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ABSTRACT

Djordjević, M., 2000: Stability theory in finite variable logic. Uppsala Dissertations in
Mathematics 16. 60 pp. Uppsala. ISBN 91-506-1417-7

This thesis studies finite variable theories. To be more precise, complete Ln-theories,
where Ln is the set of formulas in a first order language L in which at most n distinct
variables occur. These need not be complete in the usual first order sense. We use ideas
from infinite model theory, in particular stability theory, to define a class of complete
Ln-theories which, as we show, has a tractable model theory, also with respect to finite
models.

The three main properties of such theories that we consider are (1) a finite bound
on the number of Ln-types, (2) an amalgamation property and (3) stability. We prove
that any complete Ln-theory with an infinite model and with properties (1),(2) and (3)
has an infinite model M which is ω-categorical and ω-stable from which it follows that it
has arbitrarily large finite models. In fact, M almost admits elimination of quantifiers,
in the sense that there exists an expansion of M by finitely many new n-ary relation
symbols which admits elimination of quantifiers. This together with the stability of M
allows us to obtain finer information about complete Ln-theories with properties (1)-(3).

We show that there exists a recursive function f : ω2 → ω such that every theory
T as above has a finite model of size at most f(n, |Snn(T )|), where Snn(T ) is the set of
Ln-types of T in n free variables.

Then we derive some results about forking in stable structures where there exists
n < ω such that any type (with any number of free variables) over ∅ is determined by
its subtypes with at most n free variables. We use this to give a different proof of a
result due to Lachlan, saying that in a stable structure which almost admits elimination
of quantifiers every strictly minimal set is indiscernible.

Finally, using the theory of stable structures which admit elimination of quantifiers,
we show how to construct new (finite and infinite) models of Ln-theories T with an
infinite model and properties (1)-(3). Moreover, every sufficiently saturated model of T
which is Ln-elementarily embeddable in a stable structure which almost admits elimi-
nation of quantifiers can be constructed in this way and the amount of saturation that
is needed can be effectively computed from |Snn(T )|.
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Introduction

In model theory, when studying structures, also called models, some formal lan-
guage often plays a role. Most commonly, this language is first-order predicate
logic from which we get first-order theories, in the sequel usually just called the-
ories. The attention in several branches of model theory, such as stability theory,
has been on complete theories of infinite structures. If a complete theory has a
finite model then all models of the theory are isomorphic. So, if we want to study
theories that might have finite models then it is more interesting to study incom-
plete theories. Since this means that complete first-order theories say “too much”
about finite structures, the following comment may be appropriate. In the branch
of finite model theory called ‘descriptive complexity theory’ it is often said that
first-order logic is too weak. This weakness refers to the inability of one first-order
sentence to define classes of finite structures which are of interest with regard to
questions in computational complexity theory. However, a complete first-order
theory is usually not equivalent to one first-order sentence.

So, if we want to study theories that might have finite models then it is more
interesting to study (possibly) incomplete theories. Our choice is to study theories
in finite variable logic, that is, the fragment of first-order logic where we have a
finite bound on the number of distinct variables that may occur in a formula. If
L is a first-order language then the set of formulas in which at most n distinct
variables occur is denoted by Ln, and formulas in Ln are called Ln-formulas. The
choice to study Ln-theories, i.e. sets of sentences from Ln, where we fix some
n < ω, is not arbitrary. Ln has some attractive features. One is that two finite
structures may satisfy the same Ln-formulas without being isomorphic (so Ln is
not too strong). Another is that there is a nice game theoretic characterization
of when any two L-structures satisfy exactly the same Ln-sentences. This charac-
terization guarantees that some uniformly describable structural similarities must
exist between two models which satisfy the same Ln-sentences. Ln also has cer-
tain closure properties: If only variables among v1, . . . , vn occur in the formulas
ϕ and ψ and ◦ is a connective and Q a quantifier then ¬ϕ, ϕ ◦ ψ and Qv1ϕ are
Ln-formulas.

Our approach in investigating Ln-theories is to see if methods and notions from
infinite model theory, in particular stability theory, can be useful in understanding
such theories. The general idea is that Ln-theories satisfying nice properties from
infinite model theory, such as stability, adapted to Ln-theories, should have well
behaved models, and in particular, well behaved finite models. Earlier work in
this direction, which uses concepts from infinite model theory such as types and
indiscernible sequences, but not stability, includes [9], [10], [14].
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It is well known that some basic results from infinite model theory, such as
the compactness theorem, fail if we replace all occurrences of ‘model’ by ‘finite
model’. We will not, however, restrict our attention to finite models, but instead
move between the finite and infinite as we find suitable. In the typical situation
we will assume that the theory under consideration has an infinite model.

We say that T is a complete Ln-theory if T is an Ln-theory such that for every
Ln-sentence ϕ, T ` ϕ or T ` ¬ϕ, (so every consistent Ln-theory can be extended
to a consistent complete Ln-theory). The present work started by considering the
following two questions:

When does a complete Ln-theory with an infinite model have arbitrarily
large finite models?

Can we, by using methods from stability theory (in addition to already tested
techniques), define a class of complete Ln-theories with infinite models, and
prove that its members have well behaved models?

One idea was that theories in a class which positively answers the second question
should have arbitrarily large finite models. A precise answer to the first question is
not known, and I assume that this is a rather difficult problem since we might have
to deal with many odd examples which are not amenable to a uniform treatment.
Somewhat paradoxically, finding such odd examples is not trivial, but merely
knowing that some exist (one appears in Section 5 and a family of others are
constructed in [14]) makes it hard for me to hope for an easy solution which
precisely answers the first question.

Having said this, the first chapter of this dissertation (which will appear in
almost identical form in the Journal of Symbolic Logic) will address the second
question, and at the end we get some information about the first. We will consider
notions such as types, amalgamation properties and the order property and derive
some results about them. From these results the “nice” properties, allowing clas-
sical model theoretic treatment, will emerge. Then the main results of Chapter I,
about complete Ln-theories having these nice properties, are proved. We also give
a couple of examples of what can happen if these properties fail.

The goal of the second chapter is to get finer information about the “well be-
haved” theories from the first chapter. This concerns finding recursive bounds on
the smallest finite model of the theory, in terms of its number of Ln-types, and
understanding the structure of its models better. Much of the analysis uses the
fact that the theories that we study have a model which is infinite, stable and
has an expansion by finitely many new relation symbols that admits elimination
of quantifiers. Therefore the second chapter begins by generalizing some of the
notions and results from the first chapter so that the class of “well behaved” com-
plete Ln-theories that we study can also be characterized as the class of complete
Ln-theories that have a model as above.

We will assume that the reader has a working knowledge of elementary model
theory and stability theory. All model theoretic results and notions used in Chap-
ter I, which are not explained, are to be found in [16] or [5] in one form or another.
In Chapter II acquaintance with stability theoretic notions such as forking and
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ranks is assumed. The required knowledge about these can be found in any of the
standard works on stability theory, such as [1] or [33].
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CHAPTER I

Finite variable logic, stability and finite models

We will study complete Ln-theories and their models, where Ln is the set of first
order formulas in which at most n distinct variables occur. Here, by a complete
Ln-theory we mean a theory such that for every Ln-sentence, it or its negation
is implied by the theory. Hence, a complete Ln-theory need not necessarily be
complete in the usual sense. Our approach is to transfer concepts and methods
from stability theory, such as the order property and counting types, to the context
of Ln-theories. So, in one sense, we will develop some rudimentary stability theory
for a particular class of (possibly) incomplete theories. To make the ‘stability
theoretic’ arguments work, we need to assume that models, of the complete Ln-
theory T which we consider, can be amalgamated in certain ways. If this condition
is satisfied and T has infinite models then there will exist models of T which are
sufficiently saturated with respect to Ln. This allows us to use some counting
types arguments from stability theory. If, moreover, we impose some finiteness
conditions on the number of Ln-types and the length of Ln-definable orders then
a sufficiently saturated model of T will be ω-categorical and ω-stable. Using the
theory of ω-categorical and ω-stable structures we derive that T has arbitrarily
large finite models.

A different approach to combining stability theory with finite model theory is
made by Hyttinen in [19] and [20].

In Section 2 we will study two amalgamation properties for complete Ln-
theories with infinite models. We will see that if T has the weaker of these prop-
erties, the (Ln,∞)-amalgamation property, then, assuming some restrictions on
the vocabulary of L, there are models of T which are arbitrarily Ln-saturated (in
a sense to be made precise). We will also see that in such a model, the type of
any finite tuple in the model is determined by its Ln-fragment. In Section 3, we
show, using well known results from stability theory, that stability and ω-stability
in Ln are equivalent if T has the (Ln,∞)-amalgamation property and the set of
Ln-types in n free variables, Snn(T ), is finite. The main results are obtained in
Section 4. There we use the results from the previous sections to derive that, un-
der the given restrictions on the vocabulary, if T has the (Ln,∞)-amalgamation
property, Snn(T ) is finite and T is stable in Ln then T can be extended to a theory
which is ω-categorical and ω-stable. By combining this with known results such as
the finite axiomatizability of an Ln-theory with only finitely many Ln-types and
the theorem of Cherlin, Harrington and Lachlan [6] saying that a sentence which
is true in an ω-categorical and ω-stable structure M is true in a finite substructure
of M , we will prove T has arbitrarily large finite models. In the last section we
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will give an example showing that for n = 4 this result fails if we only assume that
Snn(T ) is finite and T is stable in Ln.

1 Definitions and preliminaries

We fix an infinite (countable) set of variables V = {v1, v2, v3, . . .} (where vi 6= vj
if i 6= j). x, y, z, (sometimes with subscripts) will range over the variables in V
and x̄, ȳ, z̄ (sometimes with subscripts) will denote finite sequences of variables.
L is the set of first-order formulas over a given vocabulary (also called signature)
where only variables from V are used. We will have no general restriction on the
vocabulary except that it is countable and we will always assume that the identity
symbol = is included (and is interpreted as the identity relation in all structures
that we consider). Let Γ ⊆ V be a set of variables. LΓ ⊆ L is the set of formulas
in which only variables from Γ occur. For n < ω we define

Ln =
⋃

Γ⊂V, |Γ|=n

LΓ

so in other words Ln is the set of all formulas in L in which at most n different
variables occur. An Ln-theory is a set of sentences from Ln. An Ln-theory T is
called a complete Ln-theory if for every sentence ϕ ∈ Ln, T ` ϕ or T ` ¬ϕ. If x̄ is
a sequence of variables (of any finite length) then F n

x̄ (Fx̄) is the set of Ln-formulas
(L-formulas) in which only variables from x̄ (but not necessarily all) occur free.
We define F n

m = F n
(v1,...,vm) and Fm = F(v1,...,vm). If a formula is denoted by ϕ(x̄)

then we mean that only variables from x̄ (but not necessarily all) occur free in
that formula.

Let T be any consistent L-theory (i.e. any consistent set of L-sentences).
We say that p(x̄) ⊆ F n

x̄ is an (Ln, x̄)-type of T if T ∪ p(x̄) is consistent and for
every ϕ(x̄) ∈ F n

x̄ , ϕ(x̄) ∈ p(x̄) or ¬ϕ(x̄) ∈ p(x̄). The set of all (Ln, x̄)-types
of T is denoted by Snx̄ (T ), and we define Snm(T ) = Sn(v1,...,vm)(T ) and Sn(T ) =⋃

0<m<ω S
n
m(T ). (L, x̄)-types are defined in the same way but with Ln and F n

x̄

replaced by L and Fx̄ respectively. The set of all (L, x̄)-types of T is denoted by
Sx̄(T ), and we define Sm(T ) = S(v1,...,vm)(T ) and S(T ) =

⋃
0<m<ω Sm(T ). In what

follows, whenever T is an L-theory (so in particular, if T is an Ln-theory) we will
assume that T is consistent.

Elements of structures will be denoted a, b, c, etc. (sometimes with sub-
scripts). Finite sequences of elements are denoted by ā, b̄, c̄, etc. (sometimes
with subscripts). If we write ā ∈ A then we usually mean that the elements of
the sequence ā belong to A (or, with different terminology, that the range of ā is
included in A) and not that the sequence itself belongs to A. If σ is a sequence
then |σ| is the length of σ and if A is a set then |A| is the cardinality of A.

Remark 1.1 The definition of Ln given here is not standard. Usually Ln is
defined to be L{v1,...,vn}, but this difference is not critical for the results about Ln-
theories that will follow. To be more precise, define an L{v1,...,vn}-theory to be a
consistent set of sentences from L{v1,...,vn}, and let us say that an L{v1,...,vn}-theory
is complete if for every sentence ϕ ∈ L{v1,...,vn} , T ` ϕ or T ` ¬ϕ. Then all results
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in this paper still remain true if we would replace ‘Ln-theory’ by ‘L{v1,...,vn}-theory’
and replace ‘complete Ln-theory’ by ‘complete L{v1,...,vn}-theory’. The reason is,
of course, that if we are given an Ln-theory T , then for every sentence in T we
can replace some variables in it (if necessary) and obtain an equivalent sentence
which belongs to L{v1,...,vn}.

The following lemma will be used later.

Lemma 1.2 If T is a complete Ln-theory and T ′ ` T then Snn(T ) = Snn(T ′).

Proof. It is clear that Snn(T ′) ⊆ Snn(T ) because if p(v1, . . . , vn) ⊆ F n
n is consistent

with T ′ then p(v1, . . . , vn) is consistent with T .
Now suppose that p(v1, . . . vn) ∈ Snn(T )−Snn(T ′). Then T ′∪p is inconsistent so

there are a sentence ϕ ∈ L and ψ(v1, . . . , vn) ∈ p (because p is, up to equivalence,
closed under conjunctions) such that T ′ ` ϕ and ϕ ∧ ψ(v1, . . . , vn) is inconsistent.
Hence

` ϕ→ ¬∃v1, . . . vnψ(v1, . . . , vn) (∗)

Since T is a complete Ln-theory and ∃v1, . . . vnψ(v1, . . . , vn) ∈ Ln is consistent
with T (because ψ ∈ p) we have

T ` ∃v1, . . . vnψ(v1, . . . , vn)

which together with (∗) and T ′ ` T ∪ {ϕ} contradicts that T ′ is consistent. �

Among other things, we are interested in obtaining finite models of certain com-
plete Ln-theories. The size of Snn(T ), where T is a complete Ln-theory, plays a
role here. We state some known results concerning the size of Snn(T ).

Fact 1.3 For any L-theory T , Snn(T ) is finite if and only if F n
n is finite up to

equivalence modulo T .

Proof. This is a consequence of the Stone duality theorem for boolean algebras
(see [16]). A direct proof is also simple. �

The next fact can (for example) be extracted from the the proof of a similar
result by Dawar, Lindell and Weinstein in [10] (essentially, one constructs a Scott-
sentence for a model of T and if Snn(T ) is finite this sentence is in Ln). It is also
mentioned by Poizat in [29] (in exercise 4). The definition of quantifier rank is
found in [16].

Fact 1.4 Suppose that the vocabulary of L is finite and contains no function sym-
bols. If T is a complete Ln-theory and Snn(T ) is finite then there is ϕ ∈ Ln that
axiomatizes T (i.e. ϕ ` T and T ` ϕ). Moreover, we can choose ϕ so that its
quantifier rank is at most |Snn(T )|+ n.

The following fact is one reason why we will (most of the time) restrict our atten-
tion to Ln-theories T for which Snn(T ) is finite.
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Fact 1.5 If T is a complete Ln-theory and Snn(T ) is infinite then T has no finite
models.

Proof. Assume that T has a finite model M . Let k = |M |. We will show that
|Snn(T )| ≤ kn. Let āi , 1 ≤ i ≤ kn be an enumeration of Mn, and let

pi(v̄) = {ϕ(v̄) ∈ F n
n : M |= ϕ(āi)}

where v̄ = v1, . . . , vn. Clearly pi(v̄) ∈ Snn(T ). We show that

Snn(T ) = {p1, . . . , pkn}.

If not, there is p(v̄) ∈ Snn(T ) such that p 6= pi for all 1 ≤ i ≤ kn. Hence, for
every 1 ≤ i ≤ kn there is χi(v̄) ∈ p such that ¬χi(v̄) ∈ pi. Then we have
M |= ∀v̄

∨kn

i=1 ¬χi(v̄) and since ∀v̄
∨kn

i=1 ¬χi(v̄) is equivalent to an Ln-sentence and

T is complete we get T ` ∀v̄
∨kn

i=1 ¬χi(v̄). But then p(v̄) ∪ T is not consistent
which contradicts that p(v̄) ∈ Snn(T ). �

Remark 1.6 One may now ask if finiteness of Snn(T ) for an Ln-theory T is enough
to guarantee the existence of finite models of T . The answer is no, and as a counter
example we can let T be the L3-theory of dense linear order without endpoints.
Then S3

3(T ) is finite (by quantifier elimination or ω-categoricity) but T has no
finite models.

Let L be either L or Ln. Let A be a subset of a structure M . Then L(A) is the set
of all formulas of the form ϕ(x̄, ā) where ϕ(x̄, ȳ) ∈ L and ā ∈ A. Observe that at
most n distinct parameters from A can occur in a formula in Ln(A) (and of course
at most n distinct variables can occur free in an Ln(A)-formula). However, we may
still denote a formula in Ln(A) by ϕ(x̄, ā), say, where ā is a sequence of more then
n distinct parameters and x̄ is a sequence of more that n distinct variables, but
then some of the parameters in ā and some of the variables in x̄ will not actually
occur in the formula denoted by ϕ(x̄, ā). For any finite sequence of variables x̄,
F n
x̄ (A) is the set of all ϕ(x̄, ā) ∈ Ln(A) such that only variables from x̄ (but not

necessarily all) occur free in ϕ(x̄, ā). F n
m(A) = F n

(v1,...,vm)(A) (where v1, . . . , vm are

the first m variables in V = {v1, v2, v3, . . . }). Fx̄(A) is defined as F n
x̄ (A) but with

Ln replaced by L. If f is a function and ā = (a1, . . . , ak) where a1, . . . , ak belong
to the domain of f , then (as usual) (f(a1), . . . , f(an)) is denoted by f(ā), and if
p ⊆ L(A) then {ϕ(x̄, f(ā)) : ϕ(x̄, ā) ∈ p} is denoted by f(p).

Example 1.7 We give an example to illustrate some of the definitions. Suppose
that the vocabulary of L contains a binary relation symbol R. Let ϕ(v1, v5) be the
formula

∃v8(R(v1, v8) ∧ ∃v4(R(v8, v4) ∧ ∃v8(R(v4, v8) ∧ R(v8, v5) )))

(So if R is interpreted as the edge relation in a graph then ϕ(v1, v5) says that there
is a path of length 4 between v1 and v5.)
Let ϕ(v5, v2) be the formula which is obtained by simultaneously replacing in

14



ϕ(v1, v5), v1 by v5 and v5 by v2, and let ϕ(v3, v9) be obtained by simultaneously
replacing, in ϕ(v1, v5), v1 by v3 and v5 by v9. Then

ϕ(v1, v5), ϕ(v5, v2), ϕ(v3, v9) ∈ L4,

ϕ(v1, v5), ϕ(v5, v2) ∈ F 4
(v1,v2,v5,v9),

ϕ(v3, v9) /∈ F 4
(v1,v2,v5,v9).

