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Abstract

We prove, by a probabilistic argument, that a class of ω-categorical structures, on
which algebraic closure de�nes a pregeometry, have the �nite submodel property.

This class includes any expansion of a pure set or of a vector space, projective

space or a�ne space over a �nite �eld such that the new relations are su�ciently

independent of each other and over the original structure. In particular, the random

graph belongs to this class, since it is a su�ciently independent expansion of an

in�nite set, with no structure. The class also contains structures for which the

pregeometry given by algebraic closure is non-trivial.

Introduction

The random graph, random bipartite graph and random structure have the �nite sub-
model property, which means that every �rst-order sentence which is true in the structure
is also true in a �nite substructure of it. This follows from the 0-1 law for each one of
them, the proof of which uses a probabilistic argument (see [8], [9], for example). It is
also known that all smoothly approximable structures have the �nite submodel prop-
erty, which follows rather easily from the de�nition [11]. The hard part is to show that
certain structures are smoothly approximable. It has been shown that all ω-categorical
ω-stable structures are smoothly approximable [4] and later that a structure is smoothly
approximable if and only if it is Lie coordinatizable ([5]; partially proved in [11]).

All above mentioned structures are ω-categorical and simple. If M is simple with
SU-rank 1, then (M, acl), where `acl' denotes the algebraic closure operator, is a prege-
ometry. The random (bipartite) graph and random structure have SU-rank 1. Every
smoothly approximable structure M has �nite SU-rank and can be nicely described, via
Lie coordinatizability, in terms of de�nable subsets of M eq (so-called Lie geometries in
[5]) of SU-rank 1.

A pregeometry (G, cl) can be viewed as a �rst-order structure M = (G,Pn;n < ω),
where M |= Pn(a1, . . . , an+1) if and only if an+1 ∈ cl({a1, . . . , an}). In such a structure
we have a notion of dimension, de�ned in terms of the closure operator cl. In this article
we will study ω-categorical structures M such that (M, acl) is a pregeometry. Since M
may have relations which are not expressible in terms of the Pn's (now de�ned with cl
= acl), we will view such M as an expansion of (M,Pn;n < ω).

We will prove (Theorem 2.2) that if M is an L-structure and there is a sublanguage
L ⊆ L such that, for every k < ω, the following three points (which will be made precise
later) are satis�ed, then M has the �nite submodel property:
(1) The algebraic closure operator in M is the same as the algebraic closure operator in
M�L, where M�L is the reduct of M to L.
(2) The relations on tuples of dimension ≤ k which are de�nable in M but not in M�L
are su�ciently independent of each other.
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(3) There is a polynomial P (x) such that, for any n0 < ω there is n ≥ n0 and a (�nite)
substructure A of M�L such that |A| ≤ P (n) and

(a) A is algebraically closed in M�L (and hence in M by (1)), and
(b) any non-algebraic 1-type (inM�L) over a subset of A of dimension < k is realized

by n distinct elements in A.
We will say that a structure which satis�es the precise version of condition (2) satis�es the
k-independence hypothesis over L. If N = M�L satis�es the precise version of condition
(3) then we say that N is polynomially k-saturated. We will see (Lemma 1.8) that being
polynomially k-saturated, for every k < ω, implies having the �nite submodel property.
So above, we are implicitly assuming that M�L has the �nite submodel property. The
point is that under conditions (1)-(3) also M will have it; in fact M will satisfy the
stronger condition of being polynomially k-saturated for every k < ω, so this property is
transferred from M�L to M . If we only assume that (the precise versions of) conditions
(1)-(3) hold for some particular k (and hence for all l ≤ k) then we get a weaker conclusion
(Theorem 2.1) which only says that every unnested sentence, in which at most k distinct
variables occur, which is true in M has a �nite model, but here we are not able to prove
that the �nite model can be emedded into M .

Structures which are Lie coordinatizable, or equivalently `smoothly approximable',
have the �nite submodel property [5]. In the special cases of vector spaces, projective
spaces or a�ne spaces over a �nite �eld we can strengthen this and show (in Section 3.2)
that these structures are polynomially k-saturated for every k < ω. Hence any vector
space over a �nite �eld (or its projective or a�ne variants) is a good �base structure�
which can potentially be expanded in a non-trivial way without loosing the �nite sub-
model property and polynomial k-saturatedness; a particularly simple example of this is
the �well-behaved� structure in Section 3.3. A vector space over a �nite �eld is a linear
geometry in the sense of [5]. A natural question, not answered in this article, is whether
every linear geometry is polynomially k-saturated for every k < ω.

In Section 3 we give two examples which do not satisfy the premises of Theorem 2.2
which where roughly stated as (1)-(3) above. One of the examples shows that if we
remove these premises then the theorem fails, even if we assume that the structures
under consideration are simple with SU-rank 1. For other results concerning expansions
of non-trivial structures, including vector spaces over a �nite �eld, see [1].

The main theorems and their proofs are given in Section 2; the prerequisites, which
are stated in Section 1, include only basic model theory. In Section 3 examples are given
of structures which have or don't have the main properties considered in this paper;
here basic results about simple theories will be used as well as some more specialized
results about structures obtained by amalgamation constructions, with or without a
predimension.

I would like to thank Gregory Cherlin and Ehud Hrushovski for helpful comments,
including pointing out an error in an earlier version of this article and suggesting the
example of the random pyramid-free hypergraph in Section 3.1. Also, my thanks go to
the anonymous referee for his/her close reading of the article.

1 Preliminaries

Notation and terminology If L is a (�rst-order) language then its vocabulary (or
signature) is the set of relation, function and constant symbols of L; we always assume
that `=' belongs to the vocabulary and that L is countable. If L′ ⊆ L are languages and
M is an L-structure then M�L′ denotes the reduct of M to the language L′. If P is a
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symbol in the vocabulary of L then PM is the interpretation of P in M . For simplicity,
we will say things like �for P in L� when we actually mean �for P in the vocabulary of
L�. We will frequently speak about unnested formulas; a de�nition follows below. When
considering complete theories we assume that they have in�nite models and hence only
in�nite models.

LetM be an L-structure. Th(M) denotes the complete theory ofM . We say thatM
is ω-categorical (simple) if Th(M) is ω-categorical (simple); see [12], [13] for the basics
of simple structures. By aclM (A) (or just acl(A)) we mean the algebraic closure of A
in M . By ā, b̄, . . .. we denote �nite sequences of elements from some structure; rng(ā)
denotes the set of elements enumerated by ā and |ā| is the length of the sequence; we
write acl(ā) instead of acl(rng(ā)). By x̄, ȳ, . . . we denote �nite sequences of variables.
By ā ∈ A we mean that rng(ā) ⊆ A. By ā ∈ An we mean that rng(ā) ⊆ A and |ā| = n.
For sequences ā, b̄ we will sometimes write ā ∩ b̄ for rng(ā) ∩ rng(b̄), and occasionally
we will view rng(ā) ∩ rng(b̄) as a sequence by assuming that it is listed somehow. For
sequences ā = (a1, . . . , an) and b̄ = (b1, . . . , bm), we frequently write āb̄ for the sequence
(a1, . . . , an, b1, . . . , bm). If X is a set then |X| denotes its cardinality. If A ⊆M then we
say that R ⊆Mn is A-de�nable if there is ϕ(x̄, ȳ) ∈ L and ā ∈ A such that b̄ ∈ R if and
only if M |= ϕ(b̄, ā).

If T is a complete theory then, for 0 < n < ω, Sn(T ) denotes the set of complete
n-types of T . If M is a structure and A ⊆ M then MA denotes the expansion of M
obtained by adding to the language a new constant symbol for every a ∈ A (and this
constant symbol is also denoted by a) which is interpreted as a. For A ⊆ M , the set of
complete n-types over A (with respect to M), denoted SM

n (A), is de�ned to be the set
Sn(Th(MA)); if it is clear in which structure we are working we may drop the superscript
M . If ā ∈M eq, A ⊆M eq, then tpM (ā/A) denotes the complete type of ā over A inM eq,
or in other words, the type of ā in (M eq)A; if it is clear in which structure the type is
taken then we just write tp(ā/A). tp(ā) is an abbreviation of tp(ā/∅). A type is algebraic
if it has only �nitely many realizations; otherwise it is non-algebraic. If p(x̄) is a type and
x̄′ is a subsequence of x̄ then p�{x̄′} = {ϕ ∈ p : every free variable of ϕ occurs in x̄′}.

The SU-rank of a complete simple theory T is the supremum (if it exists) of the
SU-ranks of types tp(a) where a ranges over elements from models of T . The SU-rank
of a simple structure M is de�ned to be the SU-rank of Th(M).

De�nition 1.1 An unnested atomic formula is a formula which has one of the following
forms:

x = y,

c = y,

f(x̄) = y,

P (x̄),

where x and y are variables, x̄ a sequence of variables, c a constant symbol, f a function
symbol and P a relation symbol. A formula is unnested if all of its atomic subformulas
are unnested.

Every formula is logically equivalent to an unnested formula (by [9], Corollary 2.6.2, for
instance).

De�nition 1.2 Let G be a set and let cl : P(G) → P(G) be a function, where P(G) is
the powerset of G. We call cl a closure operator and say that (G, cl) is a pregeometry if
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the following conditions are satis�ed:
(1) If A ⊆ G then A ⊆ cl(A) and cl(cl(A)) = cl(A).
(2) If A ⊆ B ⊆ G then cl(A) ⊆ cl(B).
(3) If A ⊆ G, a, b ∈ G and a ∈ cl(A ∪ {b}) then a ∈ cl(A) or b ∈ cl(A ∪ {a}).
(4) If A ⊆ G and a ∈ cl(A) then there is a �nite B ⊆ A such that a ∈ cl(B).

The properties (1), (2) and (4) hold if we replace G by any structure M and cl by
aclM . In Section 3 we will consider simple structures which have SU-rank 1. For such a
structure M , aclM also satis�es (4) which is a consequence of the symmetry of forking ,
so (M, aclM ) is a pregeometry.

If (M, aclM ) is a pregeometry then we can speak about the dimension of any A ⊆M ,
denoted dimM (A) (or just dim(A)), which is de�ned by

dimM (A) = min{|B| : B ⊆ A and A ⊆ aclM (B)}.

In particular, if A ⊆ aclM (∅) then dimM (A) = 0.
The following characterization (see [9] for example) of ω-categorical theories will often
be used without reference:

Fact 1.3 The following are equivalent for a complete theory T with in�nite models:

(1) T is ω-categorical.
(2) Sn(T ) is �nite for every 0 < n < ω.
(3) For every 0 < n < ω there are, up to equivalence in T , only �nitely many formulas

with all free variables among x1, . . . , xn.

(4) Every type in Sn(T ) is isolated, for every 0 < n < ω.

A consequence which is important in the present context is:

Fact 1.4 If M is an ω-categorical structure and A ⊆M is �nite then aclM (A) is �nite.

De�nition 1.5 An L-theory T has the �nite submodel property if the following holds for
any M |= T and sentence ϕ ∈ L: If M |= ϕ then there is a �nite substructure N ⊆ M
such that N |= ϕ. A structure M has the �nite submodel property if whenever ϕ is a
sentence and M |= ϕ, then there exists a �nite substructure N ⊆M such that N |= ϕ.

Observation 1.6 (i) Suppose that the vocabulary of the language of M has only �nitely

many symbols. Then M has the �nite submodel property if and only if Th(M) has the

�nite submodel property.

(ii) If a complete theory T with in�nite models has the �nite submodel property then T
is not �nitely axiomatizable.

