [Lg which is algebraically closed.

(8) A is strongly atomicly k-compatible with M |Ly and atomicly k-saturated with re-
spect to M| L.
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(4) Whenever a € A, bjb € M, tp(a) = tp“MarLk(l;), dim®(a) < k, p(z,vy)
tp‘]{f}rLk(l_), b) and p(b,y) is non-algebraic, then there are distinct ci,...,c, €
such that A |= p(a,c;) for each 1 <i < n.

=l

Proof of Lemma 2.15

Fiz 0 < k < w. Assume that acly;;z coincides with acly, ML is polynomially
k-saturated and that M satisfies the k-independence hypothesis over L. Recall
that Assumption 2.6 is in action.

An outline of the proof goes as follows. First, we find a strictly increasing sequence
(nm : m < w) of natural numbers, a polynomial Q(z) and substructures A,, of M[Lg
so that (1), (2) and (4) of the lemma are satisfied. For this we use the assumption that
ML is polynomially k-saturated. Then we show by induction on r, where » < k, and a
probabilistic argument, that there exists a strictly increasing sequence (n, : m < w) of
natural numbers, a polynomial @, (x) and L,-structures B,, such that B,, is an expansion
of Ap,, By, is strongly atomicly k-compatible with M [L, and (1), (2) and a condition
resembling (4) hold with @,, B,, and n/, in place of @, A and n,,, respectively. When
we have this for r = k we put things together to get Lemma 2.15.

The next two lemmas will be used in the proof of Lemma 2.22.

Lemma 2.16 Let 0 < r < k. Suppose that A is an L,y1-structure which is strongly
atomicly k-compatible with M |L,11. Suppose that a € A where cl(a) = a and r <
dim®(a) < k. Let p(z) = tp*(a) and p'(z) = p N L. Suppose that q(Z) is an unnested
atomic type of M |Ly11 such that p’ C q and let A" be the result of changing (if necessary)
the interpretations of symbols in L,y1 on a so that A’ = q(a), but not changing the
interpretations on any other sequences of elements from A. Then A’ is strongly atomicly
k-compatible with M| Lyy1.

Proof. First we show that:

(*) For any b € A’ such that cl(b) = b and dim®(b) < r 4 1 there is ¢ € M such that
P (b) = toifyp,.,, (0)-

We may assume that dim‘{(g) = r+1 because A[L, = A'[ L, and if b € A’ and dim®(b) <
r then tp%7(b) = tpiryr, (b). 1f b is a subsequence of a the conclusion is clear because
A" = q(a). If bna = (0 then the conclusion also follows directly, because we did not
change the structure on any tuple which does not contain elements from a. So suppose
that b is not a subsequence of @ and that bNa # (. Then dim“(bna) < r so

tp(bna) = tp%,,, (bna) = tpi,, (bna) = (b N a).

If ba C ¢ C b then for any unnested atomic formula ¢(Z) € L,41 A = () if and only
if A’ = ¢(c), by the definition of A’. Therefore tp%3(b) = tp%*(b) and since A is strongly
atomicly k-compatible with M [L, 11 we have proved (x).

Let ¢ = (c1,...,¢,) € (A")" and suppose that dim®(¢) < k. We need to show that
tp'y(¢) is realized in M[L,41. We may assume that ¢ is closed. If r +1 = k then
by (%), tpi(€) is realized in M[L,4;. So suppose that r +1 < k. Since A'[L, = A[L,
which is strongly atomicly k-compatible with ML, there is d € M such that ¢p53 'L, (¢c) =

P71z, (d). We use the notation from Notation 1.11. By (x), for every I C {1,...,n} such
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that ¢y is closed and dim®(¢;) = r + 1, there is € € M with tp'(¢;) = tPhiiL,,, (€). Let
L,..., I, be subsets of {1,...,n} such that rng(cr,),...,rng(¢z,, ) enumerates all closed
E C{ci,..., ¢y} with dim®(E) = r+1, without repetitions. We are assuming that r+1 <
k so, by repeated uses of the k-independence hypothesis over £ (similarly as in the proof
of Lemma 2.13), we find € = (e1,...,e,) € M" such that tpl,; (¢) = tpj7,, (€) and,
for every 1 < i < m, tp}3(cr,) = R ér;). This means that tp'\7(c) = tp‘]{}rLTH(é).
n

'r+1(

Lemma 2.17 If 0 < r < k then any L,-structure A, which is strongly atomicly k-
compatible with M [L,., can be expanded to an L, 1-structure A" which is strongly atomicly
k-compatible with M| Ly41.

Proof. Let 0 < r < k and suppose that A is an L,-structure which is strongly atomicly
k-compatible with M |L,. We get A’ from A by performing the following operation to
every closed B C A such that dim®(B) = r 4+ 1: Order B as b. By assumption, there
exists ¢ € M such that tpy7,, (¢) = tpU(b). In A’ we interpret the symbols in L, 41 — Ly
on B in such a way that tpi7,, . (¢) = tpUa(b).

A’ is well-defined because, if B,C C A are closed and dim®(B) = dim®(C) = r + 1
and B # C, then dim®(B N C) < r and for every @ € M and unnested atomic P(Z) €
Lyy1 — Ly, M |= P(a) implies dim®(a) = r 4 1.