If a, b ∈ A, c /∈ A, then

ϕ(v1, a), ϕ(a, v2), ϕ(v3, b) ∈ L4(A),

ϕ(v1, a), ϕ(a, v2), ϕ(v3, b) ∈ F 4
(v1,v2,v3)(A),

ϕ(v3, b), ϕ(v1, c) /∈ F 4
(v1,v2)(A).

We define (where L is either L or Ln and M an L-structure)

ThL(M,A) = ThL(A)(M) = {ϕ(ā) ∈ L(A) : M |= ϕ(ā)}

and ThL(M) = ThL((M, ∅)). If ā = (a1, . . . , am) and a1, . . . , am ∈ M then
ThL(M, ā) = ThL(M, {a1, . . . , am}). We sometimes, in particular in Chapter II,
write Th(M, ā) (which is the usual notation) instead of ThL(M, ā).

If M is a substructure of N and ThL(M)(M) = ThL(M)(N), then we write
M 4L N and we say that M is an L-elementary substructure (or L-elementary
submodel) of N and that N is an L-elementary extension of M . If ai ∈M, bi ∈ N
for i < λ then we write

(M, (ai : i < λ)) ≡L (N, (bi : i < λ))

if for every m < ω and ϕ(x1, . . . xm) ∈ L and {i1, . . . , im} ⊆ λ,

M |= ϕ(ai1 , . . . , aim) if and only if N |= ϕ(bi1 , . . . , bim).

If A ⊆M and A ⊆ N and ThL(A)(M) = ThL(A)(N) then we write

(M,A) ≡L (N,A) or M ≡L(A) N.

Note that 4L has the same meaning as 4 and ≡L has the same meaning as ≡
(where 4 and ≡ have their usual meanings).

Let M be a structure and let A ⊆ M . We say that p(x̄) ⊆ F n
x̄ (A) is an

(Ln, x̄)-type over A with respect to M if p(x̄) ∪ ThLn(M,A) is consistent and
for every ϕ(x̄) ∈ F n

x̄ (A) either ϕ(x̄) ∈ p or ¬ϕ(x̄) ∈ p. Snx̄ (A,M) is the set of
all (Ln, x̄)-types over A with respect to M . Snm(A,M) = Sn(v1,...,vm)(A,M) and

Sn(A,M) =
⋃

0<m<ω S
n
m(A,M).

We say that p(x̄) ⊆ Fx̄(A) is an (L, x̄)-type over A with respect to M if
p(x̄) ∪ ThL(M,A) is consistent and for every ϕ(x̄) ∈ Fx̄(A) either ϕ(x̄) ∈ p or
¬ϕ(x̄) ∈ p. Sx̄(A,M) is the set of all (L, x̄)-types over A with respect to M .
Sm(A,M) = S(v1,...,vm)(A,M) and S(A,M) =

⋃
0<m<ω Sm(A,M).

Note that if M |= T , where T is a complete Ln-theory, then Snx̄ (∅,M) = Snx̄ (T ).
Also, if T is a complete L-theory (in the usual first-order sense) and M |= T then
Sx̄(∅,M) = Sx̄(T ).
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Lemma 1.8 Let T be any L-theory. If Snn(T ) is finite then for every finite
(nonempty) sequence of variables x̄, Snx̄ (T ) is finite and F n

x̄ is finite up to equiva-
lence modulo T .

Proof. If Snn(T ) is finite then by Fact 1.3 F n
n is finite up to equivalence modulo T ,

and then it is not hard to see that for any finite sequence of variables x̄ , F n
x̄ is

finite up to equivalence modulo T , and hence Snx̄ (T ) is finite. �

If A ⊆M where M is a structure and b̄ ∈M and |b̄| = m, then we define

tpL(b̄/A) = tp(b̄/A) = {ϕ(v1, . . . , vm) ∈ L(A) : M |= ϕ(b̄)}

and
tpLn(b̄/A) = {ϕ(v1, . . . , vm) ∈ Ln(A) : M |= ϕ(b̄)}.

If ā = (a1, . . . , am) and L is L or Ln then by tpL(b̄/ā) we mean

tpL(b̄/{a1, . . . , am})

and tpL(b̄) means tpL(b̄/∅). Observe that these definitions depend on the structure
M but M does not appear in the notations tpL(b̄/A) and tpLn(b̄/A). However,
when these notations are used it should be clear from the context which M we
have in mind.

We will often assume that the vocabulary of the language L in question does
not contain function symbols. This is not such a big restriction as we now explain.
Suppose that L is a language such that for some finite k the arity of every relation
and function symbol is at most k. Let LR be a language with the same vocabualary
as L except that, for every i ≤ k, every i-ary function symbol f (in the vocabulary
of L) is replaced by an (i + 1)-ary relation symbol Rf . Then, by the proof of
Theorem 1.10 in [15], for every Ln-theory T , there exists an (LR)n+2k+1-theory
TR such that: For every L-structure M , if MR is the LR-structure with the same
universe as M and in which all constant and relation symbols in L − LR are
interpreted as in M and where, for every function symbol f in the vocabulary of
L, Rf is interpreted as the graph of the interpretation of f in M (so for ā, b ∈ M ,
M |= f(ā) = b ⇔ MR |= Rf(ā, b)), then M |= T if and only if MR |= TR. In special
cases there might be m < n+2k+1 such that M |= T if and only if MR |= TR∩Lm.

2 Amalgamation and consequences

In this section T will be a complete Ln-theory which has infinite models.
A function f : A→ N , where M and N are L-structures and A ⊆M , is called

an Ln-elementary embedding if for every ϕ(x̄) ∈ Ln and ā ∈ A with |ā| = |x̄|, we
have

M |= ϕ(ā) if and only if N |= ϕ(f(ā)).

We say that T has the Ln-amalgamation property if the following holds:
If M1 and M2 are models of T and aα ∈M1, bα ∈M2, for α < κ, and

(M1, (aα : α < κ)) ≡Ln (M2, (bα : α < κ))
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then there are N <Ln M1 and an Ln-elementary embedding f : M2 → N such that
f(bα) = aα for all α < κ. If the above condition holds for all infinite M1,M2 |= T
then we say that T has the (Ln,∞)-amalgamation property.

Let κ be a cardinal. We say that an L-structure M is (Ln, κ)-saturated if M is
infinite and for every A ⊆M with |A| < κ and every p ∈ Sn(A,M), p is realized
in M . If M is infinite and for every A ⊆M with |A| < κ and every p ∈ Sn(A,M)
which is realized in an infinite model, p is realized in M , then we say that M is
(Ln, κ,∞)-saturated.

We say that an L-structure M is strongly (Ln, κ)-universal if the following
holds:
Whenever N is an L-structure such that |N | < κ and aα ∈ M, bα ∈ N for α < λ
where λ < κ and

(M, (aα : α < λ)) ≡Ln (N, (bα : α < λ))

then there is an Ln-elementary embedding f : N → M such that f(bα) = aα for
every α < λ. If κ is infinite and the above condition holds for all infinite N with
|N | < κ then we say that M is strongly (Ln, κ,∞)-universal.

Note that since we can take λ = 0 it follows that if M is strongly κ-universal,
then N ≡Ln M and |N | < κ implies that there is an Ln-elementary embedding
f : N → M . Also observe that if κ ≤ λ and M is (Ln, λ)-saturated (strongly
(Ln, λ)-universal) then M is (Ln, κ)-saturated (strongly (Ln, κ)-universal). Similar
observations apply for (Ln, κ,∞)-saturation and strong (Ln, κ,∞)-universality.

If M is (Ln, κ)-saturated and Snn(ThLn(M)) is finite then M is κ-saturated (in
the usual first-order sense; see [5],[16] or [33] for definitions). This is proved in
Proposition 2.12. The author does not know if this holds without the assumption
that Snn(ThLn(M)) is finite. The next example shows that an L-structure which
is κ-saturated need not necessarily be (Ln, κ)-saturated.

Example 2.1 Let n ≥ 3 and let κ be an arbitrary infinite cardinal. Let the
vocabulary of L consist of a binary relation symbol R (and the equality symbol
=). Let M1 be an L-structure in which R is interpreted as an equivalence relation
and assume that:

1. For every 0 < k < ω, M1 has exactly one equivalence class with exactly k
elements.

2. M1 has κ equivalence classes with κ elements.

3. There are no other equivalence classes in M1.

Then M1 is κ-saturated (in the usual first-order sense) but not (Ln, κ)-saturated.
To see the latter let A be the equivalence class with exactly n elements and consider
the set of formulas

Γ = {R(x, a) : a ∈ A} ∪ {¬x = a : a ∈ A}.

Γ is consistent with ThLn(M1, A) (because if we add a new element to A then
the resulting structure is a model of ThLn(M1, A)) and can therefore be extended
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to an Ln-type p(x) ∈ Snx (A,M). But p(x) is not realized in M1 so M1 is not
(Ln, κ)-saturated, and neither is it (Ln, κ,∞)-saturated, since p is realized in M2

which we now define. Let M2 be the L-structure (in which R is still interpreted
as an equivalence relation) which is defined like M1 except that we replace ω by n
in clause 1. So M2 has exactly one equivalence class with exactly k elements, for
every 0 < k < n, and M2 has κ equivalence classes with κ elements and there are
no other classes. We may suppose that A is a subset of one of the infinite classes.
Then (M2, A) ≡Ln (M1, A) and M2 is (Ln, κ)-saturated as the reader may verify.

The next proposition is proved in a similar way as the theorem saying that for
every (consistent) L-theory with infinite models and every cardinal κ there is a
model of that theory which is κ-saturated and κ-universal (see [5] for example).

Proposition 2.2 The following are equivalent :
(i) T has the Ln-amalgamation property.
(ii) For every cardinal κ and M |= T , there exists N <Ln M such that N is
(Ln, κ)-saturated.
(iii) For every cardinal κ and M |= T , there exists N <Ln M such that N is
strongly (Ln, κ)-universal.

Before proving Proposition 2.2 we state and prove an elementary lemma which
will be used later.

Lemma 2.3 Suppose that ā ∈ M , b̄ ∈ N and ψ(x̄, ȳ) ∈ L where |ā| = |b̄| = |x̄|.
If tpLn(ā) = tpLn(b̄) and ψ(ā, ȳ) is consistent with ThLn(M, ā) then ψ(b̄, ȳ) is
consistent with ThLn(N, b̄).

Proof. Suppose that tpLn(ā) = tpLn(b̄) and ψ(ā, ȳ) is consistent with
ThLn(M, ā) but ψ(b̄, ȳ) is inconsistent with ThLn(N, b̄). Then by compactness
there are

ϕ1(x̄), . . . , ϕk(x̄) ∈ Ln

such that

ϕ1(b̄), . . . , ϕk(b̄) ∈ ThLn(N, b̄) and ` ϕ1(b̄) ∧ . . . ∧ ϕk(b̄)→ ∀ȳ¬ψ(b̄, ȳ).

But then (since no b̄’s occur in ψ(x̄, ȳ) or in ϕi(x̄))

` ∀x̄[ϕ1(x̄) ∧ . . . ∧ ϕk(x̄)→ ∀ȳ¬ψ(x̄, ȳ)],

and since tpLn(ā) = tpLn(b̄), for any M ′ |= ThLn(M, ā), we have

M ′ |= ϕ1(ā) ∧ . . . ∧ ϕk(ā) and hence M ′ |= ∀ȳ¬ψ(ā, ȳ),

which contradicts our assumption that ψ(ā, ȳ) is consistent with ThLn(M, ā). �

As a part of the proof of Proposition 2.2 we first prove the following:
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Claim 2.4 If T has the Ln-amalgamation property and M is any model of T then
there is N <Ln M such that for every A ⊆ M and p(x̄) ∈ Sn(A,M), p(x̄) is
realized in N .

Proof. For every A ⊆ M and p(x̄) ∈ Sn(A,M) there is Np |= ThLn(A)(M) and
āp ∈ Np such that A ⊆ Np |= p(āp). Let

T ∗ = T ∪
⋃

A⊆M
p∈Sn(A,M)

p(c̄p)

where c̄p is a tuple of distinct new constant symbols such that if p 6= p′ then every
constant in c̄p is different from every constant in c̄p′ . Let ∆ ⊆ T ∗ be finite. Then

∆ ⊆ T ∪ p1(c̄p1) ∪ . . . ∪ pk(c̄pk
).

Let Ai be the set of parameters from M that occur in pi. Since T has the Ln-
amalgamation property and Np1 ≡Ln(A1) M there are M1 <Ln M and an Ln-
elementary embedding f1 : Np1 →M1 such that f1�A1 is the identity function. We
now have A2 ⊆M ⊆M1 andNp2 ≡Ln(A2) M1 so, by the Ln-amalgamation property
again, there are M2 <Ln M1 and an Ln-elementary embedding f2 : Np2 →M2 such
that f2�A2 is the identity function. By continuing in this way we get a chain

M 4Ln M1 4Ln . . . 4Ln Mk

and Ln-elementary embeddings fi : Npi
→ Mk such that fi�Ai is the identity

function. Let b̄i = fi(āpi
) for 1 ≤ i ≤ k. Then

Mk |= T ∪ p1(b̄1) ∪ . . . ∪ pk(b̄k)

so by interpreting c̄pi
as b̄i we see that ∆ is consistent and hence by compactness

T ∗ is also consistent. If N∗ |= T ∗ then clearly the reduct of N∗ to L satisfies the
claim. �

Proof of Proposition 2.2. (i)⇒(ii) Let κ be any infinite cardinal and let M |= T . By
applying the Ln-amalgamation property to M and an infinite model of T (which
we assume exists) it follows that there exists an infinite M ′ <Ln M . We define a
chain of models Mα, α < κ+ as follows. Let M0 = M ′. If Mα is defined let Mα+1

be a model that satisfies the conclusion of Claim 2.4 when we replace M by Mα in
the hypothesis of Claim 2.4. If Mα is defined for all α < δ where δ is a limit ordinal
then let Mδ =

⋃
α<δMα. Then Mα 4Ln Mβ for all α < β < κ+ (it is not difficult to

verify that the union of an ‘Ln-elementary chain’ is an Ln-elementary extension of
every structure in the chain). Let N =

⋃
α<κ+ Mα. Then Mα 4Ln N for all α < κ+

so in particular N |= T . Suppose that A ⊆ N with |A| ≤ κ. Since κ+ is regular we
have A ⊆Mα for some α < κ+ and hence by the construction every p ∈ Sn(A,Mα)
is realized in Mα+1. Let p ∈ Sn(A,N) be arbitrary. Since p ∪ ThLn(N,A) is
consistent and ThLn(N,A) = ThLn(Mα, A) (because A ⊆ Mα 4Ln N) it follows
that p ∪ ThLn(Mα, A) is consistent, so p ∈ Sn(A,Mα), and therefore p is realized
in Mα+1. Then p is realized in N because Mα+1 4Ln N .
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(ii)⇒(iii) Let κ be any infinite cardinal. It is sufficient to show that every
N |= T which is (Ln, κ)-saturated is also strongly (Ln, κ)-universal.
Let N |= T be (Ln, κ)-saturated and suppose that |M | < κ and

(N, (bα : α < λ)) ≡Ln (M, (aα : α < λ))

where bα ∈ N and aα ∈ M . Let (aα : α < µ), where µ < κ, be an enumeration
of all the elements of M that extends (aα : α < λ). We will inductively define
Ln-elementary embeddings fβ : (aα : α < β) → N , for λ ≤ β < µ, such that
if α < λ ≤ β < γ < µ then fβ(aα) = bα and fβ = fγ�(aα : α < β). Define
fλ(aα) = bα for every α < λ. Now suppose that fα is defined for every α such that
λ ≤ α < β. If β is a limit ordinal then for α < β define fβ(aα) = fα+1(aα). Suppose
β = γ + 1. If α < γ define fβ(aα) = fγ(aα). Let p(x) = tpLn(aγ/{aα : α < γ}).
Since fγ : (aα : α < γ) → N is an Ln-elementary embedding (by the induction
hypothesis) it follows by compactness and Lemma 2.3 that fγ(p) is a consistent
Ln-type over {f(aα) : α < γ} with respect to N . Since N is (Ln, κ)-saturated
for L there is c ∈ N that realizes fγ(p). Define fβ(aγ) = c. Define f : M → N
by f(aα) = fα+1(aα) for α < µ. Then by the construction f is an Ln-elementary
embedding.

(iii)⇒(i) Suppose that M1 and M2 are models of T and aα ∈M1, bα ∈M2, for
α < λ and

(M1, (aα : α < λ)) ≡Ln (M2, (bα : α < λ)).

Let κ > sup(|M1|, |M2|) and by (iii) let N <M1 be strongly (Ln, κ)-universal. Let
µ = |M2| and let (bα : α < µ) be an enumeration of M2 that extends (bα : α < λ).
We will inductively define Ln-elementary embeddings fβ : (bα : α < β) → N for
λ ≤ β < µ such that if α < λ ≤ β < γ < µ then fβ(bα) = aα and fβ = fγ�(bα :
α < β). Define fλ(bα) = aα for every α < λ. Now suppose that fα is defined
for every α such that λ ≤ α < β. If β is a limit ordinal then for α < β define
fβ(bα) = fα+1(bα). Suppose β = γ + 1. If α < γ define fβ(bα) = fγ(bα). Let
p(x) = tpLn(bγ/{bα : α < γ}). By induction hypothesis fγ : (bα : α < γ) → N is
an Ln-elementary embedding and by compactness and Lemma 2.3 it follows that
q = fγ(p) is a consistent Ln-type over {f(bα) : α < γ} with respect to N . Then
there is M ′ ⊇ {f(bα) : α < γ} and c ∈M ′ such that

(M ′, (f(bα) : α < γ)) ≡Ln (N, (f(bα) : α < γ))

and M ′ |= q(c). By the Löwenheim-Skolem theorem we may assume that |M ′| < κ
and since N is strongly (Ln, κ)-universal there is an Ln-elementary embedding
g : M ′ → N which is the identity on {f(bα) : α < γ}. Define fβ(bγ) = g(c). Define
f : M2 → N by f(bα) = fα+1(bα) for α < µ. Then f : M2 → N is the required
Ln-elementary embedding. �

By minor changes in the proof of Proposition 2.2 we get:

Proposition 2.5 The following are equivalent :
(i) T has the (Ln,∞)-amalgamation property.
(ii) For every infinite cardinal κ and infinite M |= T , there exists N <Ln M such
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that N is (Ln, κ,∞)-saturated.
(iii) For every infinite cardinal κ and infinite M |= T , there exists N <Ln M such
that N is strongly (Ln, κ,∞)-universal.

Structures that are (Ln, ω,∞)-saturated will be of interest to us since they have
the property that the L-type of a tuple of elements in the structure is determined
by its restriction to Ln.

Proposition 2.6 Suppose that the vocabulary of L contains no function symbols
and that n is greater than or equal to the arity of every relation symbol in the
vocabulary. If M and N are (Ln, ω,∞)-saturated then for any ā ∈ M and b̄ ∈ N
with |ā| = |b̄|,

if (M, ā) ≡Ln (N, b̄) then (M, ā) ≡L (N, b̄).