Proof. (i) The direction from right to left is immediate from the de�nitions and does
not need the given assumption about the language. Now suppose that the vocabulary of
the language of M has only �nitely many symbols and that M has the �nite submodel
property. Suppose that M ′ |= Th(M) and M ′ |= ϕ. Then M |= ϕ, so ϕ is true in a
�nite substructure Aϕ ⊆ M . By the assumption about the language, the isomorphism
type of Aϕ is described by a quanti�er free formula ψ(x̄) and we have ∃x̄ψ(x̄) ∈ Th(M),
so Aϕ can be embedded in M ′. Part (ii) is immediate since a �nite structure cannot be
elementarily equivalent with an in�nite one. �

Below we give the de�nitions of the main notions of this article.
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De�nition 1.7 Let 0 < k < ω and suppose that M is a structure such that (M, acl) is
a pregeometry. We say that M is polynomially k-saturated if there is a polynomial P (x)
such that for every n0 < ω there is a natural number n ≥ n0 and a �nite substructure
N ⊆M such that:

(1) n ≤ |N | ≤ P (n).

(2) N is algebraically closed.

(3) Whenever ā ∈ N , dimM (ā) < k and q(x) ∈ SM
1 (ā) is non-algebraic there are

distinct b1, . . . , bn ∈ N such that M |= q(bi) for each 1 ≤ i ≤ n.

Examples of structures which are polynomially k-saturated, for every 0 < k < ω, include
in�nite vector spaces over �nite �elds and the random graph; more will be said about
this in Section 3.

Lemma 1.8 If M is polynomially k-saturated for every 0 < k < ω, then M has the

�nite submodel property.

Proof. The proof uses Observation 1.10 below. Suppose that M is polynomially k-
saturated for every 0 < k < ω. By Observation 1.10, it is su�cient to show that for any
k < ω there is a �nite substructure N such that condition (ii) in Observation 1.10 holds.
So we �x an arbitrary k. Then there is n ≥ 1 and a �nite substructure N ⊆M for which
(2) and (3) of De�nition 1.7 hold. The notation `Lk' is explained in Observation 1.10
below. Let ϕ(x̄, y) ∈ Lk, where we may assume that |x̄| < k, and suppose that ā ∈ N ,
b ∈ M and M |= ϕ(ā, b). If b ∈ aclM (ā) then (2) implies that b ∈ N and we are done.
Otherwise letting p(x̄, y) = tpM (ā, b), p(ā, y) is non-algebraic so by (3) there is b′ ∈ N
such that M |= p(ā, b′) which implies M |= ϕ(ā, b′). �

Remark 1.9 Note that, in the proof of Lemma 1.8, we only needed parts (2) and (3)
from De�nition 1.7.

Observation 1.10 (Tarski-Vaught test for Lk) Let M be an L-structure and let Lk

denote the set of L-formulas in which at most k distinct variables occur, whether free or

bound. If N is a substructure of M then the following are equivalent:

(i) For every ϕ(x̄) ∈ Lk and ā ∈ N |x̄|, M |= ϕ(ā) ⇐⇒ N |= ϕ(ā).
(ii) For every ϕ(x̄, y) ∈ Lk and ā ∈ N |x̄|, if M |= ∃yϕ(ā, y) then there is b ∈ N such that

M |= ϕ(ā, b).

Proof. Observe that if ψ(x̄) ∈ Lk then any subformula of ψ(x̄) also belongs to Lk. As
for the proof of the original Tarski-Vaught test, one uses a straightforward induction on
the complexity of formulas, which is left for the reader. �

Notation 1.11 If s̄ = (s1, . . . , sn) is a sequence of objects and I = {i1, . . . , im} ⊆
{1, . . . , n} where we assume i1 < . . . < im then s̄I denotes the sequence (si1 , . . . , sim).

De�nition 1.12 Suppose that M is an ω-categorical L-structure such that (M, aclM )
is a pregeometry. Let L be a sublanguage of L. We say that M satis�es the k-
independence hypothesis over L if the following holds for any ā = (a1, . . . , an) ∈ Mn

such that dimM (ā) ≤ k:
If I = {i1, . . . , im} ⊆ {1, . . . , n} and p(x̄I) ∈ Sm(Th(M)) (where x̄I = (xi1 , . . . xim)) are
such that
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aclM (āI) = rng(āI), dimM (āI) < k, p(x̄I) ∩ L = tpM�L(āI) and for every J ⊂ I
with dimM (āJ) < dimM (āI), p�{x̄J} = tpM (āJ),

then there is b̄ = (b1, . . . , bn) ∈Mn such that

tpM�L(b̄) = tpM�L(ā), tpM (b̄I) = p(x̄I) and, for every J ⊂ {1, . . . , n} such that
āI 6⊆ aclM (āJ), tpM (āJ) = tpM (b̄J).

The above de�nition will be considered in the context when aclM and aclM�L coincide
(i.e. aclM (A) = aclM�L(A) for every A ⊆ M), so in this situation, for p(x̄I) as in the
de�nition, any realization of p(x̄I) ∩ L is algebraically closed in M .

An introductory example will illustrate the main notions introduced above. In Sec-
tion 3, more examples will be given of structures having, or not having, the properties
de�ned above.

An introductory example

We say that a structure M has trivial (also called degenerate) algebraic closure if for any
A ⊆M , aclM (A) =

⋃
a∈A aclM (a).

Suppose that M is an L-structure which is ω-categorical and simple with SU-rank
1. Also assume that M has trivial algebraic closure. After adding some assumptions
on L we will show that, for a particular sublanguage L (de�ned below) of L, aclM and
aclM�L coincide, M�L is polynomially k-saturated for every 0 < k < ω, and M satis�es
the 3-independence hypothesis over L. So by Theorem 2.1, for every sentence ϕ ∈ L, if
at most 3 distinct variables occur in ϕ and M |= ϕ, then ϕ has a �nite model.

In order to simplify one part of the argument, we assume that for any ā ∈ M with
dimM (ā) ≤ 3, tpM (ā/aclMeq(∅)) is determined by tpM (ā/aclM (∅)) (where aclMeq is the
algebraic closure taken in M eq). Since M is ω-categorical, if this assumption does not
hold from the beginning then it can be satis�ed by considering a �nite number of elements
from M eq to be part of M ; the new M thus obtained will be ω-categorical and simple
with SU-rank 1 and have trivial algebraic closure.

By the ω-categoricity ofM , there is m < ω such that |aclM (a)| ≤ m for every a ∈M .
We will suppose that L has relation symbols P,Q,R1, . . . , Rm which are interpreted in
the following way:

PM =
{
a ∈M : a ∈ aclM (∅)

}
,

QM =
{
(a, b) ∈M2 : a ∈ aclM (b)

}
,

RM
i =

{
a ∈M − aclM (∅) :

∣∣aclM (a)− aclM (∅)
∣∣ = i

}
for i = 1, . . . ,m.

If such symbols are not originally in the vocabulary of L, then we can expand M so that
the above holds without destroying the other assumptions on M . Let L be the language
with vocabulary {=, P,Q,R1, . . . , Rm}.

Claim 1.13 (i) M�L has elimination of quanti�ers.

(ii) For any subset A ⊆M , aclM�L(A) = aclM (A).

Proof. (i) Straightforward back and forth argument, left for the reader.
(ii) If b ∈ aclM�L(A) then, since M�L is a reduct of M , we must have b ∈ aclM (A). If
b ∈ aclM (A) then, since aclM is trivial, we get b ∈ aclM (∅) or b ∈ aclM (a), for some
a ∈ A, and henceM�L |= P (b) orM�L |= Q(b, a), for some a ∈ A. By the ω-categoricity
of M , the sets PM and {b′ : (b′, a) ∈ QM} are �nite so b ∈ aclM�L(A). �
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Claim 1.14 M�L is polynomially k-saturated for every 0 < k < ω.

Proof. Let 0 < k < ω be given. De�ne a ∼ b ⇐⇒ aclM (a) = aclM (b). Then every ∼-
class has at most m elements. Let F (x) = m(k+x)+m. For any n0 < ω we put n = n0

and choose a �nite set of ∼-classes as follows: If aclM (∅) is non-empty then aclM (∅)
is an ∼-class which we choose. If there exists a ∼-class di�erent from aclM (∅) which
contains exactly i elements, then there are in�nitely many such, because the elements in
such a class do not belong to aclM (∅). For every i ∈ {1, . . . ,m} such that there exists
a ∼-class di�erent from aclM (∅) which contains exactly i elements, we choose exactly
k + n distinct such ∼-classes. Now let A be the union of all the chosen classes. Then
A with the L-structure induced from M�L is a substructure of M�L. The construction
of A implies that n ≤ |A| ≤ m(k + n) + m = F (n). Also by construction, if E is a
∼-class and E ∩ A 6= ∅ then E ⊆ A, so A is algebraically closed by Claim 1.13. Now
we have taken care of parts (1) and (2) of De�nition 1.7. For part (3), assume that
ā ∈ A, dimM�L(ā) < k and that q(x) ∈ SM�L

1 (ā) is non-algebraic. Then q(x) contains
the formula ¬P (x) and, for every a ∈ rng(ā), q(x) contains the formula ¬Q(x, a). By
Claim 1.13, M�L has elimination of quanti�ers, so the construction of A guarantees that
we �nd distinct b1, . . . , bn ∈ A (from distinct ∼-classes of appropriate size) such that
M�L |= q(bi), for each i. �

The previous two claims do not need the assumption thatM has SU-rank 1; it is su�cient
that M is ω-categorical and that (M, aclM ) is a trivial pregeometry. The proof of the
next claim will however use the hypothesis that M has SU-rank 1 together with the
independence theorem for simple theories.

Claim 1.15 M satis�es the 3-independence hypothesis over L.

Proof. Suppose that ā = (a1, . . . , an) ∈ Mn and dimM (ā) = d ≤ 3. Suppose that
I = {i1, . . . , im} ⊆ {1, . . . , n} and p(x̄I) ∈ Sn(Th(M)) are such that

(a) aclM (āI) = rng(āI), dimM (āI) < 3, p(x̄I) ∩ L = tpM�L(āI) and for every J ⊂ I
with dimM (āJ) < dimM (āI), p�{x̄J} = tpM (āJ),

We must show that there is b̄ = (b1, . . . , bn) ∈Mn such that

(b) tpM�L(b̄) = tpM�L(ā), tpM (b̄I) = p(x̄I) and, for every J ⊂ {1, . . . , n} such that
āI 6⊆ aclM (āJ), tpM (āJ) = tpM (b̄J).

Without loss of generality we may assume that ā is algebraically closed (inM), and since
algebraic closure is trivial we may assume that ā = ā0ā1 . . . ād, where ā0 = aclM (∅) and
for i = 1, . . . , d, dimM (āi) = 1 and āi = aclM (āi)− aclM (∅). Let l = dimM (āI). We get
di�erent cases depending on l; the �rst three (in a sense �degenerate�) cases only uses
that M is ω-categorical and that (M, aclM ) forms a trivial pregeometry; the fourth and
last case also uses the assumption thatM is simple with SU-rank 1 and the independence
theorem for simple theories.

Case 1: Suppose that l = d.

Since āI is algebraically closed we have āI = ā (and x̄I = x̄ = (x1, . . . , xn)), so d < 3
(because l = dimM (āI) < 3). Let b̄ = (b1, . . . , bn) ∈ Mn realize p(x̄I). The conditions
in (a) imply that tpM�L(b̄) = tpM�L(ā) and, if J ⊂ {1, . . . , n} and āI 6⊆ aclM (āJ) (which
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implies dimM (āJ) < d) then tpM (āJ) = tpM (b̄J). Hence (b) is satis�ed.

Case 2: Suppose that l = 0 < d.

Then āI = ā0 = aclM (∅). Let b̄0 realize p(x̄I), which means that b̄0 = ā0 or that b̄0 is
a reordering of ā0. Let b̄ = (b1, . . . , bn) = b̄0ā1 . . . ād and observe that b̄I = b̄0. Then
the �rst two conditions of (b) are trivially satis�ed and, since āI ⊆ aclM (āJ) for every
J ⊂ {1, . . . , n}, the last condition of (b) is vacuously ful�lled.

Case 3: Suppose that l = 1 < d.