If »+1 = k then it immediately follows that A’ is strongly atomicly k-compatible
with M|L,1. Suppose that r + 1 < k. Let b € A’ with dim'(b) < k. We need to show

that tp43(b) is realized in M[L,11. We may assume that cl(b) = b. Since A is strongly
atomicly k-compatible with ML, there is ¢ € M such that tp}7,, (¢) = tply*(b). As in
the proof of Lemma 2.16, we find, by repeated uses of the k-independence hypothesis

over £, d € M such that tpUa(b) = L, (d)- O

Definition 2.18 Suppose that A is a structure in a language which includes £ and that
AL is isomorphic to a substructure of M [£ which is algebraically closed. Let a,b,¢ € A.
We say that @ is cl-independent from b over € if for any a € rng(a), a € cl(bé) = a €
cl(¢). By the given assumptions on A and the assumption that (M, acl) (which is the
same as (M, cl)) is a pregeometry, @ is cl-independent from b over ¢ if and only if b is
cl-independent from a over c.

We introduced cl-independence because we want to be able to talk about independence
(“induced” by aclys, which is the same as aclysjz) in a finite structure A such that A[L
is embeddable in M[L.

Definition 2.19 (i) If a is a real number then |a] denotes the greatest integer n < a.
(ii) Let 0 < r < k. We say that an L,-structure A is (n, k)-saturated if the following
holds:

If ¥ <k, p(Zy) and ¢(Z) = p|{Z} are unnested atomic L,-types of ML, such that,

(1) whenever ab € M realizes p N £ then cl(a) = a, cl(ab) = ab and k' = dim®(ab) =
dim®(@) + 1, and

(2) A= q(0),

then there are dy, ..., d, € A such that A = p(¢d;) and d; is cl-independent from Jj over
¢ whenever ¢ # j.
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By induction on r, we will first prove “approximations” to Lemma 2.15.

Lemma 2.20 (Base case) There exist a polynomial P(x), a sequence (N, : m < w)
of natural numbers with lim,, ..o Ny = o0 and Lo-structures A,, such that, for every
m < w:

(a) np < |Ap| < P(np,).
(b) Am[Lg is isomorphic to a substructure of M |Lg which is algebraically closed.
(c) A is strongly atomicly k-compatible with M| L.

(d) Ap, is (nm, k)-saturated.

Proof. We are assuming that M [L is polynomially k-saturated, so there exist a poly-
nomial Q(z), a sequence (I, : m < w) with lim,, . l;, = oo and finite substructures
Ny, of ML such that Ny, is algebraically closed and, with Q(z), l,,, and Ny, in place of
P(x), ny, and A,,, (a) holds, and

() whenever @ € Ny, dimys(a) < k and p(z) € S{mﬁ(d) is non-algebraic, then there
are distinct by,...,b;,, € Ny, such that M[L = p(b;) for each i.

Let A,, be the substructure of M|Ly with the same universe as Ny, (s0 AL = Ny,).
Then (b) and (c) hold. Without loss of generality, assume that Q(a) < Q(b) if 0 < a < b.
Let P(z) = Q(E(m +1)) and ny, = llm/k] (see Definition 2.7 for the meaning of k).
Then

N < b < [Am| < Q) < Q(i“;(”m + 1)) = P(nm),

so (a) holds.
Now we prove (d). Suppose that k' < k, p(Zy) and ¢(Z) = p[{Z} are unnested atomic
Lg-types of M [Lg such that,

(1) whenever ab € M realizes p N £ then cl(a) = a, cl(ab) = ab and k' = dim®(ab) =
dim®(a) + 1,

(2) and A | ¢(¢).

From (1) and the definition of L it follows that, whenever d is such that M k= p(éd) and
€ is a subsequence of ¢éd which contains at least one element from d, then M = —R(é)
for every symbol R which is in Ly but not in £. Let p’ = pn L. It follows that
if M |= p/(ed) then M = p(ed), so it suffices to find dy,...,d,, € A, such that
M E p/(ed;), for i = 1,...,ny, and d; is cl-independent from d; over ¢ if i # j. Let
7= (y1,--.,yt). By (1), there is i such that if p”(Zy;) = p'[{Zy;} then p"(¢, y;) is non-
algebraic. Without loss of generality we may assume that if p”(Zy;) = p'[{Zy1} then
p"(¢,y1) is non-algebraic. From now on we assume this. Since M[L has elimination
of quantifiers (by Assumption 2.6), the (unique) complete extension of p” to a type
in S{mﬁ(é) is non-algebraic. So, by (%), there are distinct dy,...,d;,, € Ay, (because
AL = Np,) such that ML | p”(ed;) for each i. Since p”(¢,y1) is non-algebraic we
have d] ¢ cl(¢) for each i and since p” is an unnested atomic type we get A, = p”(¢d;)
for each i. By the definition of % and the choice of N, there is a subsequence of (distinct)
elements d,...,d; = of the sequence di,...,d, such that dj is cl-independent from d;-
over ¢ whenever i # j.