Proof. Suppose that M and N are (Ln, ω,∞)-saturated. Note that since we have
assumed that the vocabulary of L contains no function symbols and that the arity
of every symbol is ≤ n, then for any tuples c̄ ∈M and d̄ ∈ N , if (M, c̄) ≡Ln (N, d̄)
then c̄ and d̄ have the same atomic type (i.e. c̄ and d̄ satisfy the same quantifier free
L-formulas). We want to show that if (M, ā) ≡Ln (N, b̄) then (M, ā) ≡L (N, b̄).
It is enough to show that if (M, ā) ≡Ln (N, b̄) then there exists a back and forth
system I from (M, ā) to (N, b̄) such that (ā, b̄) ∈ I (see [16] for definitions and
results). Suppose that (M, ā) ≡Ln (N, b̄). Then let

I = {(c̄, d̄) : c̄ ∈M, d̄ ∈ N, |c̄| = |d̄| and (M, c̄) ≡Ln (N, d̄)}.

Clearly, (ā, b̄) ∈ I and for any (c̄, d̄) ∈ I, c̄ and d̄ have the same atomic type.
So we only need to show that if (c̄, d̄) ∈ I and c ∈ M , d ∈ N then there are
c′ ∈ M , d′ ∈ N such that (c̄c, d̄d′) ∈ I and (c̄c′, d̄d) ∈ I. (If c̄ = (c1, . . . , cm) then
c̄c = (c1, . . . , cm, c).)

Suppose that (c̄, d̄) ∈ I and c ∈ M , d ∈ N . Then (M, c̄) ≡Ln (N, d̄) which
means that tpLn(c̄) = tpLn(d̄). By Lemma 2.3, for every finite subset

{ϕ1(y, c̄), . . . , ϕk(y, c̄)} ⊆ tpLn(c/c̄),

ϕ1(y, d̄) ∧ . . . ∧ ϕk(y, d̄) is consistent with ThLn(N, d̄). By compactness,

p(y) = {ϕ(y, d̄) : ϕ(y, c̄) ∈ tpLn(c/c̄)}

is consistent with ThLn(N, d̄). Since N is (Ln, ω,∞)-saturated and |d̄| < ω there
exists d′ ∈ N that realizes p(y). We then have tpLn(c̄c) = tpLn(d̄d′), which implies
(M, c̄c) ≡Ln (N, d̄d′) and (c̄c, d̄d′) ∈ I. In the same way we can find c′ ∈ M such
that (c̄c′, d̄d) ∈ I. �

A special case of Proposition 2.6 is:

Corollary 2.7 Suppose that the vocabulary of L contains no function symbols
and that n is greater than or equal to the arity of every relation symbol in the
vocabulary. Then :
(i) Any two models of T which are (Ln, ω,∞)-saturated are elementarily equivalent.
(ii) If M |= T is (Ln, ω,∞)-saturated then for any ā, b̄ ∈M ,

if tpLn(ā) = tpLn(b̄) then tpL(ā) = tpL(b̄).
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In the rest of this section we will assume that T has the (Ln,∞)-amalga-
mation property, the vocabulary contains no function symbols and the
arity of any relation symbol is less than or equal to n. Observe that since
we always assume that the identity symbol = is in the vocabulary of L, it follows
that n ≥ 2.

Definition 2.8 The canonical completion of T is the theory ThL(M) where M
is a model of T that is (Ln, ω,∞)-saturated. By Corollary 2.7 (i), this definition
does not depend on M . The canonical completion of T will be denoted by T c.
Observe that it follows from the definition that T c is a complete L-theory with no
finite models.

If Snn(T ) is finite then Proposition 2.6 yields the following:

Proposition 2.9 Suppose that Snn(T ) is finite. If p(x̄) ∈ Sx̄(T c) and q(x̄) is the
restriction of p to Ln ( i.e. q(x̄) = p(x̄) ∩ Ln) then T c ∪ q(x̄) ` p(x̄).

Proof. Without loss of generality we may assume that x̄ = (v1, . . . , vm). Let
M |= T be (Ln, ω,∞)-saturated. Since Snn(T ) is finite then by Lemma 1.8 F n

x̄ is
finite up to equivalence modulo T . Let ∆ be a finite subset of F n

x̄ such that every
formula in F n

x̄ is equivalent modulo T to a formula in ∆. Let ΓLn = {tpLn(ā) :
ā ∈ M, |ā| = |x̄|} and let ΓL = {tpL(ā) : ā ∈ M, |ā| = |x̄|}. Then ΓLn = Snx̄ (T )
(because M is (Ln, ω,∞)-saturated) and by Proposition 2.6, every q(x̄) ∈ ΓLn has
exactly one extension in ΓL. For every p(x̄) ∈ Sx̄(T c) let ϕp(x̄) be the conjunction
of the formulas in ∆∩p(x̄). Then T ∪{ϕp(x̄)} ` q(x̄), where q(x̄) = p(x̄)∩Ln. Let
ψ(x̄) ∈ L and p(x̄) ∈ ΓL be arbitrary. If ψ(x̄) ∈ p(x̄) then for every ā ∈ M , M |=
ϕp(ā) ⇒ M |= q(ā) (where q(x̄) = p(x̄) ∩ Ln) ⇒ M |= p(ā) (by Proposition 2.6)
⇒ M |= ψ(ā). Hence, if ψ(x̄) ∈ p(x̄) then M |= ∀x̄[ϕp(x̄)→ ψ(x̄)] so

if ψ(x̄) ∈ p(x̄) then T c ` ∀x̄[ϕp(x̄)→ ψ(x̄)]. (1)

In the same way we see that

if ψ(x̄) /∈ p(x̄) then T c ` ∀x̄[ϕp(x̄)→ ¬ψ(x̄)]. (2)

Note that we have proved (1) and (2) for every p ∈ ΓL (but not necessarily for
every p ∈ Sx̄(T c)). Let p′(x̄) ∈ Sx̄(T c) and let q(x̄) = p′(x̄)∩Ln. Then q(x̄) ∈ ΓLn

so q(x̄) has a unique extension p(x̄) ∈ ΓL. From q(x̄) ` ϕp(x̄) (by definition of
ϕp) and (1) and (2) (which hold for all p ∈ ΓL) it follows that T c ∪ q(x̄) ` p(x̄).
Hence p = p′ so T c ∪ q(x̄) ` p′(x̄) and the proof is complete (and it follows that
Sx̄(T

c) = ΓL). �

Corollary 2.10 (i) If Snn(T ) is finite then T c is ω-categorical.
(ii) If Snn(T ) is finite and M |= T is infinite, then there exists N <Ln M such
that N is ω-categorical.

Proof. (i) Suppose that Snn(T ) is finite. Then by Lemma 1.8, for any 0 < m < ω,
Snm(T ) is finite. By Proposition 2.9 every p ∈ Sm(T c) is determined by p ∩ Ln ∈
Snm(T ), so Sm(T c) is finite and therefore T c is ω-categorical.

(ii) Suppose that Snn(T ) is finite. By Proposition 2.5 there is N <Ln M such
that N is ω-saturated for Ln. By part (i), ThL(N) = T c is ω-categorical. �
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Lemma 2.11 Suppose that T ′ is a complete L-theory such that for every p(x̄) ∈
Sx̄(T

′), if q(x̄) = p(x̄) ∩ Ln then T ′ ∪ q(x̄) ` p(x̄). Then for every ψ(x̄) ∈ L there
is a boolean combination of Ln-formulas θ(x̄) such that

T ′ ` ∀x̄[ψ(x̄)↔ θ(x̄)].

Proof. Let {pi(x̄) : i ∈ I} be the set of all types p(x̄) ∈ Sx̄(T
′) such that

ψ(x̄) ∈ p(x̄). For every i ∈ I let qi(x̄) = pi(x̄) ∩ Ln. By the assumption we have
T ′ ∪ qi(x̄) ` pi(x̄), for every i ∈ I. Then, for every i ∈ I , T ′ ∪ qi(x̄) ` ψ(x̄) and
by compactness there is a formula ϕi(x̄), which is a conjunction of finitely many
formulas from qi(x̄), such that T ′ ` ∀x̄[ϕi(x̄)→ ψ(x̄)]. Now suppose that for every
finite subset J ⊆ I , the set of formulas

T ′ ∪ {ψ(x̄)} ∪ {¬ϕi(x̄) : i ∈ J}

is consistent. Then it follows by compactness that

T ′ ∪ {ψ(x̄)} ∪ {¬ϕi(x̄) : i ∈ I}

is consistent, so there is a type p(x̄) ∈ Sx̄(T ′) such that ψ(x̄) ∈ p(x̄) and pi 6= p
for all i ∈ I. But this contradicts the assumption that {pi(x̄) : i ∈ I} is the set
of all types in Sx̄(T

′) that contain ψ(x̄). Hence, we conclude that there exists a
finite subset J ⊆ I such that

T ′ ` ∀x̄
[
ψ(x̄)→

∨
i∈J

ϕi(x̄)
]
.

Since also T ′ ` ∀x̄[ϕi(x̄)→ ψ(x̄)] for all i we get

T ′ ` ∀x̄
[
ψ(x̄)↔

∨
i∈J

ϕi(x̄)
]
,

so let θ(x̄) be
∨
i∈J ϕi(x̄) which is a boolean combination of Ln-formulas. �

Proposition 2.12 Let κ be an infinite cardinal. If M is infinite, (Ln, κ,∞)-
saturated and Snn(ThLn(M)) is finite then M is κ-saturated (in the usual first-order
sense).

Proof. Suppose that M is (Ln, κ,∞)-saturated, where κ ≥ ℵ0, and that
Snn(ThLn(M)) is finite. Let T = ThLn(M) and let T ′ = ThL(M). The argument
in the proof of Proposition 2.9 still holds if we replace T c by T ′. It follows that

(∗) for any finite sequence of variables ȳ and any p(ȳ) ∈ Sȳ(T
′), if q(ȳ) =

p(ȳ) ∩ Ln then T ′ ∪ q(ȳ) ` p(ȳ).

Let A ⊆ M with |A| < κ and let p(x̄) ∈ Sx̄(A,M). We need to show that p is
realized in M . Let q(x̄) = p(x̄) ∩ Ln(A). Then q(x̄) ∪ ThLn(M,A) is consistent
(because p(x̄) ∪ ThL(M,A) is consistent) so q(x̄) ∈ Snx̄ (A,M). Then, since M
is (Ln, κ,∞)-saturated, q is realized in M by b̄, say. By (∗) and Lemma 2.11 it
follows that p is determined by q and hence M |= p(b̄). �
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3 Stability and ω-stability in Ln

In this section we assume that n is greater than or equal to the arity of all relation
symbols in the vocabulary of L and that T is a complete Ln-theory with infinite
models and the (Ln,∞)-amalgamation property.

We say that a formula ϕ(x̄, ȳ) has the order property with respect to T if there
is a model M of T and āi, b̄i ∈M for i < ω such that M |= ϕ(āi, b̄j)⇔ i ≤ j. We
say that T has the order property in Ln if there is a formula ϕ(x̄, ȳ) ∈ Ln that has
the order property with respect to T .

We will show that if Snn(T ) is finite, then T does not have the order property for
Ln if and only if there are only countably many Ln-types over any countable set.
If we add the assumption that the vocabulary of L contains no function symbols
then it follows that T c is ω-stable.

Let M be an L-structure, A ⊆ M and ϕ(x̄, ȳ) ∈ L. We say that a set of
formulas p ⊆ Fx̄(A) is a (ϕ, x̄)-type over A with respect to M if p ∪ ThL(M,A)
is consistent, every formula in p has the form ϕ(x̄, ā) or ¬ϕ(x̄, ā) for some ā ∈ A,
and for all ā ∈ A either ϕ(x̄, ā) ∈ p or ¬ϕ(x̄, ā) ∈ p. The set of all (ϕ, x̄)-types
over A with respect to M is denoted by S(ϕ,x̄)(A,M).

The proof, given here, of the next proposition, which much simplifies my orig-
inal proof (in [11]), was suggested by the referee of the article version of this
chapter.

Proposition 3.1 If Snn(T ) is finite then the following are equivalent:
(i) T does not have the order property in Ln.
(ii) For every M |= T , if A ⊆M and |A| ≤ ℵ0 then |Sn(A,M)| ≤ ℵ0.

Proof. (i)⇒(ii). Let A ⊆ M |= T and suppose that |A| ≤ ℵ0. It is sufficient to
show that for any finite (nonempty) sequence of variables x̄, |Snx̄ (A,M)| ≤ ℵ0. If
A is finite then this follows from Lemma 1.8, so let’s assume that A is infinite. By
Proposition 2.5 there is N <Ln M such that N is (Ln,ℵ1,∞)-saturated. Let ȳ be
a sequence such that |ȳ| = n− 1 and no variables in ȳ occur in x̄. By Lemma 1.8,
F n
x̄,ȳ is finite up to equivalence modulo T . Let

ϕ1(x̄, ȳ), . . . , ϕr(x̄, ȳ)

be formulas in F n
x̄,ȳ such that any other formula in F n

x̄,ȳ is equivalent, modulo T ,
to ϕi(x̄, ȳ) for some 1 ≤ i ≤ r. Then we have

|Snx̄ (A,M)| ≤ |S(ϕ1,x̄)(A,M)× . . .× S(ϕr,x̄)(A,M)|

so it suffices to show that |S(ϕi,x̄)(A,M)| ≤ ℵ0 whenever 1 ≤ i ≤ r. Since
ϕi(x̄, ȳ) does not have the order property with respect to T and N is (Ln,ℵ1,∞)-
saturated it follows, by Theorem I.2.10 in [33], that |S(ϕi,x̄)(A,N)| ≤ ℵ0. We
also have S(ϕi,x̄)(A,M) = S(ϕi,x̄)(A,N), because A ⊆ M 4Ln N , and therefore
|S(ϕi,x̄)(A,M)| ≤ ℵ0.

(ii)⇒(i). If some ϕ(x̄, ȳ) ∈ Ln has the order property with respect to T then
it follows by Theorem II.2.2 in [33] that there are M |= T and A ⊆ M such that
|A| ≤ ℵ0 and |Sn(A,M)| > ℵ0. �
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Definition 3.2 T is stable in Ln if T does not have the order property in Ln. T is
ω-stable in Ln if for all M |= T and all A ⊆M , if |A| ≤ ℵ0 then |Sn(A,M)| ≤ ℵ0.
We say that T is unstable in Ln if T is not stable for Ln.

With this terminology Proposition 3.1 can be expressed as follows.

Corollary 3.3 If Snn(T ) is finite (so in particular, if T has finite models) then T
is stable in Ln if and only if T is ω-stable in Ln.

For a definition of stability and ω-stability for complete L-theories, see for example
[33]. We can now relate stability of T (for Ln) with ω-stability of T c.

Corollary 3.4 If Snn(T ) is finite and the vocabulary of L contains no function
symbols then T is stable in Ln if and only if T c is ω-stable.

Proof. First note that since the vocabulary of L contains no function symbols, T c

exists. Let A ⊆M |= T c and suppose that T is stable for Ln. By Proposition 2.9
and Lemma 2.11 it follows that if p(x̄) ∈ Sx̄(A,M) then p(x̄) is determined by
p(x̄) ∩ Ln(A) ∈ Snx̄ (A,M) so, by Corollary 3.3, if |A| ≤ ℵ0 then |Sx̄(A,M)| ≤ ℵ0.

Now suppose that ϕ(x̄, ȳ) ∈ Ln is unstable for Ln, i.e. some ϕ(x̄, ȳ) ∈ Ln has
the order property with respect to T . Then there are M |= T and āi, b̄i ∈ M for
i < ω such that for all i, j < ω

M |= ϕ(āi, b̄j) if and only if i ≤ j.

By Proposition 2.5 let N <Ln M be (Ln, ω,∞)-saturated. Then N |= T c and

N |= ϕ(āi, b̄j) if and only if i ≤ j

so T c is unstable and hence not ω-stable. �

The next example shows that the assumption that Snn(T ) is finite is necessary in
Corollary 3.3. The author does not know if the (tacit) assumption in Corollary 3.3
that T has the Ln-amalgamation property is necessary.

Example 3.5 Let T ′ = ThL((Z,+, 0)) and let T = T ′ ∩ Ln for some fixed n ≥ 3.
So, for the moment, we assume that the vocabulary of L consists of a function
symbol +, a constant symbol 0, and as always the identity symbol =. We will show
that T is stable in Ln but not ω-stable for Ln. We use the fact that the complete
theory of any abelian group is stable. (This is proved in [3] and as mentioned
in [32] it also follows from results in [12] and [31].) First we show that T is not
ω-stable in Ln and that Snn(T ) is infinite.

Let P ⊆ Z be the set of (positive) primes. For every X ⊆ P we define a set of
formulas ΦX by

ΦX = {∃v2(v2 + . . .+ v2︸ ︷︷ ︸
p times

= v1) : p ∈ X}

∪ {¬∃v2(v2 + . . .+ v2︸ ︷︷ ︸
q times

= v1) : q ∈ P −X}.
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So ΦX says that exactly the primes in X divide v1. By compactness ΦX is consis-
tent with T for every X ⊆ P and clearly ΦX ∩ΦY is inconsistent if X 6= Y . Since
every ΦX can be extended to a complete Ln-type it follows that |Sn1 (T )| = 2ℵ0 , so
T is not ω-stable in Ln.

It remains to show that T is stable in Ln. Suppose it is not. Then there are
ϕ(x̄, ȳ) ∈ Ln, M |= T and āi, b̄i ∈M , for i < ω, such that

M |= ϕ(āi, b̄j) ⇔ i ≤ j. (∗)

Since M |= T and the axioms for abelian groups are axiomatizable by sentences in
L3 (with the given vocabulary) it follows that M is an abelian group, so ThL(M)
is stable, which contradicts (∗). Hence we conclude that T is stable for Ln.

If T = ThLn((Z, G+, 0)) where n ≥ 5 and G+ is the graph of the addition
function, (so now we assume that the vocabulary of L consists of a ternary relation
symbol, a constant symbol, and the identity symbol) then T will be a complete
Ln-theory, where the vocabulary of L contains no function symbols, such that T
is stable in Ln but not ω-stable in Ln. The proof is similar to the one given above;
we just have to express, in Ln, the axioms of abelian groups and the statements
“p divides v1” by using G+ instead of +.

4 Finite models

We are now in position to collect the main results of this chapter.

Theorem 4.1 Suppose that the vocabulary of L contains no function symbols and
that n is greater than or equal to the arity of every relation symbol in the vo-
cabulary. Let T be a complete Ln-theory with infinite models such that Snn(T ) is
finite, T is stable in Ln and T has the (Ln,∞)-amalgamation property. Then the
canonical completion, T c, exists and is a complete L-theory which extends T and
is ω-categorical and ω-stable.

Proof. By Corollary 2.10 (i) T c is ω-categorical and by Corollary 3.4 T c is ω-stable.
�

Theorem 4.2 Suppose that the vocabulary of L is finite and contains no function
symbols. If M is an L-structure which is ω-categorical and ω-stable then for every
1 ≤ n < ω and every finite A ⊆M there is a finite N 4Ln M such that A ⊆ N .