Without loss of generality, we may assume that āI = ā0ā1. Let c̄ realize p(x̄I). By the
assumptions on p(x̄I) in (a), it follows that c̄ has the form b̄0b̄1 where b̄0 = ā0 or b̄0 is
a reordering of ā0. Since tpM (b̄0) = tpM (ā0) (because of the last condition in (a)), we
may assume that c̄ = ā0b̄1, where b̄1 = aclM (c̄) − aclM (∅). As rng(b̄1) ∩ aclM (∅) = ∅
and dimM (b̄1) = 1, we may also assume that rng(b̄1) ∩ rng(āi) = ∅ for i = 2, . . . , d. Let
b̄ = (b1, . . . , bn) = ā0b̄1ā2 . . . ād, so b̄I = ā0b̄1 and hence tpM (b̄I) = p(x̄I). By the choice
of b̄1 and the triviality of algebraic closure we get tpM�L(b̄) = tpM�L(ā). If J ⊂ {1, . . . , n}
and āI 6⊆ aclM (āJ) then āJ contains no element from ā1, so rng(āJ) ⊆ rng(ā0ā2 . . . ād)
and hence b̄J = āJ so tpM (b̄J) = tpM (āJ). Hence, b̄ satis�es (b).

Case 4: Suppose that l = 2 < d.

Then d = 3 Without loss of generality, we may assume that āI = ā0ā1ā2. Let c̄ realize
p(x̄I). As in the previous case we may assume that c̄ = ā0b̄1b̄2, where aclM (b̄i) −
aclM (∅) = b̄i for i = 1, 2. By the assumptions on p(x̄I) in (a), we have tpM (ā0, b̄i) =
tpM (ā0, āi) for i = 1, 2. Hence, by the ω-categorcity of M , there are b̄′3, b̄

′′
3 ∈ M such

that

tpM (ā0, b̄1, b̄
′
3) = tpM (ā0, ā1, ā3) and tpM (ā0, b̄2, b̄

′′
3) = tpM (ā0, ā2, ā3).

Recall that ā0 = aclM (∅). By the assumption that, for any d̄ ∈ M , tpM (d̄/aclMeq(∅)) is
determined by tpM (d̄/aclM (∅)), it follows that

tpM (b̄′3/aclMeq(∅)) = tpM (b̄′′3/aclMeq(∅)),

and consequently, b̄′3 and b̄′′3 realize the same strong type over ā0 (= aclM (∅)).
Since M has trivial algebraic closure and the SU-rank of M is 1, it follows from

the assumptions on p(x̄I) (in (a)) and the choices of the involved sequences that b̄1 is
independent from b̄2 over ā0, and the types tpM (b̄′3/ā0b̄1) and tpM (b̄′′3/ā0b̄2) do not fork
over ā0. Since M is ω-categorical, Lascar strong types in Th(M) are the same as strong
types in Th(M) ([13], Corollary 6.1.11) so the independence theorem for simple theories
([12], Theorem 5.8 or [13], Theorem 2.5.20) implies that there exists b̄3 ∈M such that

(∗) tpM (ā0, b̄1, b̄3) = tpM (ā0, ā1, ā3) and tpM (ā0, b̄2, b̄3) = tpM (ā0, ā2, ā3).

Let b̄ = (b1, . . . , bn) = ā0b̄1b̄2b̄3. The triviality of aclM and the choices of b̄1, b̄2, b̄3
imply that tpM�L(b̄) = tpM�L(ā). Since b̄I = ā0b̄1b̄2 was chosen to realize p(x̄I) we have
tpM (b̄I) = p(x̄I). If J ⊂ {1, . . . , n} is such that āI 6⊆ aclM (āJ) then āJ ⊆ ā0āiā3 where
i = 1 or i = 2, so the last part of (b) follows from (∗).
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Now we have proved that M satis�es the 3-independence hypothesis over L. �

Under the assumptions onM (and its language L) we get, by Theorem 2.1, the following:

Conclusion 1.16 If ϕ is a sentence in the language of M such that at most 3 distinct

variables occur in ϕ and M |= ϕ, then ϕ has arbitrarily large �nite models.

2 Results

Theorem 2.1 Let 0 < k < ω and let M be an ω-categorical L-structure such that

(M, aclM ) forms a pregeometry. Suppose that there is a sublanguage L ⊆ L such that

aclM�L coincides with aclM , M�L is polynomially k-saturated and M satis�es the k-
independence hypothesis over L. If ϕ ∈ L is an unnested sentence, in which at most k
distinct variables occur, and M |= ϕ, then ϕ has arbitrarily large �nite models.

Proof. Combine Lemma 2.15 and Proposition 2.8. More precisely: Under the assump-
tions of the theorem we get part (3) of the conclusion of Lemma 2.15, for arbitrary
n0 < ω. This serves as input for Proposition 2.8 which gives the desired conclusion. �

Note that Theorem 2.1 only speaks about arbitrarily large �nite models, but does not
claim that these are embeddable in M .

Theorem 2.2 Let M be an ω-categorical L-structure such that (M, aclM ) forms a pre-

geometry. Suppose that there is a sublanguage L ⊆ L such that aclM�L coincides with

aclM and, for every 0 < k < ω, M�L is polynomially k-saturated and M satis�es

the k-independence hypothesis over L. Then M is polynomially k-saturated, for every

0 < k < ω, and M has the �nite submodel property.

Proof. Combine Lemma 2.15 and Proposition 2.14. More precisely: The assumptions of
the theorem allow us to use Lemma 2.15 for every k < ω. The conclusions of this lemma,
for every k, serve as input to Proposition 2.14 which gives the desired conclusions. �

Remark 2.3 If, in Theorem 2.2, we remove the assumptions that there is L ⊆ L such
that aclM�L coincides with aclM and, for every 0 < k < ω, M�L is polynomially k-
saturated and M satis�es the k-independence hypothesis over L, then the conclusion
fails, even if we assume that M is simple of SU-rank 1; an example showing this is given
in section 3.3.

De�nition 2.4 Let M and N be structures with the same language.
(i) For any 0 < n < ω, and a1, . . . , an ∈ N , tpua

N (a1, . . . , an) denotes the set of unnested
atomic formulas ϕ(x1, . . . , xn), such that N |= ϕ(a1, . . . , an); we don't insist that all
xi actually occur in ϕ, so ϕ(x1, . . . , xn) may for example have the form P (x1) for a
unary relation symbol P even if n > 1. We call p(x̄) an unnested atomic type of N if
p(x̄) = tpua

N (ā) for some ā ∈ N |x̄|. If the structure N is clear from the context then we
may write `tpua' instead of `tpua

N '.
(ii) N is atomicly k-compatible with M if every ā ∈ Nk realizes an unnested atomic type
of M , or in other words, there is b̄ ∈Mk such that tpua

N (ā) = tpua
M (b̄).

(iii) N is atomicly k-saturated with respect to M if, whenever m < k and q(x1, . . . , xm)
and p(x1, . . . , xm+1) are unnested atomic types of M , q ⊆ p and a1, . . . , am ∈ N realizes
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q, then there is am+1 ∈ N such that a1, . . . , am, am+1 realizes p.
(iv) If p(x̄, y) is an unnested atomic type ofM , ā ∈M |x̄| and there are only �nitely many
b ∈M such that M |= p(ā, b) then we say that p(b̄, y) is algebraic; otherwise we say that
p(b̄, y) is non-algebraic.

Observe the following:

Lemma 2.5 Let M be an L-structure and let L ⊆ L be a sublanguage. Suppose that

1. M is ω-categorical,
2. (M, aclM ) is a pregeometry

3. aclM�L coincides with aclM ,

4. M�L is polynomially k-saturated, and
5. M satis�es the k-independence hypothesis over L.

Let M ′ be the expansion of M which is obtained by adding, for every n < ω and every

∅-de�nable (in M) relation R ⊆Mn, a relation symbol which is interpreted as R. Let L′

be the language of M ′ and let L′ ⊆ L′ be the language which we get from L by adding to

it, for every n < ω and every relation R ⊆ Mn which is ∅-de�nable in M�L, a relation

symbol from L′ which is interpreted as R in M ′. Then 1-5 hold with M ′ and L′ in place

of M and L.

Proof. Straightforward consequence of the ω-categoricity of M (using Fact 1.3) and the
de�nitions of the notions involved. �

From now on M is an ω-categorical L-structure such that (M, acl) forms a

pregeometry. Moreover, we �x a sublanguage L ⊆ L; we allow the possibili-

ties that L = L or that the vocabulary of L contains only `='.

By Lemma 2.5 the following assumption is harmless for our purposes of proving Theo-
rems 2.1 and 2.2:

Assumption 2.6 (a) For every 0 < n < ω and every relation R ⊆ Mn which is ∅-
de�nable in M�L, L has a relation symbol which is interpreted as R.
(b) For every 0 < n < ω and every relation R ⊆Mn which is ∅-de�nable in M , L has a
relation symbol which is interpreted as R.

Now we de�ne the parts of L in which we will work most of the time.

De�nition 2.7 For any k < ω let

k̂ = max
{
|aclM (a1, . . . , ak)| : a1, . . . , ak ∈M

}
.

Observe that for any ā, b̄ ∈ M , if tpM (ā) = tpM (b̄) then dimM (ā) = dimM (b̄). De�ne
inductively, for every −1 ≤ k < ω, a sublanguage Lk ⊆ L by:

L−1 = L.

When Lk is de�ned let Lk+1 ⊇ Lk be obtained from Lk by adding, for every 0 <
n ≤ k̂ + 1 and every p(x̄) ∈ Sn(Th(M)) such that dimM (ā) = k + 1 if M |= p(ā),
one (and only one) relation symbol P from L such that PM = {ā ∈M : M |= p(ā)}.

Note that Lk − L has only �nitely many relation symbols and no function or constant
symbols.
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Proposition 2.8 Let 0 < k < ω. Suppose that there are arbitrarily large �nite Lk-

structures which are atomicly k-compatible with M�Lk and atomicly k-saturated with

respect to M�Lk. If ϕ is an unnested sentence, in which at most k distinct variables

occur, and M |= ϕ, then ϕ has arbitrarily large �nite models.

Proof. Suppose that there are arbitrarily large �nite Lk-structures which are atomicly
k-compatible with M and atomicly k-saturated with respect to M . Let A′ be such an
Lk-structure. Let Lϕ ⊇ Lk be obtained from Lk by adding to (the vocabulary of) Lk

every symbol occuring in ϕ which is not already in Lk. For every unnested atomic
formula ψ(x̄) ∈ Lϕ there are atomic P1(x̄), . . . , Pn(x̄) ∈ Lk such that M |= ∀x̄

(
ψ(x̄) ↔(

P1(x̄) ∨ . . . ∨ Pn(x̄)
))
. Expand A′ to an Lϕ-structure A by interpreting each symbol

in Lϕ − Lk in such a way that for every ψ(x̄) and Pi, 1 ≤ i ≤ n, as above, A |=
∀x̄

(
ψ(x̄) ↔

(
P1(x̄)∨. . .∨Pn(x̄)

))
. For relation symbols of arity > k, their interpretations

on sequences containing more than k distinct elements can be made arbitrarily. For
function symbols of arity ≥ k, their interpretations on sequences containing more than
k − 1 distinct elements can be made arbitrarily. Since A′ is atomicly k-compatible with
M�Lk it follows that A is atomicly k-compatible with M�Lϕ. Also, A is atomicly k-
saturated with respect to M�Lϕ because, in both A and M�Lϕ, the unnested atomic
Lϕ-type of any l-tuple, l ≤ k, is determined by its restriction to Lk (by Assumption 2.6).

We will prove that if ψ is an unnested Lϕ-sentence in which at most k distinct
variables occur, then M |= ψ if and only if A |= ψ; clearly the proposition follows
from this. It is su�cient to show that for any ā ∈ A, b̄ ∈ M , if |ā| = |b̄| ≤ k and
tpua

A (ā) = tpua
M�Lϕ

(b̄) then ā and b̄ satisfy the same unnested Lϕ-formulas in which at

most k distinct variables occur; then taking ā = b̄ = () gives the desired conclusion. This
we show by induction on the complexity of formulas. We need only consider formulas in
which ∀ does not occur since `∀x' can be replaced by `¬∃x¬'.