From the assumption that M is w-categorical it follows (using characterization (2) in
Fact 1.3) that M[L is w-categorical and hence (by characterization (4) in Fact 1.3 and
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Assumption 2.6), for every 0 < n < w, every type 7(z) € S,(Th(M L)) is isolated by an
unnested atomic formula in r(Z). Recall that § = (y1,...,y:) and p"(Zy1) = p'[{Zy1 }
Since the complete type of Th(M L) which extends p”(Zy;) is isolated by an unnested
atomic L-formula in p” there are dy,...,d,, € M such that d. € rng(d;) and M|L |=
p'(ed;) for i = 1,...,ny,. By its definition, A,, is an algebraically closed substructure
of MLy, so in particular A,, is algebraically closed in ML (by the assumption that
aclyrjz coincides with aclys). As d; € Ay, it follows from (1) that d; € A,, for each i.
Suppose for a contradiction that d; is not cl-independent from Jj over ¢ for some ¢ # j.
Then there is d € rng(d;) such that d € cl(¢d;) — cl(¢). By (1), dim®(éd;) = dim®(c) + 1
and since d ¢ cl(¢) we must have rng(d;) C cl(¢d) and hence rng(d;) C cl(ed;). We have
already noted that d},d; ¢ cl(¢) (because p”(¢,y1) is non-algebraic) so it follows from
(1) that cl(éd;) = cl(édj) and hence d; € rng(d;) C cl(éd;-). But this contradicts that d}
is cl-independent from d;- over C. ]

Definition 2.21 For any 0 < r < k and finite L,-structure A which is strongly atomicly
k-compatible with M [L,, let S,41(A) be the set of L, ;1-structures B such that B[ L, = A
and B is strongly atomicly k-compatible with M [L, ;. We consider each S,11(A) as a
probability space by giving it the uniform probability measure. In other words, for any
X C S41(A) and B € S,41(A), the probability that B € X is |X|/|Sr4+1(A)].

Lemma 2.22 (Induction step) Let r < k. Suppose that there is a polynomial P(z), a
sequence (N, : m < w) of natural numbers with lim,, oo Ny, = 00 and L.-structures A,
such that, for every m < w:

(a) T < | Al < Plnn).

(b) AmlLo is isomorphic to a substructrure of M|Lgy which is algebraically closed.
(c) An is strongly atomicly k-compatible with M|L,.

(d) Ap is (nm, k)-saturated.

Then there is a polymial Q(x), a sequence (n,, : m < w) of natural numbers with

limy, 0o nl, = 00 and Lyi1-structures By, such that, for every m < w, (a), (b), (c)
and (d) hold if we replace P, Ny, An and v with Q, nl., Bp and r + 1, respectively.

Moreover, the probability that B € Sy+1(Am) is (nl,, k)-saturated approaches 1 as m
approaches oco.

Proof. Suppose that r < k and that P(z), n,, and A,, satisfy the assumptions of the
lemma. We may, without loss of generality, assume that if a, b are real numbers and
0 < a < b then P(a) < P(b). Define n}, = |\/nm| and Q(z) = P((x + 1)?).

By Lemma 2.17, S,11(A;,) # 0 for every m. Observe that for every m and every
B € Sy41(Ay) we have

Ny, < nm < |B| < P(ny) < P(([VAm] +1)%) = Q(n),).

By the definition of S,41(A4y,), every B € S,41(A;,) is strongly atomicly k-compatible
with M [L,+1 and B[Lg = A,,[Lo. Hence it is sufficient to prove that the probability
that B € S,41(Am) is (n},, k)-saturated approaches 1 as m approaches oo.

Fix arbitrary m and let B € S,41(A4,,). We will calculate the probability that B is
not (n) ., k)-saturated with respect to M|L,11. Let k' < k and suppose that p(Zy) and
q(%) = p[{z} are unnested atomic L, -types of M[L,; such that whenever ab € M
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realizes p N £ then cl(a) = a, cl(ab) = ab and ¥ = dim®(ab) = dim®(a) + 1. We may,
without loss of generality, assume that |Zjj| < k (see Definition 2.7 for meaning of k).

Suppose that ¢ € B realizes ¢(z). Let go = ¢N L, and pg = pN L,. Then BJL,
qo(¢). Since B[L, = A,, is (n, k)-saturated with respect to ML, there are distinct
di,...,dn, € B such that B[L, |= po(¢,d;) and d; and Jj are cl-independent over ¢ if
i# 7.

Let @ be the set of all unnested atomic L, i-types of M [L,1; in some fixed set of k
distinct variables. By Lemma 2.16, for any 1 < i < n,, the probability that B = p(cd;)
(that is, the probability that B € {C € S,+1(An) : C | p(E,d;)}) is at least 1/|®|. Fix
an arbitrary natural number s such that 0 < s < n}, and recall that n;, = |\/n,]. Since
d; is cl-independent from d; over ¢ if i # j, it follows (by Lemma 2.16 again) that the
probability that there is no d; such that sn!, < i < (s+ 1)n!, and B = p(ed;) is less

m
than or equal to
(]<I>| - 1>n’m
|| '

Since |B| < Q(n.,) there are at most k - |®|? - Q(n/,)* ways in which we can choose ¥/,

¢, p and ¢ as above. Therefore the probability that there are k', q, p and ¢ as above, but
no d; such that sn;, < i < (s+ 1)n), and B = p(cd;), is less than or equal to

| — 1)n;n
D]