Proof. Let M be an ω-categorical and ω-stable L-structure and let A ⊆ M be
finite. Let T = ThLn(M) and T ′ = ThL(M). Sn(T ′) is finite because M is ω-
categorical. Hence Snn(T ′) is finite and by Lemma 1.2 Snn(T ) is finite. Then by
Lemma 1.8 F n

n is finite up to equivalence modulo T . Let

ϕ1(v1, . . . , vn), . . . , ϕr(v1, . . . , vn) ∈ F n
n

be such that every formula in F n
n is equivalent, modulo T , to one of the ϕi’s. Let

R1, . . . , Rr be new n-ary relation symbols and let L1 be the language obtained
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from L by adding Ri , for 1 ≤ i ≤ r, to the vocabulary. Let M1 be the expansion
of M which is obtained by interpreting Ri as follows:

for any ā ∈Mn, M1 |= Ri(ā) ⇔ M |= ϕi(ā).

Then M1 is ω-categorical and ω-stable. Let T1 = ThLn
1
(M1) and T ′1 = ThL1(M1).

Then

T1 ` ∀v1, . . . vn[ϕi(v1, . . . vn)↔ Ri(v1, . . . vn)], for all 1 ≤ i ≤ r. (∗)

Observe that the formula above is in Ln1 . Since M1 is ω-categorical, Sn(T ′1) is
finite and then Snn(T ′1) is finite so by Lemma 1.2 Snn(T1) is finite. By Fact 1.4, T1

is axiomatized by an Ln1 -sentence σ.

Let M2 = (M1, A), so M2 is the expansion of M1 which is obtained by naming
the finitely many elements in A. Then M2 is ω-categorical and ω-stable. Also
note that every substructure of M2 includes A. We will now use a theorem, first
proved by B. Zilber in the totally categorical case, and then generalized by Cherlin,
Harrington and Lachlan in [6] to yield:

If M ′ is an ω-categorical and ω-stable structure (in a language with at most
finitely many function symbols) and ψ is a sentence such that M ′ |= ψ then
there exists a finite substructure N ′ ⊆M ′ such that N ′ |= ψ.

Since M1 |= σ we have M2 |= σ and hence there exists a finite substructure N2 of
M2 such that N2 |= σ. Let N1 be the reduct of N2 to L1 and let N be the reduct
of N2 to L. Then A ⊆ N and N is a substructure of M . It remains to show that
N is an Ln-elementary substructure of M . Note that N1 |= σ and hence N1 |= T1.
Let ā ∈ N . Then for 1 ≤ i ≤ r,

N |= ϕi(ā)

⇔ N1 |= ϕi(ā) since ϕi ∈ L
⇔ N1 |= Ri(ā) by (∗)
⇔ M1 |= Ri(ā) since N1 is a substructure of M1

⇔ M1 |= ϕi(ā) by (∗)
⇔ M |= ϕi(ā) since ϕi ∈ L.

Hence N 4Ln M . �

Remark 4.3 Since ω-categoricity and superstability together implies ω-stability
it follows that Theorem 4.2 stays true if we replace ω-stable by superstable. Also
note that Theorem 4.2 does not depend on any results from sections 2 or 3. The
essential ingredients of the proof are Fact 1.4 and the above mentioned result from
[6].

By combining Theorem 4.1 and Theorem 4.2 we get:
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Corollary 4.4 Suppose that the vocabulary of L is finite and contains no function
symbols and that n is greater than or equal to the arity of every relation symbol in
the vocabulary. Let T be a complete Ln-theory such that T has an infinite model,
Snn(T ) is finite and T is stable in Ln.
(i) If T has the (Ln,∞)-amalgamation property then T has arbitrarily large finite
models (which can be taken as Ln-elementary substructures of any model of T c).
(ii) (Finite amalgamation for Ln.) Suppose that T has the Ln-amalgamation
property. Let M1 and M2 be finite models of T and suppose ā ∈ M1, b̄ ∈ M2,
|ā| = |b̄| and (M1, ā) ≡Ln (M2, b̄). Then there exist a finite N <Ln M1 and an
Ln-elementary embedding f : M2 → N such that f(b̄) = ā.

Proof. (i) follows immediately from Theorem 4.1 and Theorem 4.2. Now we
prove (ii). By the Ln-amalgamation property there exists M <Ln M1 and an
Ln-elementary embedding f : M2 → M such that f(b̄) = ā. If M is finite then
we are done, so now suppose that M is infinite. By Proposition 2.2 there exists
N ′ <Ln M such that N ′ is (Ln, ω)-saturated. Then ThL(N ′) = T c (by definition
of T c) so N ′ is ω-categorical and ω-stable (since T c is, by Theorem 4.1) and hence,
by Theorem 4.2, there exists a finite N 4Ln N ′ such that M1 ∪ f(M2) ⊆ N . Since
M1 4Ln M 4Ln N ′ and N ′ <Ln N ⊇ M1 it follows that M1 4Ln N . Since f :
M2 →M is an Ln-elementary embedding and M 4Ln N ′ and N ′ <Ln N ⊇ f(M2)
it follows that f : M2 → N is an Ln-elementary embedding (and of course, we still
have f(b̄) = ā). �

Example 4.5 As an example of a theory which satisfies the conditions of the
last corollary, including the Ln-amalgamation property, we can take the complete
Ln-theory, where n ≥ 4 and the vocabulary of L contains only one binary relation
symbol, of a disjoint union of trees (where a tree is viewed as an undirected
connected graph without cycles and the relation symbol of L is interpreted as the
edge relation) such that,

for some k < ω, there is no path (in any tree) of length more than k, and

(a) there are (at least) n trees that are isomorphic, or

(b) there is at least one vertex a (in some tree) which has (at least) n
neighbours b1, . . . , bn such that if Gi is the subgraph which is induced
by the set containing exactly bi and every vertex that can be reached
from bi by a path which does not contain a, then, for all 1 ≤ i, j ≤ n,
there is an isomorphism from Gi onto Gj which maps bi to bj.

The (tedious) verification of this is left to the reader; note that “there exists a
path of length m from x to y” is expressible in L4 for any m < ω and that a tree
which does not satisfy (b) is determined up to isomorphism by its Ln-theory.

After Remark 6.12 we will see a more general way of producing examples of com-
plete Ln-theories which are stable and have the amalgamation property in a more
general sense, but which still have arbitrarily large finite models.

28



5 When amalgamation fails

In this section we will see an example, due to Simon Thomas, of a complete L4-
theory T such that the vocabulary of L contains only a binary relation symbol
and the identity symbol, T has infinite models, S4

4(T ) is finite, T is stable in L4

but T has only finitely many finite models. It follows from Corollary 4.4 (i) that
T does not have the (L4,∞)-amalgamation property. Hence, in Corollary 4.4 (i)
we can not omit the assumption that T has the (Ln,∞)-amalgamation property.

Let the vocabulary of L consist of a binary relation symbol R and the identity
symbol =. If M is an L-structure and a, b ∈ M then we say that a and b are
adjacent if M |= R(a, b)∨R(b, a). Otherwise we say that a and b are nonadjacent.
Consider the following axioms:

A0 : R is symmetric and irreflexive.

A1 : There are at least 4 elements.

A2 : There does not exist elements a, b, c such that R(a, b), R(b, c) and R(c, a).

A3 : For all a and b, if a 6= b and a and b are nonadjacent then there is a unique
element which is adjacent to both a and b.

A4 : For all a there are at least 3 elements which are adjacent to a.

A5 : ∀v1, v2, v3

( ∧
1≤i<j≤3

vi 6= vj → ∃v4

( ∧
1≤i≤3

v4 6= vi ∧

∧
1≤i≤3

¬R(v4, vi) ∧ ¬∃v1

∧
2≤i≤4

R(v1, vi)

))
.

Clearly all the above axioms can be expressed in L4, and any model of A0 is
an undirected graph. By a graph we will mean an undirected graph. Let T =
{A0, . . . ,A5}. Simon Thomas has shown (in unpublished notes) that T is a com-
plete L4-theory which has finitely many finite models and also infinite models. We
will show this in essentially the same way as he has done. Then we will also show
that T is stable in L4.

It is not difficult to see that a finite graph which satisfies axioms A1 - A4 has
diameter 2, is regular (i.e. all vertices have the same degree) and has no cycles
of length less than 5. Hoffman and Singleton [17] has proved that a finite regular
graph with diameter 2 which has no cycles of length less than 5 must have degree 3
or 7 or 57. Moreover they showed that there is a unique such graph with degree 3,
the Petersen graph, and a unique such graph with degree 7, the Hoffman-Singleton
graph. It is unknown whether there exists such a graph with degree 57.

By an easy counting argument it follows that a finite regular graph with degree
d which satisfies A1 - A4 has exactly d2+1 vertices. Hence there are at most finitely
many finite models of T . The Hoffman-Singleton graph, with R interpreted as the
edge relation, is one of them (and perhaps the only one). This is not too difficult
to see by considering a construction of the Hoffman-Singleton graph, due to N.
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Robertson, which can be found in [4]. We now show that T also has infinite
models.

Let G0 = ∅ and let G1 be any nonempty (finite or infinite) graph such that there
are no edges between any two elements of G1. Inductively we define graphs Gk, for
1 < k < ω, such that Gi is an induced subgraph of Gi+1 (in model theoretic terms
this simply means that Gi is a substructure of Gi+1) for every i < ω. Suppose
that Gi is defined for 0 ≤ i ≤ k where 2 ≤ k < ω. Let Gk+1 contain the vertices
and edges in Gk together with exactly the new vertices and edges specified by (i)
and (ii) below:

(i) For every {a, b} ⊆ Gk such that a 6= b, a and b are nonadjacent and there
is no vertex in Gk which is adjacent to both a and b, add one new vertex c
to Gk+1 and join c with both a and b. Do not join c to any other vertex in
Gk+1.

(ii) Add one new vertex d to Gk+1 and do not join d to any vertex in Gk+1.

Let G be the graph with vertices
⋃
k<ω V (Gk) and edges

⋃
k<ω E(Gk), where V (Gk)

is the set of vertices of Gk and E(Gk) is the set of edges of Gk. By step (ii), G is
infinite. We may view G as an L-structure by interpreting R as the edge relation
in G. Clearly G satisfies A0 and A1. Since G1 satisfies A2 it follows from the
construction that every Gk, for k > 1, satisfies A2 and hence also G satisfies A2.
By (i) in the construction, G satisfies A3. It follows from (i) and (ii), iterated 3
times, that G satisfies A4; in fact, every vertex in G has infinite degree. Next, we
show that G |= A5. Let a1, a2, a3 ∈ G be distinct. Then a1, a2, a3 ∈ Gk for some
k. By (ii) there is a4 ∈ Gk+1 − Gk which is nonadjacent to a1, a2 and a3. If a2

and a3 are adjacent then, by A2, there is no b ∈ G which is adjacent to a2, a3 and
a4. Now suppose that a2 and a3 are nonadjacent. Then by A4 there is a unique b
which is adjacent to both a2 and a3. Then a2, a3, b ∈ Gl for some l. By (ii) there
is a′4 ∈ Gl+1 −Gl which is nonadjacent to a2, a3 and b. By the choice of b and a′4
and the uniqueness part of axiom A3 there can not exist c ∈ G which is adjacent
to a2, a3 and a′4. Hence G |= A0, . . . ,A5 so G is an infinite model of T .

We now show that T is a complete L4-theory. Let M |= T and let a1, a2, a3 ∈M
be distinct. Then (a1, a2, a3) has one of the following configurations, up to a
permutation of {1, 2, 3} :

(1)

A
A
A
A

�
�
�
�

s
s

sa1

a2

a3

(2)s s
s

a1 a3

a2

(3)

@
@

�
�

s s
sc

a1 a3

a2

(4)s s
s

a1 a3

a2

where (3) expresses that a1, a2 and a3 are mutually nonadjacent and there exists
a vertex which is adjacent to a1, a2 and a3, and (4) expresses that a1, a2 and a3

are mutually nonadjacent and there does not exist a vertex which is adjacent to
a1, a2 and a3. We will show that the configuration (as given above) of (a1, a2, a3)
determines the L4-type of (a1, a2, a3), that is,
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(I) if a1, a2, a3 ∈ M |= T are distinct and b1, b2, b3 ∈ N |= T are distinct and
(a1, a2, a3) and (b1, b2, b3) have the same configuration then

(M,a1, a2, a3) ≡L4 (N, b1, b2, b3).

Since every configuration is realized in every model of T it follows that any two
models of T are L4-elementarily equivalent. Hence T is a complete L4-theory.

We prove (I) by showing that Duplicator (sometimes called player II, or ∃)
has a winning strategy for the 4-pebble game i ω rounds, where 3 of the pebbles
played on M are initially placed on a1, a2 and a3, and 3 of the pebbles played on
N are initially placed on b1, b2 and b3. This game theoretic characterization of
Ln-elementary equivalence comes from Immerman [22], and implicitly, Poizat [29].
It is enough to show that whenever a1, a2, a3 ∈M |= T are distinct and b1, b2, b3 ∈
N |= T are distinct and (a1, a2, a3) and (b1, b2, b3) have the same configuration then
for any a4 ∈M −{a1, a2, a3} there is b4 ∈ N −{b1, b2, b3} such that (ai, aj, ak) and
(bi, bj, bk) have the same configuration for all 1 ≤ i < j < k ≤ 4.

So now suppose that a1, a2, a3 ∈ M |= T are distinct and b1, b2, b3 ∈ N |= T
are distinct and (a1, a2, a3) and (b1, b2, b3) have the same configuration. Let a4 ∈
M −{a1, a2, a3}. If, up to a permutation of {1, 2, 3}, (a1, a2, a3) has configuration
(1) then, up to a permutation of {1, 2, 3}, (a1, a2, a3, a4) has one of the following
configurations:

(1) (a)

A
A
A
A

�
�
�
�

A
A
A
A

s
s

s
s

a1

a2

a3

a4

(b)

A
A
A
A

�
�
�
�

s
s

s
s

a1

a2

a3

a4

(c)

A
A
A
A

�
�
�
�

s
s

s
s

a1

a2

a3

a4

If, up to a permutation of {1, 2, 3}, (a1, a2, a3) has configuration (2) then, up to a
permutation of {1, 2, 3}, (a1, a2, a3, a4) has one of the following configurations:

(2) (a)

�
�
�
�

s s
s

s
a1 a3

a2

a4

(b)

�
�
�
�

s s
s

s
a1 a3

a2

a4

(c)

s s
s

s
a1 a3

a2

a4
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(d)

Q
Q

Q
Q

Q
Q

�
�

�
�

�
�

s s
s

s
ca1 a3

a2

a4

(e)

s s
s

s
a1 a3

a2

a4

If, up to a permutation of {1, 2, 3}, (a1, a2, a3) has configuration (3) then, up to a
permutation of {1, 2, 3}, (a1, a2, a3, a4) has one of the following configurations:

(3) (a)

A
A
A
A

@
@

�
�

s s
s

s

c
a1 a3

a2

a4

(b)

@
@

�
�

s s
ss

a1 a3

a2

a4

(c)

@
@

�
�

s s
s

s

c
a1 a3

a2

a4

(d)

@
@
�
�

s s
s

s

c
a1 a3

a2

a4

If, up to a permutation of {1, 2, 3}, (a1, a2, a3) has configuration (4) then, up to a
permutation of {1, 2, 3}, (a1, a2, a3, a4) has one of the following configurations:
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Since N |= T we can, in all cases, find b4 ∈ N such that (a1, a2, a3, a4) and
(b1, b2, b3, b4) have the same configuration. To verify this is left to the reader. In
cases (3)(d) and (4)(c) it is useful to observe that every vertex in any model of T
has degree at least 4; this follows from axioms A3, A4 and A5. The proof of (I) is
now finished.

Clearly all tuples which realize the same type p ∈ S4
4(T ) have the same con-

figuration. Conversely, the above proof of (I) also shows that any p ∈ S4
4(T ) is

determined by the configuration of any tuple (a1, a2, a3, a4) realizing it; in fact it
follows that any p ∈ S4

4(T ) is determined by the configurations of (ai, aj, ak) for
1 ≤ i < j < k ≤ 4 where (a1, a2, a3, a4) is any tuple which realizes p. In particular,

(II) if p, q ∈ S4
4(T ) then p = q if and only if p ∩ F 4

(vi,vj ,vk) = q ∩ F 4
(vi,vj ,vk) for all

1 ≤ i < j < k ≤ 4.
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Hence S4
4(T ) is finite. This also follows from the fact that T has a finite model. We

will show that T is stable in L4 by obtaining a contradiction from the assumption
that some formula in L4 has the order property with respect to T .

Suppose that ϕ(x̄, ȳ) ∈ L4 has the order property with respect to T . Without
loss of generality we may assume that x̄ = v1, . . . , vs, ȳ = vs+1, . . . , ys+t, 1 ≤ s, t ≤
3, s+ t = 4 and ϕ(x̄, ȳ) ` vk 6= vl if 1 ≤ k, l ≤ 4 and k 6= l. Then there are M |= T
and āi, b̄i ∈M for i < ω such that |āi| = |x̄|, |b̄i| = |ȳ| for all i < ω and

M |= ϕ(āi, b̄j) ⇔ i ≤ j for all i, j < ω.

By Ramsey’s theorem and the fact that S4
4(T ) is finite there are infinite sub-

sequences (ā′i)i<ω and (b̄′i)i<ω of (āi)i<ω and (b̄i)i<ω, respectively, and p(x̄, ȳ),
q(x̄, ȳ) ∈ S4

4(T ) such that p 6= q, M |= p(ā′i, b̄
′
j) if i ≤ j and M |= q(ā′i, b̄

′
j) if i > j.

By (II) there are 1 ≤ k < l < m ≤ 4 and p′(vk, vl, vm), q′(vk, vl, vm) ∈ S4
(vk,vl,vm)(T )

such that p′ ⊂ p, q′ ⊂ q and p′ 6= q′. Then there are c̄i, d̄i ∈ M , for i < ω, such
that |c̄i| = |c̄j|, |d̄i| = |d̄j|, |c̄i|+ |d̄i| = 3, for all i, j < ω, and

(III) M |= p′(c̄i, d̄j) if i ≤ j and M |= q′(c̄i, d̄j) if i > j.

Suppose that |c̄i| = 2 and |d̄i| = 1. The other case is treated in a similar way.
If we assume that R(vk, vm) ∈ p′ or R(vl, vm) ∈ p′ then from (III) we will

get a contradiction to the uniqueness part of axiom A3. In the same way we
get a contradiction if we assume that R(vk, vm) ∈ q′ or R(vl, vm) ∈ q′. Hence,
¬R(vk, vm),¬R(vl, vm) ∈ p′ and ¬R(vk, vm),¬R(vl, vm) ∈ q′

If we assume that R(vk, vl) ∈ p′ then it follows from (III) that R(vk, vl) ∈ q′.
Since p′ 6= q′ it follows (by (I)) that there is i ∈ {k, l} such that R(vi, vm) ∈
p′ or R(vi, vm) ∈ q′ which we just showed is impossible. Hence we must have
¬R(vk, vl) ∈ p′. By a symmetric argument we also have ¬R(vk, vl) ∈ q′.