The base case concerning unnested atomic Lϕ-formulas is trivial. The inductive step
involving the connectives is also obvious so we only treat the case involving ∃. Let
∃xψ(x, ȳ) be an Lϕ-formula in which at most k distinct variables occur and x does not
occur in ȳ, so |ȳ| < k. Suppose that ā ∈ A|ȳ|, b̄ ∈M |ȳ| and tpua

A (ā) = tpua
M�Lϕ

(b̄) = q(ȳ).
Suppose that A |= ψ(a, ā) for some a ∈ A. Let p(x, ȳ) = tpua

A (a, ā). Since A is
atomicly k-compatible with M�Lϕ, p is realized in M . By Assumption 2.6, q determines
the (complete �rst-order) type of b̄ in M , so there exists b ∈ M such that bb̄ realizes
p(x, ȳ). By the induction hypothesis we get M |= ψ(b, b̄).

Now suppose that M |= ψ(b, b̄) for some b ∈ M . Let p(x, ȳ) = tpua
M�Lϕ

(b, b̄). Since ā
realizes q and A is atomicly k-saturated with respect to M�Lϕ there exists a ∈ A such
that aā realizes p(x, ȳ). By the induction hypothesis we get A |= ψ(a, ā). �

From now on we assume that aclM coincides with aclM�L.

Observation 2.9 Since L ⊆ Lr ⊆ L, aclM�Lr is the same as aclM and as aclM�L, for
any r < ω.

By Assumption 2.6, there is, for every r < ω, an (r + 1)-ary relation symbol
Pr in L which is interpreted in M�L so that for any a1, . . . , ar, ar+1 ∈ M , M�L |=
Pr(a1, . . . , ar, ar+1) if and only if ar+1 ∈ acl(a1, . . . , ar).

De�nition 2.10 Suppose that A is a structure (�nite or in�nite) such that the language
of A includes L. Let Pr, r < ω, be the symbols from Observation 2.9. For B ⊆ A de�ne

cl(B) =
{
a ∈ A : A |= Pr(b̄, a) for some r < ω and b̄ ∈ Br

}
.
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For a sequence ā ∈ A de�ne cl(ā) = cl(rng(ā)). The meaning of `cl(ā) = ā' is `cl(ā) =
rng(ā)'. We say that B ⊆ A (or ā ∈ A) is closed if cl(B) = B (or cl(ā) = ā). For B ⊆ A
de�ne

dimcl(B) = min
{
|C| : C ⊆ B and B ⊆ cl(C)

}
.

Observe that if B ⊆ M then cl(B) = acl(B) and dim(B) = dimcl(B). Hence `closed'
and `algebraically closed' mean the same thing inM . The idea of introducing `cl' is that,
when we use it, it will imitate, in a �nite structure, the behaviour of `acl' on M .

De�nition 2.11 Let 0 ≤ r ≤ k < ω. Suppose that A is an Lr-structure. We say that
A is strongly atomicly k-compatible with M�Lr if for any ā ∈ A such that dimcl(ā) ≤ k
there is b̄ ∈M such that tpua

A (ā) = tpua
M�Lr

(b̄).

Clearly, being strongly atomicly k-compatible with M�Lr implies being atomicly k-
compatible with M�Lr.

Remark 2.12 In the proof of the next lemma it will be convenient to use the following
consequence of M satisfying the n-independence hypothesis over L, under the standing
assumptions, such that aclM coincides with aclM�L. So assume that M satis�es the n-
independence hypothesis over L. Then, by the de�nition of L−1, L0, . . . , Lk, the following
holds:
If

• E ⊆ B ⊆M�Lk where E and B are closed, 1 ≤ dimM (E) ≤ k < n, dimM (B) ≤ n,
and

• E′ is an Lk-structure which is strongly atomicly k-compatible with M�Lk and f is
an isomorphism from E′�L0 to E�L0, such that whenever E′′ ⊂ E′ is closed and
dimcl(E′′) < dimcl(E′) then the restriction of f to E′′ is an isomorphism from E′′

to E′, as Lk-structures,

then there exists a substructure C ⊆ M�Lk and an isomorphism g : B�L → C�L such
that

• gf is an isomorphism from E′ to gf(E′), as Lk-structures, and

• whenever G ⊆ B is closed and E 6⊆ G, then the restriction of g to G is an isomor-
phism from G to g(G), as Lk-structures.

From the assumption that aclM coincides with aclM�L it follows that C must be closed
in M . From the last point above above it follows that g is, in fact, an isomorphism from
B�L0 to C�L0.

Lemma 2.13 Let k < ω. Suppose that A is a �nite Lk-structure which is strongly

atomicly k-compatible withM�Lk and that A�L0 is isomorphic to a substructure ofM�L0

which is algebraically closed. If M satis�es the (|A|+ 1)-independence hypothesis over L
then A is isomorphic to a substructure of M�Lk.

Proof. Let k < ω and suppose that A is a �nite Lk-structure which is strongly atomicly
k-compatible with M�Lk. Let f : A�L0 → B ⊆ M�L0 be an isomorphism, where B
is algebraically closed (and hence closed). Since B ⊆ M we may also regard B as a
substructure of M�Lk and hence as an Lk-structure. We will show, by induction on
n, that for every n = 0, 1, . . . , k, there are a closed substructure Bn ⊆ M�Lk and an
isomorphism fn : A�L0 → Bn�L0 such that,
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(∗)n for every closed E ⊆ A with dimcl(E) ≤ n, the restriction of fn to E is an isomor-
phism from E to fn(E), as Lk-structures.

By the de�nition of L−1, L0, . . . , Lk, it follows that when a closed substructure Bk ⊆M�
Lk and an isomorphism fk : A�L0 → Bk�L0 has been found such that (∗n) holds with
n = k, then A is isomorphic to Bk and the lemma is proved.

Step n = 0. Take B0 = B, where B and B0 are now regarded as Lk-structures. Then
take f0 = f . Suppose that E ⊆ A is closed with dimcl(E) = 0. Then E = cl(∅) (where
cl is taken in A). Let ē enumerate E. Observe that, by the de�nition of L−1, L0, . . . , Lk,
for any ā ∈ M with dimM (ā) = 0 we have tpua

M�Lk
(ā) = tpua

M�L0
(ā). Since A is strongly

atomicly k-compatible with M�Lk we have tpua
A (ā) = tpua

A�L0
(ā) for any ā ∈ A such

that dimcl(ā) = 0. By the assumption that f0 (= f) is an isomorphism from A�L0

to B�L0 = B0�L0 it follows that tpua
A (ē) = tpua

A�L0
(ē) = tpua

M�L0
(f0(ē)) = tpua

M�Lk
(f0(ē)).

Therefore the restriction of f0 to E is an isomorphism from E to f0(E), as Lk-structures.

Step n + 1, where 0 ≤ n < k. Suppose that we have found a closed substructure
Bn ⊆M�Lk and an isomorphism fn : A�L0 → Bn�L0 such that, for every closed E ⊆ A
with dimcl(E) ≤ n, the restriction of fn to E is an isomorphism from E to fn(E), as
Lk-structures.

Let m be the number of (distinct) closed subsets E of A (recall that A is �nite) with
dimcl(E) = n + 1, and let E0, . . . , Em−1 enumerate all such subsets of A. Inductively
we will �nd, for i = 0, . . . ,m− 1, a closed substructure Ci ⊆M�Lk and an isomorphism
hi : A � L0 → Ci�L0 such that

(a)i for j ≤ i, the restriction of hi to Ej is an isomorphism from Ej to hj(Ej), as
Lk-structures, and

(b)i whenever G ⊆ A is closed and dimcl(G) ≤ n, then the restriction of hi to G is an
isomorphism from G to hi(G), as Lk-structures.

Clearly, when we have found Cm−1 ⊆M�Lk and an isomorphism hm−1 : A�L0 →M�L0

such that (a)i and (b)i hold with i = m−1, then Bn+1 = Cm−1 and fn+1 = hm−1 satisfy
(∗)n+1 (that is, (∗)n above with n replaced by n + 1). We �rst show how to �nd Ci+1

and hi+1 which satisfy (a)i+1 and (b)i+1 (that is, (a)i and (b)i above with i replaced by
i+1), provided that we are given Ci and hi which satisfy (a)i and (b)i. Then we explain
how to slightly modify the argument to �nd C0 and h0 which satisfy (a)i and (b)i for
i = 0.

Induction step. Suppose that 0 ≤ i < m − 1 and that we have found a closed
substructure Ci ⊆ M�Lk and an isomorphism hi : A�L0 → Ci�L0 such that (a)i

and (b)i hold. Let Fi+1 = hi(Ei+1). Since Ci is closed (in M) and
hi : A�L0 → Ci�L0 is an isomorphism and aclM coincides with aclM�L, it follows
that Fi+1 is closed (in M) and dimcl(Fi+1) = n+ 1. Since Ei+1 is strongly atom-
icly k-compatible with M�Lk (because A is), it follows from the assumption that
M satis�es the (|A|+ 1)-independence hypothesis over L, applied in the form de-
scribed in Remark 2.12, that there is a closed substructure Ci+1 ⊆ M�Lk and an
isomorphism gi+1 : Ci�L0 → Ci+1�L0 such that

• the restriction of gi+1 to Fi+1 is an isomorphism from Fi+1 to gi+1(Fi+1), as
Lk-structures, and
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• whenever G ⊆ Ci is closed and Fi+1 6⊆ G then the restriction of gi+1 to G is
an isomorphism from G to gi+1(G), as Lk-structures.

If we let hi+1 = gi+1hi then hi+1 is an isomorphism from A�L0 to C0�L0 and, since
hi(Fi+1) 6⊆ hi(Fj) if j ≤ i, it follows that (a)i+1 and (b)i+1 (that is, (a)i and (b)i

above with i replaced by i+ 1) are satis�ed.

Base case: i = 0. We argue as in the induction step, except that we use Bn and fn

instead of Ci and hi. In other words, we start by letting F0 = fn(E0). In the same
way as in the induction step we �nd a closed substructure C0 ⊆ M�Lk and an
isomorphism g0 : Bn�L0 → C0�L0 such that the two points in the induction step
hold if we replace i+ 1 by 0, Ci by Bn and Ci+1 by C0. Then, letting h0 = g0fn,
h0 is an isomorphism from A�L0 to C0�L0 and (a)i and (b)i are satis�ed for i = 0.

�

Proposition 2.14 Suppose that, for every 0 < k < ω, M satis�es the k-independence
hypothesis over L. Moreover, assume that, for every 0 < k < ω, there is a polynomial

Qk(x) such that for any n0 < ω there is n ≥ n0 and a �nite Lk-structure A such that

the following conditions are satis�ed:

(1) n ≤ |A| ≤ Qk(n).

(2) A�L0 is isomorphic to a substructure of M�L0 which is algebraically closed.

(3) A is strongly atomicly k-compatible with M�Lk.

(4) Whenever ā ∈ A, b̄, b ∈ M , tpua
A (ā) = tpua

M�Lk
(b̄), dimcl(ā) < k, p(x̄, y) =

tpua
M�Lk

(b̄, b) and p(b̄, y) is non-algebraic, then there are distinct c1, . . . , cn ∈ A
such that A |= p(ā, ci) for each 1 ≤ i ≤ n.

Then M has the �nite submodel property and is polynomially k-saturated, for every 0 <
k < ω.