Observe that if B is not (n),, k)-saturated with respect to M[L,1; then there will exist
K. q, p, ¢ as above, and di, . ..,d,, € B, mutually cl-independent over ¢, such that

e if pg = pN L, then BIL, |= po(cd;) for each i, but

e for some 0 < s < n/,, there is no i such that sn/, <i < (s+ 1)n!, and B = p(ed;).
Hence the probability that B is not (n;,, k)-saturated with respect to M [L,1 is at most

Fm) = k- 02 Q(nj,)* -

f(m). Since k-|®|?-Q(n.,)* is a polynomial in n/,, and lim,_, 1/, = 0o, it follows that
limy,—o0 f(m) = 0. Therefore the probability that B € S,4+1(Ayn) is (n),, k)-saturated

m»
approaches 1 as m — oo. O

Now we can prove:

Lemma 2.15 Let 0 < k < w. Suppose that aclyriz coincides with aclyy, ML is poly-
nomially k-saturated and that M satisfies the k-independence hypothesis over L. Then
there is a polynomial Q(x) and for any ng < w there is n > ng and a finite Ly-structure
A such that:

(1) n < [A] < Q(n).
(2) AlLg is isomorphic to a substructure of M [Ly which is algebraically closed.

(8) A is strongly atomicly k-compatible with MLy and atomicly k-saturated with re-
spect to M |Ly.

(4) Whenever a € A, bc € M, tp(a) = tp“MarLk(l;), dim®(a) < k, p(z,y)
tp‘j\?rLk(l_), c¢) and p(b,y) is non-algebraic, then there are distinct ci,...,c, €
such that A |= p(a,c;) for each 1 <i < n.

=l

Proof. By Lemma 2.20, Lemma 2.22 and induction, there are a polynomial Q(x), a
sequence (N, : m < w) of natural numbers with lim,,,—,c 1, = 00 and Lg-structures A,,
such that, for every m < w:
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(@) nm < [An| < Q(nm).

(b) A..[Lg is isomorphic to a substructrure of M [Lg which is algebraically closed.
(¢) Ay, is strongly atomicly k-compatible with M [Ly.

(d) Ay is (nm, k)-saturated.

It is sufficient to show that (1)-(4) are true for each A,,; and in the case of (4), n is
replaced by n,,. We see that (a), (b), (c¢) correspond to (1), (2) and the first part of (3).
The proof of the second part of (3) will use (4), so we prove (4) first.

Suppose that @ € A, bc € M, tp5(a) = terLk(b), dim(a) < k, p(z,y) =
tRT L (5 ¢) and p(b, y) is non-algebraic. We may assume that @ and b are closed. Let
be enumerate cl(bc), so we have ¢ € rng(é), and let p/(Z,7) = R (5 ¢). Since A, is
(nm, k)-saturated there are di,...,d,, € A, such that A, = p (ad) for every i, and
d; is cl-independent from d over a if i # j. Then, for every 4, there is e; € rng(d;) such
that A, = p(a,e;), and e; 75 e;j if i # j. So (4) is proved.

It remains to prove the second part of (3) for A,,; i.e. that A,, is atomicly k-saturated
with respect to M[Ly. Let | < k and let ¢(z1,...,2;) and p(x1,...,2;41) be unnested
atomic types of M[Ly such that ¢ C p and suppose that @ = (a1,...,q;) € (A,)' is
such that A,, = ¢(a). By Assumption 2.6, the assumption that M is w-categorical
(using characterization (4) of Fact 1.3) and the definition of Ly, it follows that the
unique complete I-type of Th(M[Lj) which extends ¢ is isolated by a formula in ¢, and
similarly for p. So whenever MLy = q(b) there is b € M such that MLy = p(bb).
And if p(b, 1, 1) is algebraic for some b € M! such that MLy = q(b), then p(b,z;11) is
algebraic for every b € M! such that MLy = q(b).

Suppose that p(b,z;.1) is algebraic for some (and hence every) b € M' such that
MLy = q(b). Then,

(¥) whenever b € M! and M|L;, = q(b), there exists b € cl(b) such that MLy |= p(bb).

If no a € A, exists such that A,, = p(aa) then, letting a' = cl(a), it follows from (x)
that there exists no b’ € M such that tp}® (a’) = P IL, (b'), and, as A, = ¢(a) and
dim®(@') < k, we have a contradiction to (c). Hence, if p(b, ;1) is algebraic for some
b € M! such that M[L; = q(b), then there exists a € A,, such that A,, |= p(aa).

Now suppose that p(b, ;41) is non-algebraic for every b € M! such that M| Lk = q(b).
Let b and b be such that ML = p(bb). Then tp (a) = tp}y MIL k(b), dim%(a) < k,
p(x1,. .., x141) = tPi L, (bb) and p(b,x;41) is non-algebraic, so by (4), there is a € A,,
such that A | p(aa). Now we have proved that A,, is atomicly k-saturated with respect
to MLy, so (3) is proved. O

3 Examples

We give examples of structures M which have, or do not have, the properties of being
polynomially k-saturated or of having a sublanguage £ such that aclys and acly/z co-
incide and M satisfies the k-independence hypothesis over £. The second example in
Section 3.3 shows the necessity of the assumptions in Theorem 2.2. All examples will
be simple with SU-rank 1, so ‘acl’ is a closure operator on these structures. We start by
looking at examples with trivial algebraic closure. Then we show that all infinite vector
spaces, projective spaces and affine spaces over a finite field are polynomially k-saturated
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for every k < w. Finally we study two non-Lie coordinatizable structures which have
non-trivial algebraic closure operator.