Now we have shown that ¬R(vk, vm), ¬R(vl, vm), ¬R(vk, vl) ∈ p′∩q′, and since
p′ 6= q′, the only alternatives are that every realization of p′ has configuration
(3) and every realization of q′ has configuration (4), or vice versa. It is left to the
reader to verify that in both cases the uniqueness part of axiom A3 is contradicted.
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CHAPTER II

Finite variable logic and elimination of quantifiers

This chapter continues the studies from the the first. Let’s start by looking at a
complete Ln-theory T such that T has an infinite model, Snn(T ) is finite, T has
the (Ln,∞)-amalgamation property and is stable in Ln. By Theorem 4.1 T has a
complete extension T c which is ω-categorical and ω-stable. Since Snn(T ) is finite,
Proposition 2.9 and Lemma 2.11 implies that if M |= T c then we can expand M
by finitely many new relation symbols so that the expansion admits elimination of
quantifiers. We say that a structure with this property almost admits elimination
of quantifiers. The main results in this chapter, applied to T , are consequences of
the fact that T has an infinite model which is stable and almost admits elimination
of quantifiers. This observation suggests that we can generalize the notions of
amalgamation and stability from the first chapter so that the main steps in the
development there work out for all complete Ln-theories with such a model. In
particular, Corollary 4.4 (i) can be stated in the more general setting. We do these
things in Section 6.

Then we turn to the main subjects of this chapter, namely, for a “nice” Ln-
theory T , investigating the structure of models of T and finding recursive upper
bounds of the smallest model, computed from |Snn(T )|. In Section 7 the recursive
bounds are derived from a decidability result due to Cherlin and Hrushovski.

The section thereafter is concerned with forking and strictly minimal sets in
stable structures for which types of arbitrarily long tuples are determined by the
types of all subtuples of length at most n (for some n < ω). The main result,
that in such structures which are also ω-categorical, strictly minimal sets are
indiscernible, is a reformulation of a result due to Lachlan, but we will give a
proof different from his.

In the final section we will use the theory of stable homogeneous structures,
in the sense of [27],[25] and [28], to show how new models (finite and infinite)
of a complete Ln-theory can be constructed if it has an infinite stable model
which almost admits elimination of quantifiers. The method by which models are
constructed is a generalization of the “shrinking” technique of Lachlan. We will
also show that any sufficiently saturated substructure of an infinite stable structure
M , which admits elimination of quantifiers in an expansion by finitely many new
relation symbols of arity at most n, can be constructed in this way. The amount
of saturation that is necessary can be effectively computed from the number of
types in n free variables that are realized in M . Finally, we draw some conclusions
from these results which more directly apply to the context of Section 6.
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6 Amalgamation revisited

The amalgamation property studied in this section, i.e. the existence of a Φ-
amalgamation class (a variation, among many, of a notion due to Fräıssé [13]), is
different from the amalgamation properties studied in the previous chapter and [2],
in, among other things, that we only require amalgamation for a possibly proper
subclass of the class of all models of the theory in question, and that we don’t
restrict ourselves to Ln. The same approach as here is made in [18] but there
some extra conditions are used which are not needed here because we impose
some more restrictions (stronger than in [18]) on the set of formulas which we
pay attention to when we amalgamate. Even though most of the work is carried
out with some, less specified, set of formulas Φ instead of Ln it turns out that,
in the situations that are of primary interest, Φ can be replaced by Ln, for some
n. We finally arrive at the result that an Ln-theory, with a finite bound on its
number of Ln-types, has an Lm-amalgamation class which is stable in Lm, for
some m with n ≤ m < ω, if and only if the theory has a stable model which
admits elimination of quantifiers in some expansion by finitely many new relation
symbols. This generalizes Corollary 4.4 (i) and gives a way to generate examples
of complete Ln-theories for which the main results of this chapter apply.

Let L be any countable first-order language and let Φ ⊆ L. If M and N are
L-structures and ai ∈M, bi ∈ N , for i < λ, then we write

(M, (ai : i < λ)) ≡Φ (N, (bi : i < λ))

if for every m < ω and ϕ(x1, . . . xm) ∈ Φ and {i1, . . . , im} ⊆ λ,

M |= ϕ(ai1 , . . . , aim) if and only if N |= ϕ(bi1 , . . . , bim).

A function f : A → N , where A ⊆ M , is called a Φ-elementary embedding if for
every ϕ(x̄) ∈ Φ and ā ∈ A with |ā| = |x̄|, we have

M |= ϕ(ā) if and only if N |= ϕ(f(ā)).

If M and N are L-structures and M is a substructure of N such that for every
ϕ(x̄) ∈ Φ and every ā ∈M with |ā| = |x̄|, M |= ϕ(ā) if and only if N |= ϕ(ā), then
we say that M is a Φ-elementary substructure of N and that N is a Φ-elementary
extension of M , which we write as M 4Φ N . We say that a nonempty class, A,
of countable L-structures is a Φ-amalgamation class if:

1. A is closed under isomorphisms.

2. A is closed under Φ-elementary substructures, i.e. if N ∈ A and M 4Φ N
then M ∈ A.

3. Whenever M1,M2 ∈ A, ai ∈M1, bi ∈M2, for i < k < ω, and

(M1, (ai : i < k)) ≡Φ (M2, (bi : i < k)),

then there are N ∈ A and a Φ-elementary embedding f : M2 → N such that
M1 4Φ N and f(bi) = ai for all i < k.
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We say that a theory T has a Φ-amalgamation class if there exists a Φ-amalga-
mation class A such that every structure in A is a model of T .

Remark 6.1 Observe that a Φ-amalgamation class need not have the joint em-
bedding property (see [16] for a definition). Also note that if A′ is a class of (not
necessarily countable) structures which satisfies 1,2 and 3 and A is the class of all
countable structures in A′ then, by the downward Löwenheim-Skolem theorem,
A is a Φ-amalgamation class. It follows that if a complete Ln-theory with infi-
nite models has the Ln-amalgamation property ((Ln,∞)-amalgamation property)
then the class of all countable models of T (infinite countable models of T ) is an
Ln-amalgamation class.

We say that p ⊆ Φ is a (Φ,A)-type if there are M ∈ A and a finite sequence ā ∈M
such that

p = {ϕ(x̄) ∈ Φ : M |= ϕ(ā)}.

If A is a Φ-amalgamation class and κ a cardinal then we say that M is (Φ, κ,A)-
saturated if whenever λ < κ, b ∈ N ∈ A, ai ∈M ∩N , for i < λ, and

(M, (ai : i < λ)) ≡Φ (N, (ai : i < λ)),

then there exists c ∈M such that (M, c, (ai : i < λ)) ≡Φ (N, b, (ai : i < λ)).
If T is a theory and ϕ(x̄) and ψ(ȳ) are two formulas, then let’s say that ϕ

and ψ are essentially equivalent, modulo T , written ϕ ∼T ψ, if x̄ and ȳ have the
same length and for all M |= T and all ā ∈ M of the same length as x̄ and ȳ we
have M |= ϕ(ā) if and only if M |= ψ(ā). Note that ∼T is an equivalence relation
(on any set of formulas). If T = ∅ then we just say that ϕ and ψ are essentially
equivalent and write ϕ ∼ ψ. We say that a set of formulas Φ is essentially closed
under subformulas if for any ϕ ∈ Φ and subformula ψ of ϕ, there is a formula in
Φ which is essentially equivalent to ψ.

Lemma 6.2 Suppose that Φ is essentially closed under subformulas and that
Mi 4Φ Mi+1, for i < κ. Let M =

⋃
i<κMi. Then Mi 4Φ M for all i < κ.

Proof. Induction on complexity of formulas in Φ. �

Lemma 6.3 Suppose Φ is essentially closed under subformulas. If A is a Φ-
amalgamation class such that the set of all (Φ,A)-types is countable, then there
exists a structure M , such that

(i) M is (Φ, ω,A)-saturated,

(ii) for every finite ā ∈M there exists N ∈ A such that ā ∈ N and
(M, ā) ≡Φ (N, ā), and

(iii) if T is an L-theory such that T ⊆ Φ and all structures in A are models of T
then M |= T .

Proof. We use the idea in the proof of Fräıssé’s theorem in [16] to construct
Mi ∈ A, for i < ω, such that
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Mi 4Φ Mi+1, for all i < ω, and

for any i < ω, finite ā ∈ Mi and N ∈ A, if ā, b ∈ N and (Mi, ā) ≡Φ (N, ā),
then there exists j ≥ i and c ∈Mj such that (Mj, āc) ≡Φ (N, āb).

Let π : ω3 → ω be a bijection such that π(i, j, k) ≥ i, j, k for all i, j, k and let
pk, k < ω, be an enumeration of all (Φ,A)-types. Let M0 ∈ A be arbitrary.
Now suppose that Mi is defined for all i < ` + 1, Mi 4Φ Mi+1 for all i < ` and
that āji , j < ω, is an enumeration of all finite sequences of elements from Mi, for
i < ` + 1. Suppose that ` = π(i, j, k). If there exists N ∈ A and b ∈ N such
that āji ∈ N , pk = {ϕ(x̄, y) ∈ Φ : N |= ϕ(āji , b)} and (Mi, ā

j
i ) ≡Φ (N, āji ), then

(M`, ā
j
i ) ≡Φ (N, āji ) so, by condition 3 in the definition of a Φ-amalgamation class,

there are M`+1 ∈ A and c ∈ M`+1 such that M` 4Φ M`+1 and (M`+1, āc) ≡Φ

(N, āb). Otherwise let M`+1 = M`.
Let M =

⋃
i<ωMi. Since Φ is closed under subformulas it follows from

Lemma 6.2 that Mi 4Φ M , for all i < ω, and from this we get (i). (ii) and
(iii) follows from the construction of M . �

If A is a Φ-amalgamation class as in Lemma 6.3 and M satisfies (i) and (ii) in the
same lemma, then we say that M is a limit of A.

Lemma 6.4 Suppose that Φ is essentially closed under subformulas and that every
atomic formula of L is essentially equivalent to a formula in Φ. Let A be a Φ-
amalgamation class and suppose that M and N are limits of A. Then for any
finite sequences ā ∈M and b̄ ∈ N with |ā| = |b̄|,

if (M, ā) ≡Φ (N, b̄) then (M, ā) ≡L (N, b̄). (∗)

Proof. Back and forth argument as in the proof of Proposition 2.6, where we
replace Ln by Φ and use the assumption that M and N are limits of A and an
appropriate variation of Lemma 2.3. �

If (∗) in Lemma 6.4 holds with M = N and for all ā, b̄ ∈ M , with |ā| = |b̄|, then
we say that M is Φ-determined.

Remark 6.5 It is possible that A as in Lemma 6.3 has two limits M1, M2 such
that M1 6≡ M2, or even M1 6≡Φ M2. But if A is an Ln-amalgamation class such
that all structures in A are Ln-elementarily equivalent, the vocabulary of L does
not contain any function symbols and the arity of every relation symbol ≤ n, then
by Lemma 6.3 (ii) (applied to ā = ‘the empty sequence’) and Lemma 6.4 it follows
that any two limits of A are elementarily equivalent.

Lemma 6.6 If T ⊆ Φ is a set of sentences and M a model of T which is
Φ-determined and either finite, or infinite and ω-saturated, then T has a Φ-
amalgamation class.

Proof. Let A be the class of all countable N 4Φ M and all structures isomorphic
to these. It is not difficult to verify that A is a Φ-amalgamation class A such that
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every structure in A is a model of T . �

We say that a structure M almost admits elimination of quantifiers (or quantifier
elimination) if some expansion of M by finitely many new relation symbols admits
elimination of quantifiers. It is easy to see (using the Ryll-Nardzewski theorem)
that if M is an L-structure which almost admits elimination of quantifiers and the
vocabulary of L is finite and contains no function symbols, then M is ω-categorical
or finite. Also observe that (by a back and forth argument) a countable structure
M , in a language with no function symbols, admits elimination of quantifiers if
and only if every partial isomorphism between finite substructures of M extends
to an automorphism on M . Countable structures that satisfy these two conditions
are called homogeneous in [26], [27], [25] and [28], which we will refer to later.

If Φ is a set of formulas and k < ω then let

Φk = {ϕ ∈ Φ : at most k distinct variables occur free in ϕ}.

Proposition 6.7 Let T be an L-theory and let Φ be a set of L-formulas such that
(1) T ⊆ Φ.
(2) Φ is essentially closed under subformulas and every atomic formula in L is
essentially equivalent to a formula in Φ.
(3) For every k < ω, Φk/∼T is finite.
The following are equivalent :

(i) T has a Φ-amalgamation class.

(ii) There exists M |= T which is Φ-determined, and hence, if M is infinite, then
M is ω-categorical.

Remark 6.8 If, in addition to (1), (2) and (3), Φ satisfies:

(4) there is n < ω such that every formula in Φ is essentially equivalent to a
boolean combination of formulas in Φn (so in particular, if Φ = Φn),

then M from (ii) in Proposition 6.7 will be Φn-determined and therefore almost
admit quantifier elimination.

Proof of Proposition 6.7. (i) ⇒ (ii) follows from Lemma 6.3, Lemma 6.4 and the
third condition on Φ. Now suppose that (ii) holds. If M is infinite then M is
ω-saturated, because M is ω-categorical, so (i) follows by applying Lemma 6.6. �
The next lemma and the following proposition show that the generality which is
a priori gained by considering arbitrary Φ ⊆ L instead of Ln is actually rather
vacuous in the cases that we are most interested in.

Lemma 6.9 If Φ ⊆ L is essentially closed under subformulas and every formula
in Φ has at most n free variables then every formula in Φ is essentially equivalent
to a formula in Ln. In particular, every sentence in Φ is equivalent to a sentence
in Ln.

Proof. By induction on complexity of formulas in Φ. �
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Proposition 6.10 Let Φ ⊆ L and T be an L-theory. Suppose that Φ and T satisfy
the conditions (1) - (4), above. If T has a Φ-amalgamation class then T has an
Ln-amalgamation class.

Proof. Suppose that Φ and T satisfy (1) - (4). If there exists a Φ-amalgamation
class in which all structures are models of T then by Proposition 6.7 and Re-
mark 6.8 there exists M |= T which almost admits elimination of quantifiers. We
may assume that M is countable, so if M is infinite then it is ω-saturated. By
Lemma 6.9 every formula in Φn is essentially equivalent to an Ln-formula. There-
fore M is Ln-determined so by Lemma 6.6 there exists an Ln-amalgamation class
in which every structure is a model of T . �

If A is a Φ-amalgamation class, then we say that A is stable in Φ if for every
ϕ(x̄, ȳ) ∈ Φ there exists k < ω such that there does not existM ∈ A and āi, b̄i ∈M ,
for i < k, satisfying M |= ϕ(āi, b̄j) ⇔ i ≤ j. Let’s adopt the convention that
every finite structure is stable. By one of the usual definitions we say that an
infinite L-structure M is stable if there does not exist ϕ(x̄, ȳ) ∈ L, N ≡ M and
āi, b̄i ∈ N , for i < ω, such that N |= ϕ(āi, b̄j) ⇔ i ≤ j.

Proposition 6.11 Suppose that L has a finite vocabulary with no function sym-
bols and in which all relation symbols have arity at most n. Let T be an Ln-theory.
Then T has a stable model which almost admits quantifier elimination if and only
if for some m ≥ n, there are a complete Lm-theory T ′ ` T , such that Smm(T ′) is
finite and T ′ has an Lm-amalgamation class which is stable in Lm.

Proof. Suppose that T has a stable model M which almost admits quantifier
elimination. Then for some m ≥ n, M is Lm-determined and as claimed in the
proof of Lemma 6.6 the class A of all countable N 4Lm M and all structures
isomorphic to these is an Lm-amalgamation class such that every structure in A
is a model of T ′ = ThLm(M). By the fact that M almost admits elimination of
quantifiers and the choice of m, Smm(T ′) is finite. From the stability of M and the
definition of A it also follows that A is stable in Lm.

Now suppose that m ≥ n, T ′ ` T is a complete Lm-theory such that Smm(T ′)
is finite and that A is an Lm-amalgamation class which is stable in Lm and every
structure in A is a model of T ′. By Lemma 6.3, A has a limit, say M . Lemma 6.4
implies that M is Lm-determined. Since Smm(T ) is finite M almost admits elimina-
tion of quantifiers. If M is not stable then M is infinite and by Ramsey’s theorem
and the facts that M is Lm-determined and Smm(T ) finite it follows that there
exists ϕ(x̄, ȳ) ∈ Lm such that for all k < ω there are āki , b̄

k
i ∈ M , for i ≤ k, such

that M |= ϕ(āki , b̄
k
j ) ⇔ i ≤ j. Since, by definition, a limit of A satisfies (ii) in

Lemma 6.3, it follows that, for every k < ω, there is Nk ∈ A such that āki , b̄
k
i ∈ Nk,

for i ≤ k, and
(Nk, ā

k
0 b̄
k
0 . . . ā

k
kb̄
k
k) ≡Lm (M, āk0 b̄

k
0 . . . ā

k
kb̄
k
k),

contradicting that A is stable in Lm. �

Remark 6.12 Suppose that L and n are as in Proposition 6.11. If T in an Ln-
theory that satisfies the two equivalent conditions in Proposition 6.11 then, by
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Theorem 4.2 and the fact that every infinite stable structure which almost admits
quantifier elimination is ω-categorical and ω-stable, it follows that T has arbitrarily
large finite models. By Remark 6.1 this is a generalization of Corollary 4.4 (i).

Proposition 6.11 gives us a way of generating examples of complete Ln-theories T
such that Snn(T ) is finite and there exists an Ln-amalgamation class which is stable
in Ln and in which every structure is a model of T : Let M be an infinite and stable
L-structure that almost admits elimination of quantifiers. For some k < ω, there
will be an expansion of M by finitely many new relation symbols which admits
elimination of quantifiers and such that every symbol in the expanded language has
arity at most k. There exists a number ` < ω such that every type in Sk(ThL(M))
is isolated by a formula in L`. For every natural number n ≥ `, if T = ThLn(M)
then (by the proof of Proposition 6.11) T satisfies the above conditions.

A few examples of stable structures that admit elimination of quantifiers are
given in [25] and [28] (where a countable structure that admits elimination of
quantifiers is called ‘homogeneous’). Some of those examples are not infinite but
of arbitrarily large finite cardinality. From the (easily verified) fact that the class
of all L-structures which admit elimination of quantifiers, where L is a language
with finite relational vocabulary, is axiomatizable and the main result in [8] (also
described in [25] and [28]) it follows that if C is a class of finite L-structures
which admit elimination of quantifiers then any model of the theory of C (i.e.
the set of L-sentences that are true in all members of C) is stable. Consequently,
we can use the examples in [28] which are uniformly described for arbitrarily
large cardinalities to get, by compactness, infinite stable structures which admit
elimination of quantifiers. In the same way; from the fact that there are arbitrarily
large finite directed graphs admitting quantifier elimination which are not trivial,
by which I mean that they have two vertices that are adjacent and two vertices
that are not adjacent, it follows that there are nontrivial directed graphs which
are infinite, stable and admit elimination of quantifiers. Finite directed graphs
that admit elimination of quantifiers are studied in detail in [26].