Proof. By Lemma 1.8 it is su�cient to show thatM is polynomially k-saturated for every
0 < k < ω. Fix arbitrary 0 < k < ω and let Qk(x) be as in the proposition and assume
that for every n0 there is n ≥ n0 and a �nite Lk-structure A for which (1)-(4) hold. By
Assumption 2.6 and the de�nition of Lk it is su�cient to show that every A satisfying
(1)-(4) can be embedded into M�Lk, but this follows from (2), (3) and Lemma 2.13
because M satis�es the k-independence hypothesis over L for every 0 < k < ω. �

Theorems 2.1 and 2.2 follow from Proposition 2.8, Proposition 2.14 and:

Lemma 2.15 Let 0 < k < ω. Suppose that aclM�L coincides with aclM , M�L is poly-

nomially k-saturated and that M satis�es the k-independence hypothesis over L. Then

there is a polynomial Q(x) and for any n0 < ω there is n ≥ n0 and a �nite Lk-structure

A such that:

(1) n ≤ |A| ≤ Q(n).

(2) A�L0 is isomorphic to a substructure of M�L0 which is algebraically closed.

(3) A is strongly atomicly k-compatible with M�Lk and atomicly k-saturated with re-

spect to M�Lk.
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(4) Whenever ā ∈ A, b̄, b ∈ M , tpua
A (ā) = tpua

M�Lk
(b̄), dimcl(ā) < k, p(x̄, y) =

tpua
M�Lk

(b̄, b) and p(b̄, y) is non-algebraic, then there are distinct c1, . . . , cn ∈ A
such that A |= p(ā, ci) for each 1 ≤ i ≤ n.

Proof of Lemma 2.15

Fix 0 < k < ω. Assume that aclM�L coincides with aclM , M�L is polynomially

k-saturated and that M satis�es the k-independence hypothesis over L. Recall

that Assumption 2.6 is in action.

An outline of the proof goes as follows. First, we �nd a strictly increasing sequence
(nm : m < ω) of natural numbers, a polynomial Q(x) and substructures Am of M�L0

so that (1), (2) and (4) of the lemma are satis�ed. For this we use the assumption that
M�L is polynomially k-saturated. Then we show by induction on r, where r ≤ k, and a
probabilistic argument, that there exists a strictly increasing sequence (n′m : m < ω) of
natural numbers, a polynomialQr(x) and Lr-structures Bm such that Bm is an expansion
of Am, Bm is strongly atomicly k-compatible with M�Lr and (1), (2) and a condition
resembling (4) hold with Qr, Bm and n′m in place of Q, A and nm, respectively. When
we have this for r = k we put things together to get Lemma 2.15.

The next two lemmas will be used in the proof of Lemma 2.22.

Lemma 2.16 Let 0 ≤ r < k. Suppose that A is an Lr+1-structure which is strongly

atomicly k-compatible with M�Lr+1. Suppose that ā ∈ A where cl(ā) = ā and r <
dimcl(ā) ≤ k. Let p(x̄) = tpua

A (ā) and p′(x̄) = p ∩ Lr. Suppose that q(x̄) is an unnested

atomic type of M�Lr+1 such that p′ ⊂ q and let A′ be the result of changing (if necessary)
the interpretations of symbols in Lr+1 on ā so that A′ |= q(ā), but not changing the

interpretations on any other sequences of elements from A. Then A′ is strongly atomicly

k-compatible with M�Lr+1.

Proof. First we show that:

(∗) For any b̄ ∈ A′ such that cl(b̄) = b̄ and dimcl(b̄) ≤ r + 1 there is c̄ ∈ M such that
tpua

A′(b̄) = tpua
M�Lr+1

(c̄).

We may assume that dimcl(b̄) = r+1 because A�Lr = A′�Lr and if b̄ ∈ A′ and dimcl(b̄) ≤
r then tpua

A′(b̄) = tpua
A′�Lr

(b̄). If b̄ is a subsequence of ā the conclusion is clear because

A′ |= q(ā). If b̄ ∩ ā = ∅ then the conclusion also follows directly, because we did not
change the structure on any tuple which does not contain elements from ā. So suppose
that b̄ is not a subsequence of ā and that b̄ ∩ ā 6= ∅. Then dimcl(b̄ ∩ ā) ≤ r so

tpua
A′(b̄ ∩ ā) = tpua

A′�Lr
(b̄ ∩ ā) = tpua

A�Lr
(b̄ ∩ ā) = tpua

A (b̄ ∩ ā).

If b̄∩ ā ⊂ c̄ ⊆ b̄ then for any unnested atomic formula ϕ(x̄) ∈ Lr+1 A |= ϕ(c̄) if and only
if A′ |= ϕ(c̄), by the de�nition of A′. Therefore tpua

A′(b̄) = tpua
A (b̄) and since A is strongly

atomicly k-compatible with M�Lr+1 we have proved (∗).
Let c̄ = (c1, . . . , cn) ∈ (A′)n and suppose that dimcl(c̄) ≤ k. We need to show that

tpua
A′(c̄) is realized in M�Lr+1. We may assume that c̄ is closed. If r + 1 = k then

by (∗), tpua
A′(c̄) is realized in M�Lr+1. So suppose that r + 1 < k. Since A′�Lr = A�Lr

which is strongly atomicly k-compatible withM�Lr there is d̄ ∈M such that tpua
A′�Lr

(c̄) =
tpua

M�Lr
(d̄). We use the notation from Notation 1.11. By (∗), for every I ⊆ {1, . . . , n} such
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that c̄I is closed and dimcl(c̄I) = r + 1, there is ē ∈M with tpua
A′(c̄I) = tpua

M�Lr+1
(ē). Let

I1, . . . , Im be subsets of {1, . . . , n} such that rng(c̄I1), . . . , rng(c̄Im) enumerates all closed
E ⊆ {c1, . . . , cn} with dimcl(E) = r+1, without repetitions. We are assuming that r+1 <
k so, by repeated uses of the k-independence hypothesis over L (similarly as in the proof
of Lemma 2.13), we �nd ē = (e1, . . . , en) ∈ Mn such that tpua

A′�Lr
(c̄) = tpua

M�Lr
(ē) and,

for every 1 ≤ i ≤ m, tpua
A′(c̄Ii) = tpua

M�Lr+1
(ēIi). This means that tpua

A′(c̄) = tpua
M�Lr+1

(ē).
�

Lemma 2.17 If 0 ≤ r < k then any Lr-structure A, which is strongly atomicly k-
compatible withM�Lr, can be expanded to an Lr+1-structure A

′ which is strongly atomicly

k-compatible with M�Lr+1.

Proof. Let 0 ≤ r < k and suppose that A is an Lr-structure which is strongly atomicly
k-compatible with M�Lr. We get A′ from A by performing the following operation to
every closed B ⊆ A such that dimcl(B) = r + 1: Order B as b̄. By assumption, there
exists c̄ ∈M such that tpua

M�Lr
(c̄) = tpua

A (b̄). In A′ we interpret the symbols in Lr+1−Lr

on B in such a way that tpua
M�Lr+1

(c̄) = tpua
A′(b̄).

A′ is well-de�ned because, if B,C ⊆ A are closed and dimcl(B) = dimcl(C) = r + 1
and B 6= C, then dimcl(B ∩ C) ≤ r and for every ā ∈ M and unnested atomic P (x̄) ∈
Lr+1 − Lr, M |= P (ā) implies dimcl(ā) = r + 1.

If r + 1 = k then it immediately follows that A′ is strongly atomicly k-compatible
with M�Lr+1. Suppose that r + 1 < k. Let b̄ ∈ A′ with dimcl(b̄) ≤ k. We need to show
that tpua

A′(b̄) is realized in M�Lr+1. We may assume that cl(b̄) = b̄. Since A is strongly
atomicly k-compatible with M�Lr there is c̄ ∈ M such that tpua

M�Lr
(c̄) = tpua

A (b̄). As in
the proof of Lemma 2.16, we �nd, by repeated uses of the k-independence hypothesis
over L, d̄ ∈M such that tpua

A′(b̄) = tpua
M�Lr+1

(d̄). �

De�nition 2.18 Suppose that A is a structure in a language which includes L and that
A�L is isomorphic to a substructure ofM�L which is algebraically closed. Let ā, b̄, c̄ ∈ A.
We say that ā is cl-independent from b̄ over c̄ if for any a ∈ rng(ā), a ∈ cl(b̄c̄) =⇒ a ∈
cl(c̄). By the given assumptions on A and the assumption that (M, acl) (which is the
same as (M, cl)) is a pregeometry, ā is cl-independent from b̄ over c̄ if and only if b̄ is
cl-independent from ā over c̄.

We introduced cl-independence because we want to be able to talk about independence
(�induced� by aclM , which is the same as aclM�L) in a �nite structure A such that A�L
is embeddable in M�L.

De�nition 2.19 (i) If a is a real number then bac denotes the greatest integer n ≤ a.
(ii) Let 0 ≤ r ≤ k. We say that an Lr-structure A is (n, k)-saturated if the following
holds:
If k′ ≤ k, p(x̄ȳ) and q(x̄) = p�{x̄} are unnested atomic Lr-types of M�Lr such that,

(1) whenever āb̄ ∈ M realizes p ∩ L then cl(ā) = ā, cl(āb̄) = āb̄ and k′ = dimcl(āb̄) =
dimcl(ā) + 1, and

(2) A |= q(c̄),

then there are d̄1, . . . , d̄n ∈ A such that A |= p(c̄d̄i) and d̄i is cl-independent from d̄j over
c̄ whenever i 6= j.
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By induction on r, we will �rst prove �approximations� to Lemma 2.15.

Lemma 2.20 (Base case) There exist a polynomial P (x), a sequence (nm : m < ω)
of natural numbers with limm→∞ nm = ∞ and L0-structures Am such that, for every

m < ω:

(a) nm ≤ |Am| ≤ P (nm).

(b) Am�L0 is isomorphic to a substructure of M�L0 which is algebraically closed.

(c) Am is strongly atomicly k-compatible with M�L0.

(d) Am is (nm, k)-saturated.

Proof. We are assuming that M�L is polynomially k-saturated, so there exist a poly-
nomial Q(x), a sequence (lm : m < ω) with limm→∞ lm = ∞ and �nite substructures
Nm of M�L such that Nm is algebraically closed and, with Q(x), lm and Nm in place of
P (x), nm and Am, (a) holds, and

(∗) whenever ā ∈ Nm, dimM (ā) < k and p(x) ∈ SM�L
1 (ā) is non-algebraic, then there

are distinct b1, . . . , blm ∈ Nm such that M�L |= p(bi) for each i.

Let Am be the substructure of M�L0 with the same universe as Nm (so Am�L = Nm).
Then (b) and (c) hold. Without loss of generality, assume that Q(a) < Q(b) if 0 < a < b.
Let P (x) = Q

(
k̂(x + 1)

)
and nm = blm/k̂c (see De�nition 2.7 for the meaning of k̂).

Then
nm ≤ lm ≤ |Am| ≤ Q(lm) ≤ Q

(
k̂(nm + 1)

)
= P (nm),

so (a) holds.
Now we prove (d). Suppose that k′ ≤ k, p(x̄ȳ) and q(x̄) = p�{x̄} are unnested atomic

L0-types of M�L0 such that,

(1) whenever āb̄ ∈ M realizes p ∩ L then cl(ā) = ā, cl(āb̄) = āb̄ and k′ = dimcl(āb̄) =
dimcl(ā) + 1,

(2) and A |= q(c̄).

From (1) and the de�nition of L0 it follows that, whenever d̄ is such thatM |= p(c̄d̄) and
ē is a subsequence of c̄d̄ which contains at least one element from d̄, then M |= ¬R(ē)
for every symbol R which is in L0 but not in L. Let p′ = p ∩ L. It follows that
if M |= p′(c̄d̄) then M |= p(c̄d̄), so it su�ces to �nd d̄1, . . . , d̄nm ∈ Am such that
M |= p′(c̄d̄i), for i = 1, . . . , nm, and d̄i is cl-independent from d̄j over c̄ if i 6= j. Let
ȳ = (y1, . . . , yt). By (1), there is i such that if p′′(x̄yi) = p′�{x̄yi} then p′′(c̄, yi) is non-
algebraic. Without loss of generality we may assume that if p′′(x̄y1) = p′�{x̄y1} then
p′′(c̄, y1) is non-algebraic. From now on we assume this. Since M�L has elimination
of quanti�ers (by Assumption 2.6), the (unique) complete extension of p′′ to a type
in SM�L

1 (c̄) is non-algebraic. So, by (∗), there are distinct d1, . . . , dlm ∈ Am (because
Am�L = Nm) such that M�L |= p′′(c̄di) for each i. Since p′′(c̄, y1) is non-algebraic we
have d′i /∈ cl(c̄) for each i and since p′′ is an unnested atomic type we get Am |= p′′(c̄di)
for each i. By the de�nition of k̂ and the choice of nm, there is a subsequence of (distinct)
elements d′1, . . . , d

′
nm

of the sequence d1, . . . , dlm such that d′i is cl-independent from d′j
over c̄ whenever i 6= j.