In this section we will frequently use the Fraissé construction of a structure as a
so-called Fraissé limit of a class of finite structures. The reader is refered to [9] for
definitions and results (in particular Theorems 7.1.2 and 7.4.1 in [9]).

3.1 Simple structures with trivial algebraic closure

We say that a structure M has trivial (also called degenerate) algebraic closure if for any
A C M, acl(A) = U,caacl(a). The general case of an w-categorical simple structure
with SU-rank 1 and trivial algebraic closure was treated as the ‘introductory example’
at the end of Section 1. We now look at a couple of particular cases.

Random structure and random (bipartite) graph: Tt is well-known that the random
structure (in a finite relational language), the random graph (see [9]) and the random
bipartite graph (see [11], end of section 4) are w-categorical and simple with SU-rank
1 and have elimination of quantifiers. This follows from the construction as a Fraissé
limit of the particular class of finite structures used in each case. It also follows that
each of these examples satisfies the k-independence hypothesis over the language £ with
vocabulary {=}, for every k < w. Also, if M is any one of these structures then, for any
A C M, acly(A) = A. Hence aclys and aclyrz coincide, and M [L, which is just an
infinite set, is polynomially k-saturated for every 0 < k < w. Theorem 2.2 implies that
M is polynomially k-saturated for every 0 < k < w

Random pyramid-free (3)-hypergraph: In contrast to the random graph, this ex-
ample will not satisfy the 4-independence hypothesis over the language with vocabulary
{=}. Let the vocabulary of L be {=, R} where R is a ternary relation symbol. We call
an L-structure M a (3)-hypergraph, or just hypergraph, if (a,b,c¢) € R™ implies that a,
b, c are distinct and that every permutation of (a,b,c) belongs to RM. A hypergraph
M is pyramid-free if there are no distinct ap,...,a4 € M such that for any distinct
i,j,k € {1,2,3,4}, M = R(a;,aj,a;). Let K be the class of all finite pyramid-free
hypergraphs. It is easy to see that K has the hereditary property, the the joint embed-
ding property and the amalgamation property, so the Fraissé limit of K exists and is
w-categorical with elimination of quantifiers. Let M be the Fraissé limit of K. First we
show that M is simple of SU-rank 1 and has trivial algebraic closure. That algebraic
closure is trivial is a consequence of quantifier elimination and that every member of K
is embeddable in M. To show that M is simple of SU-rank 1, it is (as in the case of
the random graph) sufficient to show that ¢p(a/B) divides over A C B if and only if
a € B — A for some a € rng(a). This follows if we can show that for any quantifier free
©(Z,y) which does not express x; = y; for any x; € rng(z) and y; € rng(y), any n < w
and b € M, i < n, if M | A, 32(Z,b;) then M = 32(\,<, ¢(Z,b;)). Since M is
the Fraissé limit of K, this is a consequence of the following:

Observation : Suppose that Ag, A1, As are pyramid-free hypergraphs such that:

(a) For i = 1,2, the substructure of A; with universe A; N Ay is identical to the sub-
structure of Ag with universe 4; N Ay, and

(b) the substructure of A; with universe Ay — Ay is identical to the substructure of As
with universe As — Ap.

Then the hypergraph B with universe AgU A; ( = AgU Asy), where (a,b,c) € RE if and
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only if (a,b,c) € R4 or (a,b,c) € R4 or (a,b,c) € RA?, is pyramid-free.

If one assumes that the observation is false then one easily gets a contradiction to the
assumption that A; is pyramid-free for i = 1,2, 3, or to the definition of B.

If we let £ be the language with vocabulary {=} then, in contrast to the case of
the random graph, one easily checks that since M is pyramid-free it does not satisfy the
4-independence hypothesis over L. It is not known to the author whether any sentence
which is true in M must be true in a finite hypergraph or whether M is polynomially
k-saturated for k > 4. This question has a similar taste as the the better known problem
[2] whether any sentence which is true in the random (also called ‘generic’) triangle-free
graph, which is the Fraissé limit of the class of all finite triangle-free graphs, must be
true in a finite triangle-free graph.

3.2 Vector spaces, projective spaces and affine spaces

A vector space V over a finite field K may be regarded as a first-order structure M =
(V,4+,h € K,0), where V is the universe of M, + is a binary function symbol which
is interpreted as vector addition, h is a unary function symbol interpreted as scalar
multiplication by h (i.e. h*(a) = ha) for every h € K and a € V, and the constant
symbol 0 is interpreted as the zero vector. It is well-known that an infinite vector space
over a finite field is w-categorical and w-stable, so in particular it is Lie coordinatizable
(see |5] for a definition). Any Lie coordinatizable structure has the finite submodel
property [5]. In an infinite vector space over a finite field, linear span coincides with
algebraic closure. Moreover, any countable infinite vector space over a finite field is
isomorphic to a Fraissé limit of a class of finite structures and therefore any infinite
(not necessarily countable) vector space over a finite field has elimination of quantifiers.
In this section we show that any infinite vector space, projective space or affine space
(defined below) over a finite field is polynomially k-saturated for any 0 < k < w.