It follows from Proposition 6.7 that the framework for studying Ln-theories
which was developed in Chapter I and continued here is too narrow to include
Ln-theories for which no infinite model is Ln-determined. Consider the following
example: Let V be an infinite vector space over a finite field F , and consider V as
an L-structure by letting the vocabulary of L consist of a binary function symbol,
interpreted in V as vector addition, and for every f ∈ F a unary function symbol
f, interpreted in V as scalar multiplication by f . Let T nV = ThLn(V ), where n ≥ 3.
Then every model of T nV is a vector space over F , so T nV is stable in Ln and Snn(T nV )
is finite. Suppose that there exists an Ln-amalgamation class A in which every
structure is a model of T nV and A has a limit M such that |M | ≥ |F |n+1. Since
M |= T nV (by Lemma 6.3 (iii)) M is a vector space over F and since M is big enough
we can find n+1 linearly independent elements a1, . . . , an+1 ∈M . Then the tuples
(a1, . . . an, an+1) and (a1, . . . , an, b), where b = a1 + . . .+an, have the same Ln-type
but different L-types. This contradicts Lemma 6.4, so an Ln-amalgamation class
like A can not exist. If we want a similar example in a language with no function
symbols then we can replace the function symbols in the above example by relation
symbols in the obvious way and assume that n ≥ 7.
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In Section 8 we will see that the type of amalgamation considered here rules
out all examples (of theories) for which all infinite models include (in an extension
by imaginary elements) a nontrivial strictly minimal set. Since T nV , as above, is
an axiomatization of vector spaces over F , several nice properties follow, such as
stability, finiteness of Sm(T nV ), for any m < ω, and the existence of arbitrarily
large finite models. This motivates looking for a more general notion of amalga-
mation which is satisfied by T nV (and similar theories). Baldwin and Lessmann
[2] have done this and found a notion of amalgamation which generalizes the
Ln-amalgamation property from Chapter I so that, for example T nV , satisfies this
property. Also Hyttinen [21] has recently generalized the framework that appears
here and given a couple of interesting examples which are then included. Most re-
sults in the remaining sections do not automatically carry over to theories within
the frameworks of [2] or [21] because such theories need not have models that
almost admit quantifier elimination. Corollary 7.2 can, however, sometimes be
applied to theories which do not have any of the amalgamation properties con-
sidered here. For example, if n ≥ 4 (or n ≥ 8 in a relational language) it follows
from Corollary 7.2 that T nV has a model of size at most f(n, |Snn(T nV )|), where f is
defined in the next section.

The results for Ln-theories in this chapter rely on the existence of stable models
that almost admit quantifier elimination and we have a correspondence between
“stability-amalgamation” and the existence of stable models that almost admit
quantifier elimination (Proposition 6.11). Since stable structures that almost ad-
mit quantifier elimination are smoothly approximable (to be defined below) and
the theory of smoothly approximable structures is a generalization of the theory
of stable structures that almost admit elimination of quantifiers, it is conceivable
that one can find a correspondence between “simplicity-amalgamation” and the
existence of smoothly approximable models (of an Ln-theory), which would give
similar results about Ln-theories as the ones we will see in the next few sections. I
wrote “simplicity-amalgamation” because smoothly approximable structures need
not be stable, but they are always simple. Definitions and results concerning sim-
ple theories can be found in [24]. The property ‘smoothly approximable’ is defined
below, and results about structures having it are found in [7] and [23].

7 Recursive bounds

In this section we use a decidability result from the theory of smoothly approxi-
amable structures to derive a couple of results about recursive bounds on the size
of the least model of particular kinds of sentences or Ln-theories. The relevant
theorem is the following one, due to Cherlin and Hrushovski [7]:

Theorem 7.1 We can effectively decide whether for a given sentence and k < ω,
that sentence has a finite model M such that |S4(Th(M))| = k.

We define a recursive function f : ω2 → ω as follows. Let f(n, k) = k if n < 2 or
k = 0. Now suppose that n ≥ 2 and k ≥ 1. Let ϕ1, . . . , ϕm be an enumeration
of all sentences (up to equivalence) of quantifier rank at most k+ n in a language
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with k constant symbols and k i-ary relation symbols for every 1 ≤ i ≤ n, and
we assume that = is one of the binary relation symbols. For 1 ≤ i ≤ m use
Theorem 7.1 to decide if ϕi has a finite model Mi such that |S4(Th(Mi))| ≤ k;
if such a model of ϕi exists then search until we find such Mi and let `i = |Mi|;
otherwise let `i = 0. Then let f(n, k) = max{`1, . . . , `m}.

We say that an L-structure M is smoothly approximable if M is ω-categorical
and if any L-sentence which is true in M is true in a finite substructure N ⊆ M
such that

for any θ(x̄) ∈ L there is χ(x̄) ∈ L such that {ā ∈ N : M |= θ(ā)}
= {ā ∈ N : N |= χ(ā)}, and

any ā, b̄ ∈ N , with |ā| = |b̄|, have the same type in N if and only if they
have the same type in M .

Corollary 7.2 Let n ≥ 4 and let ϕ be a sentence such that no function symbols
occur in ϕ, the arity of every relation symbol in ϕ is at most n and at most
n distinct variables occur in ϕ. If M |= ϕ, where M is smoothly approximable
and |Sn4 (Th(M))| = |S4(Th(M)|, then ϕ has a finite model of cardinality at most
f(n, |Snn(Th(M))|).

Proof. Suppose that ϕ, n and M satisfies the premises of the corollary. With-
out loss of generality we may assume that M is an L-structure and that ϕ is
an L-sentence, where L is the language that occurs in the definition of f. Since
M is smoothly approximable it follows that M has a finite substructure N such
that N |= ϕ and |S4(Th(N))| ≤ |S4(Th(M))|. By Fact 1.4, ThLn(M) is axiom-
atized by an Ln-sentence with quantifier rank at most |Snn(Th(M))| + n. Since
|S4(Th(M))| = |Sn4 (Th(M))| ≤ |Snn(Th(M))| it follows from the definition of f that
ThLn(M) and hence ϕ has a finite model of cardinality at most f(n, |Snn(Th(M))|).

�

Corollary 7.3 Let n ≥ 4 and let L be a language with finite vocabulary which
contains no function symbols and in which all relation symbols have arity at most
n. If T is a complete Ln-theory such that Snn(T ) is finite and T has an Ln-
amalgamation class which is stable in Ln, then T has a model of cardinality at
most f(n, |Snn(T )|).

Proof. Suppose that T satisfies the above conditions. First note that (by Fact 1.4)
T is axiomatized by an Ln-sentence with quantifier rank ≤ |Snn(T )| + n. By the
same argument as in the proof of Proposition 6.11 it follows that T has a sta-
ble model M which is Ln-determined, so |Sn4 (Th(M))| = |S4(Th(M)|. Since (by
results in [27]) every stable L-structure which almost admits elimination of quan-
tifiers is smoothly approximable it follows from Corollary 7.2 that T has a model
of cardinality at most f(n, |Snn(T )|). �

Corollary 7.3 can also be proved by using weaker decidability results than Theo-
rem 7.1 from the theory of countable stable structures that almost admit quantifier
elimination (see [28]), which the theory of smoothly approximable structures gen-
eralizes.
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Remark 7.4 If 1 < n < 4 then Corollary 7.2 and Corollary 7.3 still hold if we
replace Snn(Th(M)) by Sn4 (Th(M)) and Snn(T ) by Sn4 (T ), respectively.

Grohe [14] has shown that for n ≥ 3 there does not exist a recursive function
fn : ω → ω such that for every complete Ln-theory T with finite models, min{|M | :
M |= T} ≤ fn(|Snn(T )|). Hence we have a nonexistence result and a couple
of existence results. Except for Corollary 7.2 above (from which Corollary 7.3
follows) an existence result is obtained by Dawar in [9]. We may ask: How general
can a class, T , of complete Ln-theories with finite models be if we require that
there exists a recursive function f such that min{|M | : M |= T} ≤ f(|Snn(T )|)
for all T ∈ T ? Another problem is to determine such a function f more precisely,
perhaps starting with some smaller class of theories on which we have more control.
I recently learned that progress in this direction has been made by Julián Mariño.

8 Forking and strictly minimal sets

In this section we will study forking and strictly minimal sets in structures which
are n-determined (as defined below). The main result, Proposition 8.7, is a corol-
lary to a result of Lachlan (Lemma 8.2 in [27]). We will give a different proof
which uses the properties of forking in the particular context and a trichotomy
theorem for strictly minimal sets. The results of this section apply to any limit
of an amalgamation class A as in Proposition 6.11. In particular, by the argu-
ment at the very beginning of this chapter, they apply to any model of T c from
Theorem 4.1.

Throughout this section we assume that n is an integer such that n ≥ 2. We
say that a structure M is n-determined if for any m such that n ≤ m < ω and any
a1, . . . , am, b1, . . . , bm ∈M , if

(M, (ai1 , . . . , ain)) ≡ (M, (bi1 , . . . , bin))

whenever 1 ≤ i1 < . . . < in ≤ m, then

(M, (a1, . . . , am)) ≡ (M, (b1, . . . , bm)).

For example, every structure that almost admits quantifier elimination, in a lan-
guage where there is a bound on the arity of all symbols, is n-determined for some
n < ω. In particular, this holds for every model of T c from Section 2.

In what follows, when M is an L-structure we will often, as is customary in
stability theory, work in the Leq-structure M eq where the many sorted language
Leq ⊇ L and M eq are obtained from M and L as described in [1] (or one of the
other standard books on stability theory). As before, L will always denote a one-
sorted first order language. The notion of type extends straightforwardly to Leq.
If A ⊆ M eq then S(A) denotes the set of Leq-types over A with respect to M .
S(A) depends on ThL(M,A) but the M we have in mind will be clear from the
context. The variables which occur in formulas in L, that is, the variables in V in
the beginning of Section 1, are called variables of sort =. If A ⊆M , p(x̄) ∈ S(A)
and x̄ is a finite sequence of variables of sort = then p(x̄) is an (L, x̄)-type in the
sense of Section 1.
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When we write ā ∈ M then we mean (as usual) that ā is a finite sequence of
elements, all of which belong to M . If we write ā ∈ M eq we mean that ā is a
finite sequence of elements, all of which belong to M eq (but not necessarily to M).
rng(ā) is the set of elements occurring in the sequence ā, i.e. the range of ā. If p(x̄)
is a type over the set B and A ⊆ B then p�A = {ϕ(x̄, ā) : ϕ(x̄, ā) ∈ p and ā ∈ A}.

Let acl and dcl denote the algebraic closure and definable closure respectively,
in M eq, where M is the structure that we have in mind. We often write acl(ā)
(dcl(ā)) for acl(rng(ā)) (dcl(rng(ā))).

R denotes the Morley rank (in the structure that we have in mind) and if
ā ∈ M eq and A ⊆ M eq then R(ā/A) = R(tp(ā/A)). U denotes the U-rank and if
ā ∈ M eq and A ⊆ M eq then U(ā/A) = U(tp(ā/A)). Recall that if M is ω-stable
then R(p) = U(p) for any type p (over any subset of M). Basic knowledge about
forking and these ranks (see [1]) is assumed in this section and the next. For the
rest of this section we fix some (arbitrary) countable language L and all structures
considered are L-structures.

Lemma 8.1 Suppose that M is n-determined. Let A ⊆ M , p(x̄), q(x̄) ∈ S(A),
where x̄ is a finite sequence of variables of sort =, and assume that p and q are
realized in M . If for every A′ ⊆ A such that |A′| ≤ n− 1, p�A′ = q�A′ then p = q.

Proof. Suppose that for every A′ ⊆ A such that |A′| ≤ n− 1, p�A′ = q�A′. Since
M is n-determined and p and q are realized in M it follows that for every finite
A′′ ⊆ A, p�A′′ = q�A′′ and this implies that p = q. �

Proposition 8.2 Suppose that M is stable, κ-saturated and n-determined. Let
A,B ⊆M , where |A|, |B| < κ, and p(x̄) ∈ S(A ∪ B), where x̄ is a finite sequence
of variables of sort =. If p forks over B then for some A′ ⊆ A with |A′| ≤ n− 1,
p�A′ ∪B forks over B.

Proof. Suppose that p forks over B. We may assume that A is finite. Let C =
acl(B) and let p′ ∈ S(A ∪ C) be an extension of p. Then p′ forks over C. It is
sufficient to show that for some A′ ⊆ A with |A′| ≤ n − 1, p′�A′ ∪ C forks over
C. Towards a contradiction suppose that |A| > n− 1 and that p′�A′ ∪C does not
fork over C, for every A′ ⊆ A such that |A′| ≤ n− 1. Now let A′ ⊆ A be arbitrary
such that |A′| ≤ n− 1. Let q(x̄) ∈ S(A ∪ C) be the nonforking extension of p′�C.
Then q�A′ ∪ C does not fork over C. But p′�C = q�C is stationary, since C is
algebraically closed, so

p′�A′ ∪ C = q�A′ ∪ C.
which gives

p′�A′ ∪B = q�A′ ∪B.
Since the above equality holds for any A′ ⊆ A such that |A′| ≤ n − 1 it follows
from Lemma 8.1 that p = p′�A∪B = q�A∪B which contradicts that p forks over
B but q�A ∪B does not. �

Corollary 8.3 Suppose that M is stable, κ-saturated and n-determined. Let
A,B ⊆M , where |A|, |B| < κ, p(x̄) ∈ S(B) and q(x̄) ∈ S(A∪B), where x̄ is a fi-
nite sequence of variables of sort =. If q extends p, U(p) < ω and U(p)−U(q) = k,
then there exists A′ ⊆ A such that |A′| ≤ k(n− 1) and U(q�A′ ∪B) = U(q).
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Proof. By induction on k. For k = 0 the corollary is trivial. Suppose that the
corollary holds for all l ≤ k and that U(p) − U(q) = k + 1. Then q is a forking
extension of p so by Proposition 8.2 there is A1 ⊆ A such that |A1| ≤ n − 1 and
q�A1 ∪B forks over B. If U(q�A1 ∪B) = U(q) then A′ = A1 satisfies the corollary
so now suppose that U(q�A1∪B) > U(q). Let l = U(q�A1∪B)−U(q). Then l ≤ k
so by the induction hypothesis there is A2 ⊆ A−A1 such that |A2| ≤ l(n− 1) and
U(q�A2 ∪ A1 ∪B) = U(q). Now A′ = A1 ∪ A2 satisfies the corollary. �

We immediately get:

Corollary 8.4 Suppose that M is stable, κ-saturated and n-determined. Let
A,B ⊆ M , |A|, |B| < κ. If a ∈ acl(A ∪ B) ∩M and U(a/B) = k, where k < ω,
then there is A′ ⊆ A such that |A′| ≤ k(n− 1) and a ∈ acl(A′ ∪B).

We will prove the final result of this section by using the properties of forking
under the given conditions together with the next theorem and the following fact
about projective and affine geometries. The theorem is a trichotomy theorem for
strictly minimal sets which is due to Cherlin, Mills and Zilber, independently. For
its proof, the reader may consult [6] or [34].

Theorem 8.5 Let M be an ω-categorical and ω-stable structure. If H is a ∅-
definable strictly minimal set in M eq then the geometry of H is isomorphic to one
of the following:
1. The trivial (also called degenerate) geometry.
2. A projective geometry of infinite dimension over a finite field.
3. An affine geometry of infinite dimension over a finite field.

A proof of the following fact is given since I could not find one in the litterature.

Fact 8.6 If (G, cl) is either a projective geometry of infinite dimension over a
finite field or an affine geometry of infinite dimension over a finite field, then for
every m < ω there are k > m and distinct a1, . . . , ak, a ∈ G such that {a1, . . . , ak}
is independent, a ∈ cl({a1, . . . , ak}) and for every proper subset A of {a1, . . . , ak},
a /∈ cl(A).

Proof. First suppose that (G, cl) is a projective geometry of infinite dimension
over a finite field, where cl denotes the closure operation on subsets of G. Then
we may identify G with the set of all one dimensional subspaces of an infinite
dimensional vector space V over a finite field F , and for A ⊆ G, cl(A) is the set of
one dimensional subspaces of the subspace of V spanned by

⋃
A. Let 2 ≤ k < ω

and take a linearly independent subset {v1, . . . , vk} of V , where we assume vi 6= vj
if i 6= j, and let v = v1 + . . . + vk. Then v is not in the linear span of any proper
subset of {v1, . . . , vk}. If we now let ai ∈ G be the subspace spanned by vi, for
1 ≤ i ≤ k, and let a ∈ G be the subspace spanned by v then a1, . . . , ak, a satisfy
the conclusion of the fact.

Now suppose that (G, cl) is an affine geometry of infinite dimension over a finite
field. Then we may identify G with an infinite dimensional vector space V over a
finite field F , and for A ⊆ G, cl(A) is the least affine subspace of V which includes
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A, where an affine subspace of V is a subset of the form {w + v : v ∈ W} where
w ∈ V and W is a subspace of V . If A ⊆ V then let 〈A〉 denote the subspace
spanned by A. Two elementary results about affine spaces (see [30], chapter 15,
and note that, although only finite dimensional vector spaces are considered there,
the relevant results hold in our setting) are that, for any v1, . . . vm ∈ V (where
m < ω), if 1 ≤ i ≤ m then

cl({v1, . . . , vm}) = vi + 〈{v1 − vi, . . . , vi−1 − vi, vi+1 − vi, . . . , vm − vi}〉,

and if v1, . . . vm are linearly independent then v1, . . . vm are independent with
respect to cl. Let p be the characteristic of F and let k = pr + 1 where r
is an arbitrary positive integer. Take a subset {v1, . . . , vk} ⊂ V which is lin-
early independent. Then {v1, . . . , vk} is also independent with respect to cl. Let
w = vk+(v1−vk)+. . .+(vk−1−vk). Then w ∈ cl({v1, . . . , vk}) and since k−1 = pr
where p is the characteristic of F we have

w = v1 + . . .+ vk−1 + vk − (vk + . . .+ vk︸ ︷︷ ︸
k − 1 times

) = v1 + . . .+ vk−1 + vk. (∗)

Towards a contradiction suppose that for some proper subset A ⊂ {v1, . . . , vk},
w ∈ cl(A). Without loss of generality we may suppose that

A = {v1, . . . , vk} − {vi}

for some 1 ≤ i ≤ k. Then, for any j ∈ {1, . . . , k} − {i}, if

Aj =
{
v − vj : v ∈ A− {vj}

}
then cl(A) = vj+〈Aj〉, so, since w ∈ cl(A), w is a linear combination of v1, . . . , vi−1,
vi+1, . . . , vk. But (∗) now implies that vi is a linear combination of v1, . . . , vi−1,
vi+1, . . . , vk, contradicting the choice of v1, . . . , vk. Hence, with ai = vi, for 1 ≤
i ≤ k, and a = w the conclusion of the fact is satisfied. �

Proposition 8.7 (Lachlan) Suppose that M is an L-structure which is ω-cate-
gorical, stable and n-determined. If H is a definable strictly minimal set in M eq

then the geometry of H is trivial, i.e. H is an indiscernible set in M eq.

Proof. Suppose that M is an L-structure which is ω-categorical, stable and n-
determined. First note that if A is a finite set of elements from M over which H is
definable, then (M,A) is ω-categorical, stable and n-determined so it is sufficient
to prove that every ∅-definable strictly minimal set H ⊆M eq is indiscernible.

We first explain how this follows from a result due to Lachlan [27]. We may as-
sume that the vocabulary of L is relational by replacing constant symbols by unary
predicates and function symbols by relation symbols representing their graphs.
Since M is ω-categorical it follows that Sn(Th(M)) is finite and since M is n-
determined we get, by adding a relation symbol for every type in Sn(Th(M)), an
expansion M∗ of M such that every formula in the expanded language is equiva-
lent, modulo Th(M∗), to a quantifier free formula. By the fact that Sk(Th(M)) is
finite for every k < ω and M is n-determined we may assume that the vocabulary
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of the language of M∗ is finite. Since M∗ is also stable we can apply Lemma
8.2 in [27], which says that every ∅-definable strictly minimal set in (M∗)eq is
indiscernible; clearly the same must then hold for M eq.