From the assumption thatM is ω-categorical it follows (using characterization (2) in
Fact 1.3) that M�L is ω-categorical and hence (by characterization (4) in Fact 1.3 and
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Assumption 2.6), for every 0 < n < ω, every type r(z̄) ∈ Sn(Th(M�L)) is isolated by an
unnested atomic formula in r(z̄). Recall that ȳ = (y1, . . . , yt) and p′′(x̄y1) = p′�{x̄y1}.
Since the complete type of Th(M�L) which extends p′′(x̄y1) is isolated by an unnested
atomic L-formula in p′′ there are d̄1, . . . , d̄nm ∈ M such that d′i ∈ rng(d̄i) and M�L |=
p′(c̄d̄i) for i = 1, . . . , nm. By its de�nition, Am is an algebraically closed substructure
of M�L0, so in particular Am is algebraically closed in M�L (by the assumption that
aclM�L coincides with aclM ). As d′i ∈ Am it follows from (1) that d̄i ∈ Am for each i.

Suppose for a contradiction that d̄i is not cl-independent from d̄j over c̄ for some i 6= j.
Then there is d ∈ rng(d̄i) such that d ∈ cl(c̄d̄j)− cl(c̄). By (1), dimcl(c̄d̄i) = dimcl(c̄) + 1
and since d /∈ cl(c̄) we must have rng(d̄i) ⊆ cl(c̄d) and hence rng(d̄i) ⊆ cl(c̄d̄j). We have
already noted that d′i, d

′
j /∈ cl(c̄) (because p′′(c̄, y1) is non-algebraic) so it follows from

(1) that cl(c̄d′j) = cl(c̄d̄j) and hence d′i ∈ rng(d̄i) ⊆ cl(c̄d′j). But this contradicts that d
′
i

is cl-independent from d′j over c̄. �

De�nition 2.21 For any 0 ≤ r < k and �nite Lr-structure A which is strongly atomicly
k-compatible withM�Lr, let Sr+1(A) be the set of Lr+1-structuresB such thatB�Lr = A
and B is strongly atomicly k-compatible with M�Lr+1. We consider each Sr+1(A) as a
probability space by giving it the uniform probability measure. In other words, for any
X ⊆ Sr+1(A) and B ∈ Sr+1(A), the probability that B ∈ X is |X|/|Sr+1(A)|.

Lemma 2.22 (Induction step) Let r < k. Suppose that there is a polynomial P (x), a
sequence (nm : m < ω) of natural numbers with limm→∞ nm = ∞ and Lr-structures Am

such that, for every m < ω:

(a) nm ≤ |Am| ≤ P (nm).

(b) Am�L0 is isomorphic to a substructrure of M�L0 which is algebraically closed.

(c) Am is strongly atomicly k-compatible with M�Lr.

(d) Am is (nm, k)-saturated.

Then there is a polymial Q(x), a sequence (n′m : m < ω) of natural numbers with

limm→∞ n′m = ∞ and Lr+1-structures Bm such that, for every m < ω, (a), (b), (c)

and (d) hold if we replace P , nm, Am and r with Q, n′m, Bm and r + 1, respectively.
Moreover, the probability that B ∈ Sr+1(Am) is (n′m, k)-saturated approaches 1 as m
approaches ∞.

Proof. Suppose that r < k and that P (x), nm and Am satisfy the assumptions of the
lemma. We may, without loss of generality, assume that if a, b are real numbers and
0 < a < b then P (a) < P (b). De�ne n′m = b√nmc and Q(x) = P

(
(x+ 1)2

)
.

By Lemma 2.17, Sr+1(Am) 6= ∅ for every m. Observe that for every m and every
B ∈ Sr+1(Am) we have

n′m ≤ nm ≤ |B| ≤ P (nm) ≤ P
(
(b
√
nmc+ 1)2

)
= Q(n′m).

By the de�nition of Sr+1(Am), every B ∈ Sr+1(Am) is strongly atomicly k-compatible
with M�Lr+1 and B�L0 = Am�L0. Hence it is su�cient to prove that the probability
that B ∈ Sr+1(Am) is (n′m, k)-saturated approaches 1 as m approaches ∞.

Fix arbitrary m and let B ∈ Sr+1(Am). We will calculate the probability that B is
not (n′m, k)-saturated with respect to M�Lr+1. Let k

′ ≤ k and suppose that p(x̄ȳ) and
q(x̄) = p�{x̄} are unnested atomic Lr+1-types of M�Lr+1 such that whenever āb̄ ∈ M
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realizes p ∩ L then cl(ā) = ā, cl(āb̄) = āb̄ and k′ = dimcl(āb̄) = dimcl(ā) + 1. We may,
without loss of generality, assume that |x̄ȳ| ≤ k̂ (see De�nition 2.7 for meaning of k̂).

Suppose that c̄ ∈ B realizes q(x̄). Let q0 = q ∩ Lr and p0 = p ∩ Lr. Then B�Lr |=
q0(c̄). Since B�Lr = Am is (nm, k)-saturated with respect to M�Lr there are distinct
d̄1, . . . , d̄nm ∈ B such that B�Lr |= p0(c̄, d̄i) and d̄i and d̄j are cl-independent over c̄ if
i 6= j.

Let Φ be the set of all unnested atomic Lr+1-types of M�Lr+1 in some �xed set of k̂
distinct variables. By Lemma 2.16, for any 1 ≤ i ≤ nm the probability that B |= p(c̄d̄i)
(that is, the probability that B ∈ {C ∈ Sr+1(Am) : C |= p(c̄, d̄i)}) is at least 1/|Φ|. Fix
an arbitrary natural number s such that 0 ≤ s < n′m and recall that n′m = b√nmc. Since
d̄i is cl-independent from d̄j over c̄ if i 6= j, it follows (by Lemma 2.16 again) that the
probability that there is no d̄i such that sn′m < i ≤ (s + 1)n′m and B |= p(c̄d̄i) is less
than or equal to ( |Φ| − 1

|Φ|

)n′
m
.

Since |B| ≤ Q(n′m) there are at most k · |Φ|2 ·Q(n′m)k̂ ways in which we can choose k′,
q, p and c̄ as above. Therefore the probability that there are k′, q, p and c̄ as above, but
no d̄i such that sn′m < i ≤ (s+ 1)n′m and B |= p(c̄d̄i), is less than or equal to

f(m) = k · |Φ|2 ·Q(n′m)k̂ ·
( |Φ| − 1

|Φ|

)n′
m
.

Observe that if B is not (n′m, k)-saturated with respect to M�Lr+1 then there will exist
k′, q, p, c̄, as above, and d̄1, . . . , d̄nm ∈ B, mutually cl-independent over c̄, such that
• if p0 = p ∩ Lr then B�Lr |= p0(c̄d̄i) for each i, but
• for some 0 ≤ s < n′m, there is no i such that sn′m < i ≤ (s+ 1)n′m and B |= p(c̄d̄i).
Hence the probability that B is not (n′m, k)-saturated with respect toM�Lr+1 is at most

f(m). Since k · |Φ|2 ·Q(n′m)k̂ is a polynomial in n′m and limm→∞ n′m = ∞, it follows that
limm→∞ f(m) = 0. Therefore the probability that B ∈ Sr+1(Am) is (n′m, k)-saturated
approaches 1 as m→∞. �

Now we can prove:

Lemma 2.15 Let 0 < k < ω. Suppose that aclM�L coincides with aclM , M�L is poly-

nomially k-saturated and that M satis�es the k-independence hypothesis over L. Then

there is a polynomial Q(x) and for any n0 < ω there is n ≥ n0 and a �nite Lk-structure

A such that:

(1) n ≤ |A| ≤ Q(n).

(2) A�L0 is isomorphic to a substructure of M�L0 which is algebraically closed.

(3) A is strongly atomicly k-compatible with M�Lk and atomicly k-saturated with re-

spect to M�Lk.

(4) Whenever ā ∈ A, b̄, c ∈ M , tpua
A (ā) = tpua

M�Lk
(b̄), dimcl(ā) < k, p(x̄, y) =

tpua
M�Lk

(b̄, c) and p(b̄, y) is non-algebraic, then there are distinct c1, . . . , cn ∈ A
such that A |= p(ā, ci) for each 1 ≤ i ≤ n.

Proof. By Lemma 2.20, Lemma 2.22 and induction, there are a polynomial Q(x), a
sequence (nm : m < ω) of natural numbers with limm→∞ nm = ∞ and Lk-structures Am

such that, for every m < ω:
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(a) nm ≤ |Am| ≤ Q(nm).

(b) Am�L0 is isomorphic to a substructrure of M�L0 which is algebraically closed.

(c) Am is strongly atomicly k-compatible with M�Lk.

(d) Am is (nm, k)-saturated.

It is su�cient to show that (1)-(4) are true for each Am; and in the case of (4), n is
replaced by nm. We see that (a), (b), (c) correspond to (1), (2) and the �rst part of (3).
The proof of the second part of (3) will use (4), so we prove (4) �rst.

Suppose that ā ∈ Am, b̄, c ∈ M , tpua
A (ā) = tpua

M�Lk
(b̄), dimcl(ā) < k, p(x̄, y) =

tpua
M�Lk

(b̄, c) and p(b̄, y) is non-algebraic. We may assume that ā and b̄ are closed. Let

b̄c̄ enumerate cl(b̄c), so we have c ∈ rng(c̄), and let p′(x̄, ȳ) = tpua
M�Lk

(b̄, c̄). Since Am is

(nm, k)-saturated there are d̄1, . . . , d̄nm ∈ Am such that Am |= p′(ād̄i) for every i, and
d̄i is cl-independent from d̄j over ā if i 6= j. Then, for every i, there is ei ∈ rng(d̄i) such
that Am |= p(ā, ei), and ei 6= ej if i 6= j. So (4) is proved.

It remains to prove the second part of (3) for Am; i.e. that Am is atomicly k-saturated
with respect to M�Lk. Let l < k and let q(x1, . . . , xl) and p(x1, . . . , xl+1) be unnested
atomic types of M�Lk such that q ⊆ p and suppose that ā = (a1, . . . , al) ∈ (Am)l is
such that Am |= q(ā). By Assumption 2.6, the assumption that M is ω-categorical
(using characterization (4) of Fact 1.3) and the de�nition of Lk, it follows that the
unique complete l-type of Th(M�Lk) which extends q is isolated by a formula in q, and
similarly for p. So whenever M�Lk |= q(b̄) there is b ∈ M such that M�Lk |= p(b̄b).
And if p(b̄, xl+1) is algebraic for some b̄ ∈M l such that M�Lk |= q(b̄), then p(b̄, xl+1) is
algebraic for every b̄ ∈M l such that M�Lk |= q(b̄).

Suppose that p(b̄, xl+1) is algebraic for some (and hence every) b̄ ∈ M l such that
M�Lk |= q(b̄). Then,

(∗) whenever b̄ ∈M l andM�Lk |= q(b̄), there exists b ∈ cl(b̄) such thatM�Lk |= p(b̄b).