Definition 3.1 Suppose that M is an w-categorical structure such that (M,acl) is a
pregeometry. Then acl(z) = acl(y) is a (-definable equivalence relation on M. For any
a € M we define [a] to be the equivalence class of a with respect to this equivalence
relation. Also define [M] = {[a] : @ € M}. Observe that [M] is a sort of Ml We
will regard [M] as a structure which, for every n and every (-definable (in M%) relation
R C [M]™, has arelation symbol which is interpreted as R; the vocabulary of the language
of [M] contains no other symbols.

Lemma 3.2 Suppose that M is an w-categorical structure such that (M, acl) is a prege-
ometry. For any k < w, M is polynomially k-saturated if and only if [M] is polynomially
k-saturated.

Proof. This is a straightforward consequence of the definition of being polynomially k-
saturated, because (by w-categoricity) there is m < w such that for any a € M, |[a]| < m,
and for any n and ay,...,a, € M, dim(ay,...,a,) = dim([a1],. .., [an]). O

Definition 3.3 (i) By a projective space over a finite field K we mean a structure of the
form [M] where M is a vector space over K.

(ii) An affine space M4 over a finite field K is a structure obtained from an infinite
vector space M over K and a set A (disjoint from the universe of M) which satisfies:
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(a) The universe of M4 is V' U A where V is the vector space which is the universe of M
and the structure on V' is that of M (i.e. a vector space over K).

(b) The vector space V, as a group, acts regularly on A; i.e. for any a,b € A, there is a
unique v € V with va = b. This action V x A — A is represented in M# by a relation
symbol which is interpreted as its graph.

(¢) There is no other structure on M4,

Note that A is a (-definable subset of M4,

Proposition 3.4 Any infinite vector space, projective space or affine space over a finite
field is polynomially k-saturated for every 0 < k < w.

The above proposition is a consequence of Lemmas 3.2, 3.5 and 3.7.

Lemma 3.5 Any infinite vector space over a finite field is polynomially k-saturated for
every 0 < k < w.

Proof. Suppose that M = (V,+,h € K,0) where V is infinite and K is a finite field.
Fix arbitrary 0 < k£ < w. We will show that M is polynomially k-saturated. Let
P(z) = |K|* - (x +1). Let ng < w be arbitrary.

Choose m such that |K|™ % > ng and let n = |[K|™* —1. Let V' C V be a subspace
of dimension m and let A be the substructure of M with universe V’. Now we have

n=|K"F - 1< K" = Al = |K[* - |[K[" " = |K|* - (n+1) = P(n),

so we have verified part (1) of the definition of being polynomially k-saturated. We
mentioned in the beginning of this section that algebraic closure in M coincides with
linear span, so A is algebraically closed in M. Therefore part (2) of Definition 1.7 holds.

In order to complete the proof we need to show that if a € A, dimys(a) < k (where
the model theoretic ‘dimj;’ in this case happens to coincide with the ‘dimension’ in
the usual sense for vector spaces) and p(Z,y) is a quantifier-free type of M (recall that
M has elimination of quantifiers) such that p(a,y) is non-algebraic, then there are dis-
tinct by,...,b, € A such that M | p(a,b;) for 1 < i < n. We may assume that a is
algebraically closed, so W = rng(a) is a subspace of V'. Since p(a,y) is assumed to
be non-algebraic, any realization of p(a,y) must be outside of W. As M has elimina-
tion of quantifiers, any b € V — W will realize p(b, %), so it is sufficient to find distinct
biy... by € V'=W. We have [W| < |K|¥ and |V'| = |K|™ = |K|}-|K|" % = |[K|*-(n+1)
by the choice of n, so |V — W| > n and we are done. O

Lemma 3.6 Let M* be an affine space over a finite field and let V be the vector space
of M which acts on A. Let v = (v1,...,v,) be an enumeration of a subspace of V and
let a € A and a = (v1a,...,vpa). Then tpya(va) is determined by tpy(0).

Proof. We may assume that M4 is countable because otherwise we could just consider
a countable elementary substructure of M instead.
It is sufficient to show that:

If for i = 1,2,
(1) v; = (v},...,v") enumerates a subspace of V,
(2) a; € A, @; = (v}ai,...,v"a;), and

(3) tom (V1) = tpam (v2),
then there is an automorphism of M A which maps v1a1 onto vaas.
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First we show that for any a1, as € A there is an automorphism f of M# which fixes V'
pointwise and sends a; to as. Let ay,as € A. We define f in the following way. Since V'
acts regularly on A there is a unique v € V such that va; = ao. Let f restricted to V
be the identity and, for every a € A, let f(a) = va. It follows that f(a;) = az. Also, for
any a,a’ € A and w € V we have wa = ¢’ <= v(wa) = vd' <= (v + w)a = vd' <
(w~+v)a = vd < wva) = vd < f(w)f(a) = f(d’), so f is an automorphism of
M4

For i = 1,2 let v;,a;, and a; satisfy (1)-(3) above. An affine space over a finite field
is an w-categorical structure (by [5], Lemma 2.3.19, for instance) so M is w-categorical
and hence w-homogeneous (see [9], for example). Since M4 is assumed to be countable,
a standard back and forth argument gives an automorphism g of M4 which maps 7; to
Tp. As shown above, there is an automorphism f of M4 which fixes V pointwise and
maps g(ay1) to ag. Then fg maps v; to U2 and a; to ag; it follows that fg maps v1a; to
V20a2. ]

Corollary 3.7 If M4 is an affine space over a finite field then M? is polynomially
k-saturated for every 0 < k < w.