Now we give an alternative proof that every ∅-definable strictly minimal set
H ⊆ M eq is indiscernible. (Here we need not transform M into a structure in a
language with finite relational vocabulary.) Let H be a ∅-definable strictly minimal
set in M eq. By the argument above M almost admits elimination of quantifiers
so stability implies ω-stability (see [27] or [28]). Hence M is ω-categorical and
ω-stable so it follows from Theorem 8.5 that the geometry of H, as above, is
either trivial or isomorphic to a projective geometry of infinite dimension over a
finite field or isomorphic to an affine geometry of infinite dimension over a finite
field. Suppose that one of the latter two cases holds. From this we will derive a
contradiction.

We assume that elements of H are of sort E where E(x̄, ȳ) is a ∅-definable
equivalence relation on M |x̄|. Hence the elements of H are equivalence classes of
E. Let a ∈ H and let b̄ ∈ M be such that b̄/E = a. Then a ∈ dcl(b̄). Let
r = R(b̄/{a}) (so r is finite). The Lascar equation implies

R(b̄) = R(b̄a) = R(b̄/{a}) + R(a)

which gives R(b̄) = r + 1.
By Fact 8.6 there are m > (n − 1), an independent set {a1, . . . , am} ⊆ H

(with respect to the geometry on H given by acl restricted to H) and am+1 ∈
acl(a1, . . . , am) ∩ H such that {a1, . . . , am, am+1} − {ai} is independent for every
1 ≤ i ≤ m+ 1. Note that all ai realize tp(a) because H is strictly minimal.

Inductively define b̄i ∈M , for 1 ≤ i ≤ m+ 1, such that b̄i/E = ai, tp(ai, b̄i) =
tp(a, b̄) and b̄i is independent from

{aj : 1 ≤ j ≤ m+ 1, j 6= i} ∪ {b̄j : 1 ≤ j < i}

over {ai}. We can find such b̄i’s in M because M is ω-saturated, which follows
from the assumption that M is ω-categorical. (This choice of b̄i’s and the follow-
ing argument was suggested to me by T. Hyttinen and it simplifies my original
alternative proof.) Then we have R(b̄m+1) = r + 1 and

R(b̄m+1/{a1, . . . , am})
= R(b̄m+1/{a1, . . . , am, am+1}) (because am+1 ∈ acl(a1, . . . , am))

≤ R(b̄m+1/{am+1}) = r

so tp(b̄m+1/{a1, . . . , am}) forks over ∅. Since {a1, . . . , am} ⊆ dcl(b̄1 . . . b̄m) it follows
that tp(b̄m+1/rng(b̄1)∪ . . .∪ rng(b̄m)) forks over ∅. Then, by Proposition 8.2, there
exists 1 ≤ i1 < . . . < in−1 ≤ m such that if B = rng(b̄i1) ∪ . . . ∪ rng(b̄in−1) then

tp(b̄m+1/B) forks over ∅. (1)

Let A = {ai1 , . . . , ain−1}. By the choice of the b̄i’s,

B |̂
A
am+1. (2)
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By the choice of the ai’s,

A |̂ am+1

and together with (2) and transitivity and monotonicity this implies that

B |̂ am+1. (3)

By the choice of the b̄i’s,

B |̂
am+1

b̄m+1

and together with (3), transitivity and monotonicity this implies that

B |̂ b̄m+1

which contradicts (1). �

9 Coordinatization

The main results of this section will, under some restrictions on L, give a charac-
terization of all sufficiently saturated Ln-elementary substructures of a structure
M which is stable and admits elimination of quantifiers in an expansion by finitely
many new relation symbols of arity at most n. One part of the work will give a
construction of (finite and infinite) Ln-elementary substructures of such a struc-
ture M . This is done by a less restricted way of “shrinking” M than in Lachlan’s
work (see [27], [25], [28]), because we only want to obtain an Ln-elementary sub-
structure, and not necessarily one which admits elimination of quantifiers. Then
we show that all sufficiently saturated substructures of M can be obtained by
this kind of shrinking. Finally, these results are connected with the notions from
Section 6.

Until the end of the proof of Theorem 9.6 L will be a fixed language
with finite relational vocabulary and n is fixed and larger than or equal
to the arity of every relation symbol. (So n ≥ 2, because we always assume
that the binary relation = belongs to the vocabulary.)

For any k < ω let sk(L) be the largest number such that there exists a set Vk
of exactly k variables and sk(L) logically inequivalent quantifier free L-formulas
in which only variables from Vk occur. By the theory of countable stable struc-
tures which admit elimination of quantifiers (as can be found in [27], [25], [28] in
different levels of detail) there are natural numbers m0(L, n) and m1(L, n), effec-
tively computable from L and n such that, even in the uncountable case, with the
definitions given below, the essential Proposition 9.3 holds.

Until the end of the proof of Theorem 9.6 we assume that M is an
infinite L-structure which is stable and admits elimination of quantifiers.

We say that a family I of subsets of M eq is mutually indiscernible over A ⊆M eq

if for every I ∈ I, I is indiscernible over A ∪
⋃

(I − {I}). If A = ∅ then we say
that I is a mutually indiscernible family. A pair of quantifier free L-formulas
(ϕ0(v̄), ϕ1(v̄)), where v̄ = (v1, v2, v3, v4), is called a nice pair for M if the following
two conditions hold:

48



1. ϕ0 and ϕ1 define equivalence relations E0 and E1, respectively, on a ∅-
definable set D ⊆ M2, E1 ⊆ E0 (so E1 is a refinement of E0) and D is
the solution set of a 2-type over ∅.

2. {C/E1 : C ∈ D/E0} is a mutually indiscernible family and |C/E1| ≥
m0(L, n), for every C ∈ D/E0.

For any nice pair ϕ = (ϕ0(v̄), ϕ1(v̄)) for M , define FM(ϕ) = {C/E1 : C ∈ D/E0},
where D, E0 and E1 are as in the definition of a nice pair. We will often treat the
members of FM(ϕ) as elements of M eq by identifying I ∈ FM(ϕ) with C, where
C ∈ D/E0 is such that I = C/E1. If ϕ and ψ are two nice pairs for M then
we say that ϕ and ψ are equivalent if there exists a ∅-definable bijection between⋃
FM(ϕ) and

⋃
FM(ψ).

Let ΦM be a set consisting of the first representative, in some fixed ordering
of L, of every equivalence class of nice pairs. Define FM =

⋃
{FM(ϕ) : ϕ ∈ ΦM}

For every indiscernible subset I ⊆ M eq and finite A ⊆ M eq define I-crdM(A) to
be the least finite

J ⊆ I such that 2 · |J | < |I| and I − J is indiscernible over A ∪ J ,

if such J exists. It is not difficult to see that if the class of all finite subsets of I
satisfying the above condition is nonempty then it is closed under intersection. If
no such J exists we say that I-crdM(A) is undefined.

If ϕ is a nice pair for M and I-crdM(A) is defined for every I ∈ FM(ϕ), then
define ϕ-crdM(A) =

⋃
{I-crdM(A) : I ∈ FM(ϕ)}. If ϕ-crdM(A) is defined for

all ϕ ∈ ΦM , then define crdM(A) =
⋃
{ϕ-crdM(A) : ϕ ∈ ΦM}. I-crd(A) is read

“the I-coordinates of A” (and similarly for ϕ-crd(A)) and crd(A) is read “the
coordinates of A”.

Let’s derive some properties about ϕ-crdM . Suppose that A ⊆ M eq is finite
and ϕ-crdM(A) is defined. If I ∈ FM(ϕ) is infinite then it is not hard to see
that I is strictly minimal with trivial geometry so by stability theory I − acl(A)
is indiscernible over A ∪ (acl(A) ∩ I) and for no C ⊂ acl(A) ∩ I is it the case
that I −C is indiscernible over A ∪C; therefore I-crdM(A) = acl(A) ∩ I. If some
member of FM(ϕ) is infinite then all members of FM(ϕ) are infinite and it follows
that ϕ-crdM(A) = acl(A) ∩

⋃
FM(ϕ), so ϕ-crdM(A) is finite.

Now suppose that all members of FM(ϕ) are finite and hence of the same
cardinality. It is still the case that ϕ-crdM(A) is finite and to show this it is
enough to show that {I ∈ FM(ϕ) : I-crdM(A) 6= ∅} is finite. For a contradiction
suppose that this is not true. Since M admits quantifier elimination in a language
with finite relational vocabulary and the cardinalities of A and all I ∈ FM(ϕ)
are bounded by some k < ω it follows from Ramsey’s theorem that there are a
formula ψ(x̄, ȳ), a tuple ā ∈ A and for every i < ω, Ii ∈ FM(ϕ) and b̄i1, b̄

i
2 ∈ Ii

such that M |= ψ(ā, b̄i1) and M |= ¬ψ(ā, b̄i2). FM(ϕ) is mutually indiscernible so
by by compactness it follows that if B =

⋃
i<ω

(
rng(b̄i1) ∪ rng(b̄i2)

)
then |B| ≤ ℵ0

and |S(ψ,x̄)(B,M)| > ℵ0 (where S(ψ,x̄)(B,M) is the notation from Section 3) which
implies that M is unstable, a contradiction.

The above observations gives the following, which will frequently be used with-
out being mentioned:
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Fact 9.1 Suppose that ϕ is a nice pair for M , A ⊆ M eq is finite and ϕ-crdM(A)
is defined. Then ϕ-crdM(A) is finite and if some member, or equivalently, all
members of FM(ϕ) are infinite, then ϕ-crdM(A) = acl(A) ∩

⋃
FM(ϕ). It follows

that ϕ-crdM(A) is A-definable.

We adopt the usual convention that if N 4M then elements of N eq are identified
with elements of M eq which, as equivalence classes, have nonempty intersection
with Nk where 2k is the arity of the equivalence relation in question. From the
definitions of nice pairs, equivalence between them and the previous fact we get:

Fact 9.2 If N 4M then ϕ is a nice pair for N if and only if ϕ is a nice pair for M ,
so ΦN = ΦM . If N 4M , A ⊆ N eq is finite and ϕ ∈ ΦN then ϕ-crdN(A) is defined
if and only if ϕ-crdM(A) is defined and if they are defined then ϕ-crdN(A) =
ϕ-crdM(A).

For any structure N and 0 < k < ω let N eq�k denote the set of all a ∈ N eq such
that a is an equivalence class of a ∅-definable equivalence relation on N l where
l ≤ k.

Since the idea with mutually indiscernible families defined by nice pairs is that
M is built up from these (which is a special case of the idea that ω-categorical,
ω-stable structures are built up from strictly minimal sets), it is natural to ask
why it suffices to consider mutually indiscernible families J such that all mem-
bers of J are subsets of M eq�2. Here we try to explain why. Suppose that I
is any mutually indiscernible family such that

⋃
I is ∅-definable and for some

a ∈M , I-crdM({a}) is defined and nonempty for all I ∈ I and let I-crdM({a}) =⋃
{I-crdM({a}) : I ∈ I}. By a similar argument that lead to Fact 9.1, I-crdM({a})

is finite and {a}-definable. It follows that for all a′ with tp(a′) = tp(a) the same
holds for I-crd({a′}). By the definition of I-crdM and the assumption that I
is mutually indiscernible it follows that there is b such that tp(b) = tp(a) and
I-crdM({a})∩ I-crdM({b}) contains exactly one element. Let D ⊆M2 be the set
of all realizations of tp(a, b) and let E1 be the ∅-definable equivalence relation on
D defined by E1(x1, x2, y1, y2) if and only if

I-crdM({x1}) ∩ I-crdM({x2}) = I-crdM({y1}) ∩ I-crdM({y2}).

Then there is a ∅-definable bijection f :
⋃
I → D/E1, so all ∅-definable relations

between elements in
⋃
I are mirrored onto D/E1. Therefore we loose nothing by

considering the mutually indiscernible family
{
{f(c) : c ∈ I} : I ∈ I

}
instead of

I.
The next proposition collects the results that we will use from the theory of

countable stable structures that admit elimination of quantifiers.

Proposition 9.3 (Lachlan) Suppose that M is a possibly uncountable infinite L-
structure which is stable and admits elimination of quantifiers.

(i) For every ϕ ∈ ΦM and A ⊆M with |A| ≤ n, ϕ-crdM(A) is defined, and this
implies that for all a ∈M eq�n, ϕ-crdM({a}) is defined.
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(ii) If ϕ ∈ ΦM , I ∈ FM(ϕ), A ⊆M and |A| ≤ n then

I-crdM(A) =
⋃{

I-crdM({a}) : a ∈ A
}
.

It follows that for all c ∈
⋃
FM there is a ∈M such that c ∈ crdM({a}).

(iii) If c ∈ I ∈ FM , a ∈ M and c ∈ crdM({a}) then crdM({I}) = crdM({c}) ⊆
crdM({a}).

(iv) The binary relation <M , on ΦM , defined by ψ <M ϕ if and only if

ϕ-crdM({I}) 6= ∅ for some (or equivalently, all) I ∈ FM(ψ),

is transitive and irreflexive and hence a partial order. We also have ψ <M ϕ
if and only if for some (or equivalently, all) a ∈

⋃
FM(ψ), ϕ-crdM({a}) 6= ∅.

(v) Suppose that ϕ ∈ ΦM , J ⊆ I ∈ FM(ϕ), A ⊆M ,

B =
⋃⋃{

FM(ψ) : ψ ∈ ΦM and ψ ≮M ϕ
}

and J ∩ crdM({a}) = ∅, for all a ∈ A. Then J is indiscernible over

A ∪B ∪
((⋃

FM(ϕ)
)
− J

)
.

(vi) For every a ∈M eq�2,
∣∣{b ∈M : crdM({b}) = crdM({a})}

∣∣ ≤ m1(L, n).

If, in Proposition 9.3 we add the assumption that M is countable, then (i) - (vi)
occur in (or easily follows from) results found in [25] or [28] (full proofs are given
in [27]); (i) follows from Theorem 2.3 in [25]; (ii) is Lemma 5.1 in [25]; (iii) follows
from Lemma 6.2 in [25]; (iv) follows from Lemma 6.2 in [25] (or Lemma 4.1 in
[28]); (v) is mentioned after the proof of Lemma 4.2 in [28] (and can be obtained
from Lemma 6.1 and Lemma 6.3 in [25]); (vi) is Lemma 6.4 in [25].

For uncountable M ; if (∗) is one of (i) - (iv) or (vi), then (∗) follows by using
Fact 9.2 and considering a countable elementary substructure of M which contains
all the finitely many elements from M eq that are mentioned in (∗); in the same
way the conclusion of (v) follows since we can consider one formula at a time and
a formula contains only finitely many parameters from A∪B∪

((⋃
FM(ϕ)

)
−J
)
.

Here, we say that N is a κ-saturated substructure of M , where κ is a (possibly
finite) cardinal, if for all a ∈ M and A ⊆ N with |A| < κ there exists b ∈ N such
that, in M , tp(b/A) = tp(a/A).

For every ϕ ∈ ΦM , let

snϕ = max{|I-crdM(A)| : I ∈ FM(ϕ), A ⊆M, |A| ≤ n},

so snϕ is a finite number; in fact snϕ ≤ n · |S2(Th(M))|, as follows from Propo-
sition 9.3 (ii) and (7), below. We say that S is an n-sufficient family of M if
S =

⋃
{S(ϕ) : ϕ ∈ ΦM}, where for all ϕ ∈ ΦM ,

(I) S(ϕ) is nonempty and every member of S(ϕ) is a nonempty subset of a
member of FM(ϕ),
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(II) if S ∈ S(ϕ) then |S| ≥ snϕ, and

(III) if I ∈ FM(ϕ) and crdM({I}) ⊆
⋃
S, then there exists S ⊆ I such that

S ∈ S(ϕ).

We say that S is nonredundant if

(IV) crdM({c}) ⊆
⋃
S for every c ∈

⋃
S.

Theorem 9.4 Suppose that S is an n-sufficient family and let

N =
{
a ∈M : crdM({a}) ⊆

⋃
S
}
.

Then N is an n-saturated substructure of M and if S is nonredundant then
⋃
S ={

c ∈
⋃
FM : ∃a ∈ N, c ∈ crdM({a})

}
.

Remark 9.5 If ϕ ∈ ΦM is maximal (i.e. there is no ψ ∈ ΦM such that ϕ <M ψ)
then Proposition 9.3 (vi) implies that |FM(ϕ)| ≤ m1(L, n). Let S be a nonredun-
dant n-sufficient family of M . By Proposition 9.3 (iii),(iv) it follows that

⋃
S is

finite if and only if every member of S is finite. Hence, Proposition 9.3 (vi) implies
that if every member of S is finite then N in Theorem 9.4 is finite.

For simplicity of notation we will usually omit the subscript M in the next two
proofs, so for example, we write crd( ) instead of crdM( ). Types are always with
respect to M .

Proof of Theorem 9.4. Let N be and S be as in Theorem 9.4. We prove (1) below,
which implies that N is an n-saturated substructure of M . The involvement of
the set C is not necessary here, but is used in the proof of Corollary 9.8.

(1) If A,C ⊆ N , |A| < n, crd({c}) = ∅ for all c ∈ C and a ∈ M , then there is
a′ ∈M such that tp(a′/A ∪ C) = tp(a/A ∪ C) and crd({a′}) ⊆

⋃
S.

Let r be the length of the longest chain in (Φ, <) and define Φi inductively, for
0 ≤ i ≤ r, by Φ0 = ∅ and

Φi+1 =
{
ϕ ∈ Φ : ϕ is maximal in Φ−

⋃
j≤i

Φj with respect to <
}
.

Note that Φ =
⋃
i≤r Φi. For 0 ≤ i ≤ r, let F i =

⋃
{F(ϕ) : ϕ ∈ Φi} and

S i =
⋃
{S(ϕ) : ϕ ∈ Φi}. Then F =

⋃
{F i : i ≤ r} and S =

⋃
{S i : i ≤ r}.

By induction on i we will prove that, for every i ≤ r,

(2) if A,C ⊆ N , |A| < n, crd({c}) = ∅ for all c ∈ C and a ∈ M , then there is
a′ ∈ M such that tp(a′/A ∪ C) = tp(a/A ∪ C) and for every ϕ ∈

⋃
j≤i Φ

j,
ϕ-crd({a′}) ⊆

⋃
S(ϕ).

Clearly (1) follows from (2) with i = r. For i = 0, (2) is trivially satisfied. Suppose
that (2) holds for i. We will show that it holds for i+ 1.

Assume that A,C ⊆ N , |A| < n, crd({c}) = ∅ for all c ∈ C and a ∈ M . By
the induction hypothesis there exists a′′ ∈M such that
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(3) tp(a′′/A ∪ C) = tp(a/A ∪ C) and ϕ-crd({a′′}) ⊆
⋃
S(ϕ) for every

ϕ ∈
⋃
j≤i Φ

j.