If no a ∈ Am exists such that Am |= p(āa) then, letting ā′ = cl(ā), it follows from (∗)
that there exists no b̄′ ∈ M such that tpua

Am
(ā′) = tpua

M�Lk
(b̄′), and, as Am |= q(ā) and

dimcl(ā′) < k, we have a contradiction to (c). Hence, if p(b̄, xl+1) is algebraic for some
b̄ ∈M l such that M�Lk |= q(b̄), then there exists a ∈ Am such that Am |= p(āa).

Now suppose that p(b̄, xl+1) is non-algebraic for every b̄ ∈M l such thatM�Lk |= q(b̄).
Let b̄ and b be such that M�Lk |= p(b̄b). Then tpua

Am
(ā) = tpua

M�Lk
(b̄), dimcl(ā) < k,

p(x1, . . . , xl+1) = tpua
M�Lk

(b̄b) and p(b̄, xl+1) is non-algebraic, so by (4), there is a ∈ Am

such that A |= p(āa). Now we have proved that Am is atomicly k-saturated with respect
to M�Lk, so (3) is proved. �

3 Examples

We give examples of structures M which have, or do not have, the properties of being
polynomially k-saturated or of having a sublanguage L such that aclM and aclM�L co-
incide and M satis�es the k-independence hypothesis over L. The second example in
Section 3.3 shows the necessity of the assumptions in Theorem 2.2. All examples will
be simple with SU-rank 1, so `acl' is a closure operator on these structures. We start by
looking at examples with trivial algebraic closure. Then we show that all in�nite vector
spaces, projective spaces and a�ne spaces over a �nite �eld are polynomially k-saturated
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for every k < ω. Finally we study two non-Lie coordinatizable structures which have
non-trivial algebraic closure operator.

In this section we will frequently use the Fraissé construction of a structure as a
so-called Fraissé limit of a class of �nite structures. The reader is refered to [9] for
de�nitions and results (in particular Theorems 7.1.2 and 7.4.1 in [9]).

3.1 Simple structures with trivial algebraic closure

We say that a structure M has trivial (also called degenerate) algebraic closure if for any
A ⊆ M , acl(A) =

⋃
a∈A acl(a). The general case of an ω-categorical simple structure

with SU-rank 1 and trivial algebraic closure was treated as the `introductory example'
at the end of Section 1. We now look at a couple of particular cases.

Random structure and random (bipartite) graph: It is well-known that the random
structure (in a �nite relational language), the random graph (see [9]) and the random
bipartite graph (see [11], end of section 4) are ω-categorical and simple with SU-rank
1 and have elimination of quanti�ers. This follows from the construction as a Fraissé
limit of the particular class of �nite structures used in each case. It also follows that
each of these examples satis�es the k-independence hypothesis over the language L with
vocabulary {=}, for every k < ω. Also, if M is any one of these structures then, for any
A ⊆ M , aclM (A) = A. Hence aclM and aclM�L coincide, and M�L, which is just an
in�nite set, is polynomially k-saturated for every 0 < k < ω. Theorem 2.2 implies that
M is polynomially k-saturated for every 0 < k < ω

Random pyramid-free (3)-hypergraph: In contrast to the random graph, this ex-
ample will not satisfy the 4-independence hypothesis over the language with vocabulary
{=}. Let the vocabulary of L be {=, R} where R is a ternary relation symbol. We call
an L-structure M a (3)-hypergraph, or just hypergraph, if (a, b, c) ∈ RM implies that a,
b, c are distinct and that every permutation of (a, b, c) belongs to RM . A hypergraph
M is pyramid-free if there are no distinct a1, . . . , a4 ∈ M such that for any distinct
i, j, k ∈ {1, 2, 3, 4}, M |= R(ai, aj , ak). Let K be the class of all �nite pyramid-free
hypergraphs. It is easy to see that K has the hereditary property, the the joint embed-
ding property and the amalgamation property, so the Fraissé limit of K exists and is
ω-categorical with elimination of quanti�ers. Let M be the Fraissé limit of K. First we
show that M is simple of SU-rank 1 and has trivial algebraic closure. That algebraic
closure is trivial is a consequence of quanti�er elimination and that every member of K
is embeddable in M . To show that M is simple of SU-rank 1, it is (as in the case of
the random graph) su�cient to show that tp(ā/B) divides over A ⊆ B if and only if
a ∈ B − A for some a ∈ rng(ā). This follows if we can show that for any quanti�er free
ϕ(x̄, ȳ) which does not express xi = yj for any xi ∈ rng(x̄) and yj ∈ rng(ȳ), any n < ω
and b̄i ∈ M , i ≤ n, if M |=

∧
i≤n ∃x̄ϕ(x̄, b̄i) then M |= ∃x̄

( ∧
i≤n ϕ(x̄, b̄i)

)
. Since M is

the Fraissé limit of K, this is a consequence of the following:

Observation : Suppose that A0, A1, A2 are pyramid-free hypergraphs such that:
(a) For i = 1, 2, the substructure of Ai with universe Ai ∩ A0 is identical to the sub-
structure of A0 with universe Ai ∩A0, and
(b) the substructure of A1 with universe A1 −A0 is identical to the substructure of A2

with universe A2 −A0.
Then the hypergraph B with universe A0 ∪A1 ( = A0 ∪A2), where (a, b, c) ∈ RB if and

21



only if (a, b, c) ∈ RA0 or (a, b, c) ∈ RA1 or (a, b, c) ∈ RA2 , is pyramid-free.

If one assumes that the observation is false then one easily gets a contradiction to the
assumption that Ai is pyramid-free for i = 1, 2, 3, or to the de�nition of B.

If we let L be the language with vocabulary {=} then, in contrast to the case of
the random graph, one easily checks that since M is pyramid-free it does not satisfy the
4-independence hypothesis over L. It is not known to the author whether any sentence
which is true in M must be true in a �nite hypergraph or whether M is polynomially
k-saturated for k ≥ 4. This question has a similar taste as the the better known problem
[2] whether any sentence which is true in the random (also called `generic') triangle-free
graph, which is the Fraissé limit of the class of all �nite triangle-free graphs, must be
true in a �nite triangle-free graph.

3.2 Vector spaces, projective spaces and a�ne spaces

A vector space V over a �nite �eld K may be regarded as a �rst-order structure M =
(V,+, h ∈ K, 0), where V is the universe of M , + is a binary function symbol which
is interpreted as vector addition, h is a unary function symbol interpreted as scalar
multiplication by h (i.e. hM (a) = ha) for every h ∈ K and a ∈ V , and the constant
symbol 0 is interpreted as the zero vector. It is well-known that an in�nite vector space
over a �nite �eld is ω-categorical and ω-stable, so in particular it is Lie coordinatizable
(see [5] for a de�nition). Any Lie coordinatizable structure has the �nite submodel
property [5]. In an in�nite vector space over a �nite �eld, linear span coincides with
algebraic closure. Moreover, any countable in�nite vector space over a �nite �eld is
isomorphic to a Fraissé limit of a class of �nite structures and therefore any in�nite
(not necessarily countable) vector space over a �nite �eld has elimination of quanti�ers.
In this section we show that any in�nite vector space, projective space or a�ne space
(de�ned below) over a �nite �eld is polynomially k-saturated for any 0 < k < ω.

De�nition 3.1 Suppose that M is an ω-categorical structure such that (M, acl) is a
pregeometry. Then acl(x) = acl(y) is a ∅-de�nable equivalence relation on M . For any
a ∈ M we de�ne [a] to be the equivalence class of a with respect to this equivalence
relation. Also de�ne [M ] = {[a] : a ∈ M}. Observe that [M ] is a sort of M eq. We
will regard [M ] as a structure which, for every n and every ∅-de�nable (in M eq) relation
R ⊆ [M ]n, has a relation symbol which is interpreted asR; the vocabulary of the language
of [M ] contains no other symbols.

Lemma 3.2 Suppose that M is an ω-categorical structure such that (M, acl) is a prege-

ometry. For any k < ω, M is polynomially k-saturated if and only if [M ] is polynomially

k-saturated.

Proof. This is a straightforward consequence of the de�nition of being polynomially k-
saturated, because (by ω-categoricity) there ism < ω such that for any a ∈M , |[a]| ≤ m,
and for any n and a1, . . . , an ∈M , dim(a1, . . . , an) = dim([a1], . . . , [an]). �

De�nition 3.3 (i) By a projective space over a �nite �eld K we mean a structure of the
form [M ] where M is a vector space over K.
(ii) An a�ne space MA over a �nite �eld K is a structure obtained from an in�nite
vector space M over K and a set A (disjoint from the universe of M) which satis�es:
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(a) The universe of MA is V ∪A where V is the vector space which is the universe of M
and the structure on V is that of M (i.e. a vector space over K).
(b) The vector space V , as a group, acts regularly on A; i.e. for any a, b ∈ A, there is a
unique v ∈ V with va = b. This action V × A → A is represented in MA by a relation
symbol which is interpreted as its graph.
(c) There is no other structure on MA.
Note that A is a ∅-de�nable subset of MA.

Proposition 3.4 Any in�nite vector space, projective space or a�ne space over a �nite

�eld is polynomially k-saturated for every 0 < k < ω.

The above proposition is a consequence of Lemmas 3.2, 3.5 and 3.7.

Lemma 3.5 Any in�nite vector space over a �nite �eld is polynomially k-saturated for

every 0 < k < ω.

Proof. Suppose that M = (V,+, h ∈ K, 0) where V is in�nite and K is a �nite �eld.
Fix arbitrary 0 < k < ω. We will show that M is polynomially k-saturated. Let
P (x) = |K|k · (x+ 1). Let n0 < ω be arbitrary.

Choose m such that |K|m−k > n0 and let n = |K|m−k−1. Let V ′ ⊆ V be a subspace
of dimension m and let A be the substructure of M with universe V ′. Now we have

n = |K|m−k − 1 ≤ |K|m = |A| = |K|k · |K|m−k = |K|k · (n+ 1) = P (n),

so we have veri�ed part (1) of the de�nition of being polynomially k-saturated. We
mentioned in the beginning of this section that algebraic closure in M coincides with
linear span, so A is algebraically closed in M . Therefore part (2) of De�nition 1.7 holds.

In order to complete the proof we need to show that if ā ∈ A, dimM (ā) < k (where
the model theoretic `dimM ' in this case happens to coincide with the `dimension' in
the usual sense for vector spaces) and p(x̄, y) is a quanti�er-free type of M (recall that
M has elimination of quanti�ers) such that p(ā, y) is non-algebraic, then there are dis-
tinct b1, . . . , bn ∈ A such that M |= p(ā, bi) for 1 ≤ i ≤ n. We may assume that ā is
algebraically closed, so W = rng(ā) is a subspace of V ′. Since p(ā, y) is assumed to
be non-algebraic, any realization of p(ā, y) must be outside of W . As M has elimina-
tion of quanti�ers, any b ∈ V −W will realize p(b̄, y), so it is su�cient to �nd distinct
b1, . . . , bn ∈ V ′−W . We have |W | ≤ |K|k and |V ′| = |K|m = |K|k ·|K|m−k = |K|k ·(n+1)
by the choice of n, so |V ′ −W | ≥ n and we are done. �

Lemma 3.6 Let MA be an a�ne space over a �nite �eld and let V be the vector space

of M which acts on A. Let v̄ = (v1, . . . , vn) be an enumeration of a subspace of V and

let a ∈ A and ā = (v1a, . . . , vna). Then tpMA(v̄ā) is determined by tpM (v̄).

Proof. We may assume that MA is countable because otherwise we could just consider
a countable elementary substructure of M instead.