Proof. Let M4 be an affine space over a finite field. Then M is an infinite vector space
(over the same field) which, by Lemma 3.5, is polynomially k-saturated, where 0 < k < w
is arbitrary. Suppose that B C M is an algebraically closed finite substructure such that

(%) for any b € B with dim/(b) < k and any non-algebraic p(x) € S} (b) there are
distinct ¢y, ..., ¢, such that M | p(¢), fori=1,...,n.

Let a be an element of A and let B4 = B U {va : v is a vector in B}. By Lemma 3.6,
() holds with B4 and M in place of B and M. Since |B4| < 2|B], it follows that M4
is polynomially k-saturated. O

Problem 3.8 Infinite vector spaces over a finite field are special cases of the structures
called ‘linear geometries’ in [5]. Is it the case that if M is any linear geometry in
the sense of [5|, then M is polynomially k-saturated for every 0 < k < w? If the
answer is ‘yes’ then, by the definition of being Lie coordinatizable, modifications of
results here and Corollary 2.5 in [3] (which corrects Lemma 2.4.8 in [5]), it follows that
any Lie coordinatizable structure with SU-rank 1 is polynomially k-saturated for every
0 < k < w. The problem that the author could not overcome was dealing (successfully)
with the quadratic forms that are present in other linear geometries than pure vector
spaces; such quadratic forms posed a problem since they may be non-trivial but trivial
on some (perhaps large) subspaces.

3.3 Non-Lie coordinatizable structures with non-trivial algebraic clo-
sure

The random bipartite graph is not smoothly approximable (which is explained in [11],
end of section 4) and hence not Lie coordinatizable [5] but has trivial algebraic closure as
mentioned in Section 3.1. We now give two examples of w-categorical simple structures
with SU-rank 1 which are not Lie coordinatizable and have non-trivial algebraic closure.
In the case of the first, “well-behaved” example M, there is a sublanguage £ of the lan-
guage of M, such that aclys;z and aclys coincide, M [L£ is polynomially k-saturated and
M satisfies the k-independence hypothesis over L, for every k < w; by Theorem 2.2, M
has the finite submodel property and is polynomially k-saturated for every k < w. In the
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case of the second, “badly behaved” example, which does not have the finite submodel
property, there is no such sublanguage L.

A “well-behaved” example: Let K be the class of all finite structures

N = (V,P,E,+, fo, f1,0) such that:

1. V, the universe of N, is a vector space over the field F' = {0, 1}.

2. P is a unary relation.

3. E is a binary relation symbol interpreted as an irreflexive and symmetric relation.

4. + is a binary function symbol interpreted as vector addition and the constant symbol
0 is interpreted as the zero vector.

5. fi(v) =i-v, fori=0,1and any v € V (so f; represents scalar multiplication).

6. N =Vay( E(z,y) — [ E(y,2) A [ (P(z) A=P(y)) V (-P(z)AP(y)) ]]).

7. N = P(0).

It is easy to verify that K is nonempty and has the hereditary property, the joint em-
bedding property and the amalgamation property and is uniformly locally finite. Hence
the Fraissé limit of K, which we call M, exists and is w-categorical and has elimination
of quantifiers. Since the reduct of M to the language with vocabulary {=, P, E'} is the
random bipartite graph, M is not Lie coordinatizable (by [5], Theorem 7, or see the
example at the end of Section 4 in [11]).

Being a Fraissé limit, M has the property that for any a € M, tp(a) is determined
by the isomorphism type of the finite substructure of M that a generates, that is, by the
subspace spanned by a. It follows that for A C M and a € M, a € aclp/(A) if and only
if a belongs to the subspace spanned by A. Also, for any @ and A C B taken from any
model of Th(M), tp(a/B) divides over A if and only if there is a € rng(a) such that a
belongs to the subspace spanned by B but not to the subspace spanned by A. It follows
that M is simple and has SU-rank 1.

Let £ C L be the sublanguage which contains all symbols of L except P and E. Then
ML is a vector space over a finite field so it is a linear geometry ([5], Definition 2.1.4)
and by Lemma 3.5, M [L is polynomially k-saturated, for every k£ < w. Since aclys is
linear span, acly; and aclysz coincide. From the facts that M has elimination of quan-
tifiers an every member of K is embeddable in M (since M is the Fraissé limit of K)
it follows that M satisfies the k-independence hypothesis over L, for every & < w. By
Theorem 2.2, M has the finite submodel property and is polynomially k-saturated for
every k < w.