It is su�cient to show that:

If for i = 1, 2,
(1) v̄i = (v1

i , . . . , v
n
i ) enumerates a subspace of V ,

(2) ai ∈ A, āi = (v1
i ai, . . . , v

n
i ai), and

(3) tpM (v̄1) = tpM (v̄2),
then there is an automorphism of MA which maps v̄1ā1 onto v̄2ā2.
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First we show that for any a1, a2 ∈ A there is an automorphism f of MA which �xes V
pointwise and sends a1 to a2. Let a1, a2 ∈ A. We de�ne f in the following way. Since V
acts regularly on A there is a unique v ∈ V such that va1 = a2. Let f restricted to V
be the identity and, for every a ∈ A, let f(a) = va. It follows that f(a1) = a2. Also, for
any a, a′ ∈ A and w ∈ V we have wa = a′ ⇐⇒ v(wa) = va′ ⇐⇒ (v + w)a = va′ ⇐⇒
(w + v)a = va′ ⇐⇒ w(va) = va′ ⇐⇒ f(w)f(a) = f(a′), so f is an automorphism of
MA.

For i = 1, 2 let v̄i, ai, and āi satisfy (1)-(3) above. An a�ne space over a �nite �eld
is an ω-categorical structure (by [5], Lemma 2.3.19, for instance) so MA is ω-categorical
and hence ω-homogeneous (see [9], for example). Since MA is assumed to be countable,
a standard back and forth argument gives an automorphism g of MA which maps v̄1 to
v̄2. As shown above, there is an automorphism f of MA which �xes V pointwise and
maps g(a1) to a2. Then fg maps v̄1 to v̄2 and a1 to a2; it follows that fg maps v̄1ā1 to
v̄2ā2. �

Corollary 3.7 If MA is an a�ne space over a �nite �eld then MA is polynomially

k-saturated for every 0 < k < ω.

Proof. Let MA be an a�ne space over a �nite �eld. Then M is an in�nite vector space
(over the same �eld) which, by Lemma 3.5, is polynomially k-saturated, where 0 < k < ω
is arbitrary. Suppose that B ⊂M is an algebraically closed �nite substructure such that

(∗) for any b̄ ∈ B with dimM (b̄) < k and any non-algebraic p(x) ∈ SM
1 (b̄) there are

distinct c1, . . . , cn such that M |= p(ci), for i = 1, . . . , n.

Let a be an element of A and let BA = B ∪ {va : v is a vector in B}. By Lemma 3.6,
(∗) holds with BA and MA in place of B and M . Since |BA| ≤ 2|B|, it follows that MA

is polynomially k-saturated. �

Problem 3.8 In�nite vector spaces over a �nite �eld are special cases of the structures
called `linear geometries' in [5]. Is it the case that if M is any linear geometry in
the sense of [5], then M is polynomially k-saturated for every 0 < k < ω? If the
answer is `yes' then, by the de�nition of being Lie coordinatizable, modi�cations of
results here and Corollary 2.5 in [3] (which corrects Lemma 2.4.8 in [5]), it follows that
any Lie coordinatizable structure with SU-rank 1 is polynomially k-saturated for every
0 < k < ω. The problem that the author could not overcome was dealing (successfully)
with the quadratic forms that are present in other linear geometries than pure vector
spaces; such quadratic forms posed a problem since they may be non-trivial but trivial
on some (perhaps large) subspaces.

3.3 Non-Lie coordinatizable structures with non-trivial algebraic clo-

sure

The random bipartite graph is not smoothly approximable (which is explained in [11],
end of section 4) and hence not Lie coordinatizable [5] but has trivial algebraic closure as
mentioned in Section 3.1. We now give two examples of ω-categorical simple structures
with SU-rank 1 which are not Lie coordinatizable and have non-trivial algebraic closure.
In the case of the �rst, �well-behaved� example M , there is a sublanguage L of the lan-
guage of M , such that aclM�L and aclM coincide, M�L is polynomially k-saturated and
M satis�es the k-independence hypothesis over L, for every k < ω; by Theorem 2.2, M
has the �nite submodel property and is polynomially k-saturated for every k < ω. In the
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case of the second, �badly behaved� example, which does not have the �nite submodel
property, there is no such sublanguage L.

A �well-behaved� example: Let K be the class of all �nite structures
N = (V, P,E,+, f0, f1, 0) such that:
1. V , the universe of N , is a vector space over the �eld F = {0, 1}.
2. P is a unary relation.
3. E is a binary relation symbol interpreted as an irre�exive and symmetric relation.
4. + is a binary function symbol interpreted as vector addition and the constant symbol
0 is interpreted as the zero vector.
5. fi(v) = i · v, for i = 0, 1 and any v ∈ V (so fi represents scalar multiplication).
6. N |= ∀xy

(
E(x, y) →

[
E(y, x) ∧

[ (
P (x) ∧ ¬P (y)

)
∨

(
¬P (x) ∧ P (y)

) ] ] )
.

7. N |= P (0).
It is easy to verify that K is nonempty and has the hereditary property, the joint em-
bedding property and the amalgamation property and is uniformly locally �nite. Hence
the Fraissé limit of K, which we call M , exists and is ω-categorical and has elimination
of quanti�ers. Since the reduct of M to the language with vocabulary {=, P, E} is the
random bipartite graph, M is not Lie coordinatizable (by [5], Theorem 7, or see the
example at the end of Section 4 in [11]).

Being a Fraissé limit, M has the property that for any ā ∈ M , tp(ā) is determined
by the isomorphism type of the �nite substructure of M that ā generates, that is, by the
subspace spanned by ā. It follows that for A ⊆M and a ∈M , a ∈ aclM (A) if and only
if a belongs to the subspace spanned by A. Also, for any ā and A ⊆ B taken from any
model of Th(M), tp(ā/B) divides over A if and only if there is a ∈ rng(ā) such that a
belongs to the subspace spanned by B but not to the subspace spanned by A. It follows
that M is simple and has SU-rank 1.

Let L ⊆ L be the sublanguage which contains all symbols of L except P and E. Then
M�L is a vector space over a �nite �eld so it is a linear geometry ([5], De�nition 2.1.4)
and by Lemma 3.5, M�L is polynomially k-saturated, for every k < ω. Since aclM is
linear span, aclM and aclM�L coincide. From the facts that M has elimination of quan-
ti�ers an every member of K is embeddable in M (since M is the Fraissé limit of K)
it follows that M satis�es the k-independence hypothesis over L, for every k < ω. By
Theorem 2.2, M has the �nite submodel property and is polynomially k-saturated for
every k < ω.

A �badly behaved� example: This example was �rst given in [10] which is not pub-
lished, but also occurs as Example 6.2.27 in [13]. It is obtained by an amalgamation
construction with a predimension. We will not repeat all the details of the construc-
tion or the proofs, but only collect the facts which will be of use here. Let the lan-
guage L contain only a ternary relation symbol R (and =). For any L-structure M
let R(M) =

{
(a, b, c) : a, b, c ∈ M, M |= R(a, b, c)

}
. Let K be the class of all �nite

L-structures A such that A |= ∀xyz
(
R(x, y, z) → (x 6= y ∧ x 6= z ∧ y 6= z)

)
. We consider

∅ as a structure so ∅ ∈ K. For any A ∈ K let δ(A) = |A| − |R(A)| and for any substruc-
ture A ⊆ B ∈ K de�ne A ≤ B if and only if δ(C) > δ(A) whenever A ⊂ C ⊆ B. Let
f : R≥0 → R≥0 be de�ned by

f(x) =

{
x if 0 ≤ x < 1,
log3(x) + 1 if 1 ≤ x.
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Let
Kf =

{
A ∈ K : δ(B) ≥ f(|B|) for any B ⊆ A

}
.

The argument in Example 6.2.27 in [13] now tells us that there exists a so-called generic
model for Kf , which we denote byMf , which is ω-categorical and simple; with the given
set-up we can also get the same result by applying Theorems 3.5 and 3.6 in [7]. From
parts of the construction and proof which we don't give here, it follows that:
1. Every �nite substructure of Mf belongs to Kf and every A ∈ Kf is isomorphic to a
substructure of Mf .
2. For any �nite A ⊆Mf , A is algebraically closed if and only if whenever A ⊂ B ⊆Mf

and B is �nite then δ(B) > δ(A).
3. For every ā ∈Mf , tp(ā) is determined by the isomorphism type of acl(ā).
Hence, all elements of Mf have the same type and acl(∅) = ∅ and acl(a) = {a} for any
a ∈Mf . It also follows that given any two distinct a, b ∈Mf , exactly one of the following
two cases holds:
(i) acl(a, b) = {a, b}, that is, there is no third element c such that some permutation of
(a, b, c) belongs to R(Mf ).
(ii) For some c ∈ Mf , acl(a, b) = {a, b, c}, in which case some permutation of (a, b, c)
belongs to R(Mf ).

The fact that for any a ∈Mf and algebraically closed A ⊆Mf , δ(acl({a}∪A))−δ(A)
is either 0 or 1 (because either a ∈ A in which case we get 0, or a /∈ A in which case
the assumption that A is closed implies that there can be no b ∈ A and c ∈ Mf such
that some permutation of (a, b, c) belongs to R(M), so we get 1) implies that Mf has
SU-rank 1.

Now we show that Mf does not have the �nite submodel property, which implies
that Mf is not Lie coordinatizable. Let ϕ be the sentence

∃x(x = x) ∧ ∀x∃yz
(
y 6= z ∧ ∃uR(x, y, u) ∧ ∃uR(x, z, u)

)
.

Then Mf |= ϕ. If A is �nite and A |= ϕ then |R(A)| ≥ 2|A| so δ(A) = |A| − |R(A)| ≤
|A| − 2|A| < 0 and therefore A can not be a substructure of Mf (or of any model
of Th(Mf )). For a more general statement concerning the �nite submodel property
and structures obtained by amalgamation constructions with predimension see the last
section of [6].

Hence, for any L ⊆ L, either aclMf
does not coincide with aclMf �L or there must

exist a k such that one of the other premises of Theorem 2.2 fails for this k. We give a
direct argument which shows this, or more precisely, we claim that:
For no L ⊆ L is it the case that the following three conditions are satis�ed:

• aclMf
and aclMf �L coincides,

• Mf �L is polynomially 2-saturated,
• Mf satis�es the 4-independence hypothesis over L.

There are two cases to consider; the �rst when the vocabulary of L contains only =,
the second when L = L. Suppose that the vocabulary of L contains only =, so the
structure Mf �L is just an in�nite set, which has trivial algebraic closure. Mf does not
have trivial algebraic closure so the �rst point fails. Also, the third point fails and it
might be instructive to see why.

By calculation, the structure A with universe {a1, . . . , a6} where

R(A) = {(a1, a2, a4), (a2, a3, a5), (a3, a1, a6)}

belongs to Kf . By 1, we may assume A ⊂ Mf . By 2, A is algebraically closed and,
by (i) and (ii), dim(A) = 3. By 3, the formula R(x4, x5, x6) isolates a complete type
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p(x4, x5, x6). Our conclusions so far together with (i), (ii) imply that {a4, a5, a6} is alge-
braically closed and has dimension 3. Trivially, we also have p ∩ L = tpMf �L(a4, a5, a6).
IfMf satis�es the 4-independence hypothesis over L, then there are b1, . . . , b6 ∈Mf such
that

tp(a1, a2, a4) = tp(b1, b2, b4)
tp(a2, a3, a5) = tp(b2, b3, b5)
tp(a3, a1, a6) = tp(b3, b1, b6)
p(x4, x5, x6) = tp(b4, b5, b6).

Letting B be the substructure with universe {b1, . . . , b6} we get δ(B) = 6 − 4 = 2 <
log3(6) + 1 = f(|B|) so B /∈ Kf which contradicts 1.

Now suppose that L = L, so we haveMf �L = Mf . Let p(x, y) = tp(a, b) where a 6= b
and Mf |= ∃xR(a, b, x). Note that for every a′ ∈ Mf , p(a′, y) is a non-algebraic type.
Suppose for a contradiction that Mf is polynomially 2-saturated. Then there exists a
�nite substructure A ⊆ Mf which is algebraically closed and for any a′ ∈ A there are
distinct b1, b2 ∈ A such that Mf |= p(a′, bi) for i = 1, 2. Since A is algebraically closed,
(i) and (ii) imply that A |= ϕ, where ϕ is the sentence previously de�ned, which is a
contradiction.
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