A “badly behaved” example: This example was first given in [10] which is not pub-
lished, but also occurs as Example 6.2.27 in [13]. It is obtained by an amalgamation
construction with a predimension. We will not repeat all the details of the construc-
tion or the proofs, but only collect the facts which will be of use here. Let the lan-
guage L contain only a ternary relation symbol R (and =). For any L-structure M
let R(M) = {(a,b,c) : a,b,c € M, M |= R(a,b,c)}. Let K be the class of all finite
L-structures A such that A = Vayz(R(z,y,2) — (x #y Az # 2 Ay # z)). We consider
() as a structure so ) € K. For any A € K let 6(A) = |A| — |R(A)| and for any substruc-
ture A C B € K define A < B if and only if §(C) > §(A) whenever A C C C B. Let
f:R2% — R20 be defined by

z if0<z <,
flz) = :
logs(z)+1 if 1 <.
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Let
Ky={A€ K :§(B)> f(|B]) for any B C A}.

The argument in Example 6.2.27 in [13] now tells us that there exists a so-called generic
model for Ky, which we denote by M, which is w-categorical and simple; with the given
set-up we can also get the same result by applying Theorems 3.5 and 3.6 in [7|. From
parts of the construction and proof which we don’t give here, it follows that:

1. Every finite substructure of M; belongs to Ky and every A € K is isomorphic to a
substructure of M.

2. For any finite A C My, A is algebraically closed if and only if whenever A C B C My
and B is finite then §(B) > §(A).

3. For every a € My, tp(a) is determined by the isomorphism type of acl(a).

Hence, all elements of My have the same type and acl(§) = ) and acl(a) = {a} for any
a € My. 1t also follows that given any two distinct a, b € M, exactly one of the following
two cases holds:

(i) acl(a,b) = {a, b}, that is, there is no third element ¢ such that some permutation of
(a,b,c) belongs to R(Mj).

(ii) For some ¢ € My, acl(a,b) = {a,b,c}, in which case some permutation of (a,b, c)
belongs to R(Mjy).

The fact that for any a € My and algebraically closed A C My, d(acl({a}UA))—0d(A)
is either 0 or 1 (because either a € A in which case we get 0, or a ¢ A in which case
the assumption that A is closed implies that there can be no b € A and ¢ € M such
that some permutation of (a,b,c) belongs to R(M), so we get 1) implies that M; has
SU-rank 1.

Now we show that My does not have the finite submodel property, which implies
that My is not Lie coordinatizable. Let ¢ be the sentence

Jax(z =x) A VaIyz(y # 2z A JuR(z,y,u) A JuR(z,z u)).

Then My |= ¢. If Ais finite and A |= ¢ then |R(A)| > 2|A] so §(A) = |A] — |R(A)| <
|A] — 2|A| < 0 and therefore A can not be a substructure of My (or of any model
of Th(My)). For a more general statement concerning the finite submodel property
and structures obtained by amalgamation constructions with predimension see the last
section of [6].

Hence, for any £ C L, either acle does not coincide with acle iz or there must
exist a k such that one of the other premises of Theorem 2.2 fails for this k. We give a
direct argument which shows this, or more precisely, we claim that:

For no £ C L is it the case that the following three conditions are satisfied:

e acly, and acly, . coincides,

e ML is polynomially 2-saturated,

e M satisfies the 4-independence hypothesis over L.

There are two cases to consider; the first when the vocabulary of £ contains only =,
the second when £ = L. Suppose that the vocabulary of £ contains only =, so the
structure ML is just an infinite set, which has trivial algebraic closure. My does not
have trivial algebraic closure so the first point fails. Also, the third point fails and it
might be instructive to see why.

By calculation, the structure A with universe {ai,...,as} where

R(A) - {(alv az, a4)7 (a2a as, CL5), (a37a1a a6>}

belongs to Ky. By 1, we may assume A C M. By 2, A is algebraically closed and,
by (i) and (ii), dim(A) = 3. By 3, the formula R(z4,x5,x¢) isolates a complete type
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p(x4, x5, 26). Our conclusions so far together with (i), (ii) imply that {a4, as,ag} is alge-
braically closed and has dimension 3. Trivially, we also have pN L = tpn, i(aq, as, ag).
If M satisfies the 4-independence hypothesis over £, then there are by,...,bs € My such
that

tp(a1, az, as) = tp(b1, b2, by)
tp(az,as, as) = tp(b, b3, bs)
tp(as, a1, as) = tp(bs, b1, be)
p(z4, 75, 26) = tp(ba, bs, bs)

Letting B be the substructure with universe {b1,...,bg} we get 6(B) =6 —4 =2 <
logs(6) + 1 = f(|B|) so B ¢ Ky which contradicts 1.

Now suppose that £ = L, so we have M¢[L = My. Let p(z,y) = tp(a,b) where a # b
and My = JzR(a,b,x). Note that for every a’ € My, p(a’,y) is a non-algebraic type.
Suppose for a contradiction that My is polynomially 2-saturated. Then there exists a
finite substructure A C My which is algebraically closed and for any a’ € A there are
distinct by, by € A such that My = p(a’,b;) for ¢ = 1,2. Since A is algebraically closed,
(i) and (ii) imply that A = ¢, where @ is the sentence previously defined, which is a
contradiction.
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