If crd({a′′}) ∩
⋃
F i+1 ⊆ crd(A) then, since crd(A) ⊆

⋃
S, it follows that

crd({a′′}) ∩
⋃
F i+1 ⊆ S i+1, so by (3) we can let a′ = a′′.

Now suppose that for some k > 0(
crd({a′′}) ∩

⋃
Fi+1

)
− crd(A) = {b1, . . . , bk}

where bj 6= bl if j 6= l. First we prove that

(4) for every I ∈ F i+1 such that I-crd({a′′}) 6= ∅ there exists S ⊆ I such that
S ∈ S i+1.

Suppose that I ∈ F i+1 and that I-crd({a′′}) 6= ∅. Then I ∈ F(ψ) for some
ψ ∈ Φi+1. If i = 0 then ψ is maximal so crd({I}) = ∅ and by (III) (in the
definition of n-sufficient family) there exists S ⊆ I such that S ∈ S(ψ) ⊆ S i+1.

Now suppose that i > 0. Let ϕ ∈ Φ be such that ψ < ϕ. Then ϕ ∈
⋃
j≤i Φ

j.
Proposition 9.3 (iii) gives

(5) ϕ-crd({I}) ⊆ ϕ-crd({a′′}).

By (3), ϕ-crd({a′′}) ⊆
⋃
S(ϕ) and by (5),

(6) ϕ-crd({I}) ⊆
⋃
S(ϕ).

Since (6) holds for all ϕ ∈ Φ such that ψ < ϕ it follows that crd({I}) ⊆
⋃
S.

Now an application of (III) gives us S ⊆ I such that S ∈ S(ψ) ⊆ S i+1. This
completes the proof of (4).

By (II), (4) and the assumption that |A| < n it follows that there are distinct
c1, . . . , ck ∈

⋃
S i+1 − crd(A) such that for every 1 ≤ j ≤ k and I ∈ F i+1, cj ∈ I if

and only if bj ∈ I. Let

B = crd
(
A ∪ {a′′}

)
∩
⋃
j≤i

F j,

B∗ = crd(A) ∩
⋃
F i+1.

Then, by Proposition 9.3 (v),

tp(c1, . . . , ck/A ∪B ∪B∗ ∪ C) = tp(b1, . . . , bk/A ∪B ∪B∗ ∪ C).

If we choose a′ such that

tp(a′, c1, . . . , ck/A ∪B ∪B∗ ∪ C) = tp(a′′, b1, . . . , bk/A ∪B ∪B∗ ∪ C),

then
crd({a′}) ∩

⋃
j≤i+1

F j ⊆ {c1, . . . , ck} ∪B ∪B∗ ⊆
⋃
j≤i+1

Sj.

and it follows that (2) holds for i + 1. This completes the proof that N is an
n-saturated substructure of M .
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Now we prove the second assertion of the theorem. Suppose that S is nonre-
dundant. By the definition of N we clearly have

{c ∈ F : ∃a ∈ N, c ∈ crd({a})} ⊆
⋃
S,

so we only prove the inclusion ‘⊇’.
Suppose that c ∈

⋃
S. By Proposition 9.3 (ii) there is a ∈ M such that

c ∈ crd({a}), and by Proposition 9.3 (iii), crd({c}) ⊆ crd({a}). Since S is nonre-
dundant, crd({c}) ⊆

⋃
S so by the definition of an n-sufficient family it follows

that (1) holds with {c} in place of A and the proof is the same as before. In other
words, there exists a′ ∈ M such that tp(a′, c) = tp(a, c) and crd({a′}) ⊆

⋃
S, so

in particular c ∈ crd({a′}) and a′ ∈ N . �

If A ⊆M and A = {a ∈M : crdM({a}) ⊆
⋃
S}, where S is an n-sufficient family,

then we say that A is coordinatized by S.

Theorem 9.6 Let m = 2 · max{n, s2(L),m1(L, n)} + 2. If N is an m-saturated
substructure of M then N is coordinatized by a nonredundant n-sufficient family
of M .

Proof. Let Q =
⋃
{crd(A) : A ⊆ N and |A| ≤ n} and for every ϕ ∈ Φ, let

S(ϕ) =
{
I ∩Q : I ∈ F(ϕ) and I ∩Q 6= ∅

}
.

We will show that S =
⋃
{S(ϕ) : ϕ ∈ Φ} is a nonredundant n-sufficient family

such that N is coordinatized by S. First note that since every type in S2(Th(M))
is principal we have |S2(Th(M))| ≤ s2(L). Also observe that if a1, a2, b1, b2 ∈ M ,
θ ∈ Φ and ∣∣θ-crd({a1}) ∩ θ-crd({a2})

∣∣ 6= ∣∣θ-crd({b1}) ∩ θ-crd({b2})
∣∣

then tp(a1, a2) 6= tp(b1, b2). Therefore, since F(θ) is a mutually indiscernible
family and |I| > 2 · I-crd({a}) for all I ∈ F(θ) and a ∈M , it follows that

(7) for all θ ∈ Φ and a ∈M , |θ-crd({a})| ≤ |S2(Th(M))|.

From the definition of S, Proposition 9.3 (ii) and the assumption that N is 1-
saturated (because 0 < m) it follows that (I) is satisfied.

Next we verify that (II) is satisfied. Suppose that S ∈ S(ϕ). Then there
exists I ∈ F(ϕ) such that S = I ∩ Q 6= ∅. Hence, by the definition of S(ϕ) and
Proposition 9.3 (ii), I-crd({a}) 6= ∅ for some a ∈ N . Let c ∈ I-crd({a}). Since N
is m-saturated and m > 2 · |S2(Th(M))| it follows from (7) that every element in
ϕ-crd({a}) is represented by a pair in N2. In particular c is represented by a pair
(c1, c2) ∈ N2. Since F(ϕ) is mutually indiscernible there are b1, . . . , bn ∈ M such
that I-crd({a}) ⊆ I-crd({b1, . . . , bn}) and |I-crd({b1, . . . , bn})| = snϕ. SinceN ism-
saturated and m ≥ n+ 2 there are b′1, . . . , b

′
n ∈ N such that tp(b′1, . . . , b

′
n, c1, c2) =

tp(b1, . . . , bn, c1, c2) which implies |I-crd({b′1, . . . , b′n})| = snϕ. Hence |S| = |I∩Q| ≥
snϕ, so S satisfies (II).
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Now we prove that S satisfies (III). Suppose that ϕ ∈ Φ, I ∈ F(ϕ) and
crd({I}) ⊆

⋃
S. First suppose that ϕ is maximal. Then crd({I ′}) = ∅ for

all I ′ ∈ S(ϕ) so it follows from Proposition 9.3 (vi) that |S(ϕ)| ≤ m1(L, n).
The assumption that N is m-saturated (together with 2 · m1(L, n) < m) now
implies that every I ′ ∈ S(ψ) is represented by a pair from N2. In particular, I is
represented by a pair (a1, a2) ∈ N2. Then I-crd({a1, a2}) 6= ∅ so by Proposition 9.3
(ii), for i = 1 or i = 2, I-crd({ai}) 6= ∅. Hence I ∩Q 6= ∅ so I ∩Q ∈ S(ϕ).

Now suppose that ϕ is not maximal. For ψ,χ ∈ Φ we write ψ <1 χ if ψ < χ
and there does not exist θ ∈ Φ such that ψ < θ < χ. Let

Ψ =
⋃
{ψ ∈ Φ : ϕ <1 ψ}.

By Proposition 9.3 (iv), (v),
⋃
{F(ψ) : ψ ∈ Ψ} is a mutually indiscernible family

so by using Proposition 9.3 (ii), (iii) and arguing as we did to get (7), it follows
that

(8)
∣∣∣⋃{ψ-crd({I}) : ψ ∈ Ψ}

∣∣∣ ≤ |S2(Th(M))|.

By Proposition 9.3 (ii), the definition of S(ψ) and the assumption that crd({I}) ⊆⋃
S it follows that for every c ∈ crd({I}), there is ac ∈ N such that c ∈

crd({ac}). Therefore, since N is m-saturated and 2 |S2(Th(M))| < m it follows
from (7) that every element in crd({I}) is represented by a pair from N2. Now
(8), 2 |S2(Th(M))| + 2 ≤ m and the m-saturation of N implies that there ex-
ists (a1, a2) ∈ N2 and I ′ ∈ M eq�2 such that (a1, a2) is a representative of I ′

and, as elements of M eq, I and I ′ realize the same type over
⋃
{ψ-crd({I}) :

ψ ∈ Ψ}. It is easy to see (using Proposition 9.3 (iv)) that for I1, I2 ∈ F(ϕ),
crd({I1}) = crd({I2}) if and only if ψ-crd({I1}) = ψ-crd({I2}) for all ψ ∈ Ψ.
Hence crd({I}) = crd({I ′}).

Suppose that ϕ = (ϕ0, ϕ1) and that E0 and D are as in the definition of a nice
pair for M . Then the relation

R(x1, x2, y1, y2) ⇔ (x1, x2), (y1, y2) ∈ D
∧ crd({(x1, x2)/E0}) = crd({(y1, y2)/E0}).

is ∅-definable. By Proposition 9.3 (vi) and the definition of m we have

2 ·
∣∣{I ′′ ∈ F(ϕ) : crd({I ′′}) = crd({I ′})}

∣∣ < m.

From (a1, a2) ∈ N2, the assumption that N is m-saturated, and the fact that R is
∅-definable it now follows that every I ′′ ∈ F(ϕ) such that crd({I ′′}) = crd({I ′})
has a representative in N2. In particular, I has a representative (b1, b2) ∈ N2 so
I-crd({b1, b2}) 6= ∅. Hence |I ∩ Q| 6= ∅ so I ∩ Q ∈ S(ϕ) and the proof that S
satisfies (III) is completed. From the definition of S and Proposition 9.3 (iii) it is
easy to see that (IV) holds so S is nonredundant

It remains to show that N = {a ∈M : crd({a}) ⊆
⋃
S}. By the definition of

S we immediately have ‘⊆’, so we only prove ‘⊇’. The argument is similar to the
proof that S satisfies (III), and we only indicate the main steps.

Suppose that a ∈M and crd({a}) ⊆
⋃
S. We need to show that a ∈ N . Let Ψ

be the set of ϕ ∈ Φ such that ϕ-crd({a}) 6= ∅ and for every ψ ∈ Φ, if ψ < ϕ then
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ψ-crd({a}) = ∅. By Proposition 9.3 (iv),(v),
⋃
{F(ψ) : ψ ∈ Ψ} is a mutually

indiscernible family and therefore

2 ·
∣∣∣⋃{ψ-crd({a}) : ψ ∈ Ψ}

∣∣∣ < m.

Similarly as in the verification of (III) we can derive, using crd({a}) ⊆
⋃
S and the

m-saturation of N , that every element in
⋃
{ψ-crd({a}) : ψ ∈ Ψ} is represented

by a pair from N2. By the m-saturation of N there is a′ ∈ N such that a′ has the
same type over

⋃
{ψ-crd({a}) : ψ ∈ Ψ} as a and hence ψ-crd({a′}) = ψ-crd({a})

for all ψ ∈ Ψ. Then, in fact, crd({a′}) = crd({a}) and by Proposition 9.3 (vi),
2 · |{a′′ ∈ M : crd({a′′}) = crd({a′})}| < m. From the assumption that N is
m-saturated it now follows that a ∈ N . �

When proving our final results a variant of the Tarski-Vaught test, adapted to Ln,
will be used. It can be proved in the same way as the original Tarski-Vaught test;
we only need to observe that if ϕ is an Ln-formula then every subformula of ϕ is
in Ln.

Lemma 9.7 (Tarski-Vaught test for Ln) Suppose that the vocabulary of L contains
no function symbols of arity greater than n− 1 and let M be an L-structure. For
any subset N of M , N is an Ln-elementary substructure of M if and only if for
any ϕ(y, x̄) ∈ Ln and any ā ∈ N (where |ā| = |x̄|), if M |= ∃yϕ(y, ā) then there
exists b ∈ N such that M |= ϕ(b, ā).

Now we are ready to derive consequences of the last two theorems which applies
directly to complete Ln-theories. The fact that the languages in Theorem 9.4
and Theorem 9.6 where relational and that we want the next corollary to hold
also when constant symbols are allowed is not a problem but makes the statement
more complicated. To simplify it a little bit let us introduce the following notation.
If M is an L-structure where L contains no function symbols, then let MR be the
relational structure with the same universe as M in which all relation symbols of
L are interpreted in the same way as in M and in which, for every constant symbol
c of L, a new unary relation symbol Pc is interpreted as {cM} (where cM is the
interpretation of c in M).

Corollary 9.8 Suppose that the vocabulary of L is finite and contains no function
symbols and that n is greater than or equal to the arity of every relation symbol
in the vocabulary. Let T be a complete Ln-theory such that Snn(T ) is finite and
suppose that A is an Ln-amalgamation class such that A is stable in Ln, every
structure in A is a model of T and every (or equivalently, some) limit of A is
infinite.
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(i) Suppose that M is an elementary extension of a limit of A and let M∗ be
the expansion of MR obtained by adding an n-ary relation symbol for every
type in Sn(Th(MR)). If S is an n-sufficient family of M∗ and N is the
substructure of M which is coordinatized (in M∗) by S then N 4Ln M .

(ii) There is m < ω, effectively computed from |Snn(T )|, such that if M is an
elementary extension of a limit of A and N 4Ln M is (Ln,m,A)-saturated
then N is coordinatized by a nonredundant n-sufficient family of M∗, where
M∗ is the expansion obtained from MR by adding a new relation symbol for
every type in Sn(Th(MR)).

Proof. Let M , M∗ and S be as in (i) and suppose that N is the substructure that
is coordinatized by S. Observe that since M is an elementary extension of a limit
of A and Snn(T ) is finite it follows from Lemma 6.4 that Sn(Th(MR)) is finite and
hence M∗ admits elimination of quantifiers and the language of M∗ is finite and
relational. By the proof of Proposition 6.11 M and hence M∗ are stable. Let C
be the set of interpretations in M of all constant symbols in L. It is not hard to
see that crdM∗({c}) = ∅ for every c ∈ C. Since N is coordinatized by S in M∗ it
follows that C ⊆ N and (1) in the proof of Theorem 9.4 holds with M replaced
by M∗. This means that if A ⊆ N , |A| ≤ n − 1 and a ∈ M then there is a′ ∈ N
such that, in M , tp(a′/A ∪ C) = tp(a/A ∪ C). In particular, by Lemma 9.7, we
have N 4Ln M .

Now we prove (ii). Let V be the vocabulary of L. Without loss of generality
we may assume that there are at most |Snn(T )| constant symbols, and for every
1 ≤ i ≤ n, at most |Snn(T )| i-ary relation symbols, because otherwise T would
say that two symbols have the same same interpretation so could discard one
of them. Let a vocabulary V′ consist precisely of all relation symbols from V,
|Snn(T )| new unary relation symbols (to replace the constant symbols) and |Snn(T )|
new n-ary relation symbols and let L′ be the language over V. As was mentioned
in the beginning of this section we can compute numbers m0(L′, n) and m1(L′, n)
such that Proposition 9.3 hold for any infinite stable L′-structure which admits
elimination of quantifiers. We may assume that if every symbol in the vocabulary
of a (relational) language L1 occurs in a (relational) language L2 then mi(L1, n) ≤
mi(L2, n) for i = 1, 2. Then, for every language L∗, the vocabulary of which is
included in the vocabulary of L′, Theorem 9.6 holds for infinite stable L∗-structures
that admit elimination of quantifiers if we let m = 2 ·max{n, s2(L′),m1(L′, n)}+2.

Suppose that M is an elementary extension of a limit of A and that N 4Ln M
is (Ln,m,A)-saturated. Let M∗ be an expansion of MR as described above and let
N∗ is the substructure of M∗ with the same universe as N . We may assume that
the language of M∗ is included in L′. By the same argument as in the proof of
(i) M∗ admits elimination of quantifiers and is stable. Let N∗ be the substructure
of M∗ which has the same universe as N . Since M , being a limit of A, satisfies
(i) and (ii) in Proposition 6.3 and N is (Ln,m,A)-saturated it follows that N∗ is
an m-saturated substructure of M∗. By Theorem 9.6 there exists a nonredundant
n-sufficient family S (of M∗) such that N = {a ∈M : crdM∗({a}) ⊆

⋃
S}. �

Remark 9.9 Let us relate the last corollary to the context of Chapter I. Suppose
that T is a complete Ln-theory that satisfies the conditions in Theorem 4.1, so T c
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exists. Let M be any model of T c and let M∗ be obtained from M like in Corol-
lary 9.8. For every n-sufficient family, S, of M∗, any substructure of M which is co-
ordinatized by an n-sufficient family of M∗ is an Ln-elementary substructure of M .
Moreover, every N 4Ln M which is (Ln,m,∞)-saturated (where m is the number
from Corollary 9.8) is coordinatized by a nonredundant n-sufficient family of M∗.
If T has the Ln-amalgamation property (and not just the (Ln,∞)-amalgamation
property) then every (Ln,m)-saturated N |= T can be Ln-elementarily embedded
into some M |= T c and is coordinatized by a nonredundant n-sufficient family of
M∗ like above.
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Index of notation and terminology

acl, 42
adjacent, 27
amalgamation class

Φ-, 33
has a, 34

amalgamation property
Ln-, 14
(Ln,∞)-, 15

canonical completion, 20
coordinatized, 52
crdM(A), 47

dcl, 42
determined

n-, 41
Φ-, 35

≡, 13
≡Ln , 13
≡L, 13
≡Φ, 33
elimination of quantifiers

almost admits, 36
embedding

Ln-elementary, 14
Φ-elementary, 33

equivalent (nice pairs), 47
essentially closed under subformulas, 34
essentially equivalent (modulo T ), 34
extension

Ln-elementary, 13
L-elementary, 13

Fm, 10
F n
m, 10
F n
m(A), 12
F n
x̄ , 10
F n
x̄ (A), 12
Fx̄, 10
Fx̄(A), 12
FM , 47
FM(ϕ), 47

homogeneous, 36

I-crdM(A), 47

L(A), 12
LΓ, 10
limit, 35
Ln, 10
Ln-theory, 10

complete, 10
Ln(A), 12

M eq�k, N eq�k, 48
m0(L, n), 46
m1(L, n), 46
mutually indiscernible, 47

over, 47

n-sufficient family, 49
nice pair, 47
nonredundant, 50

order property
in Ln, 22
with respect to T , 22

ϕ-crdM(A), 47

R, Morley rank, 42
range, rng, 42

sk(L), 46
S(A), 41
S(A,M), 13
Sm(A,M), 13
Sm(T ), 10
Sn(A,M), 13
Snm(A,M), 13
Snm(T ), 10
Sn(T ), 10
Snx̄ (A,M), 13
Snx̄ (T ), 10
S(T ), 10
Sx̄(A,M), 13
S(ϕ,x̄)(A,M), 22
Sx̄(T ), 10
saturated

(Ln, κ)-, 15
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(Ln, κ,∞)-, 15
(Φ, κ,A)-, 34

saturated substructure
κ-, 49

smoothly approximable, 40
stable (structure), 37
stable in Ln, 23

ω-, 23
stable in Φ, 37
substructure (submodel)

L-elementary, 4L, 4, 13
Ln-elementary, 4Ln , 13

T c, 20
ThL(M), 13
ThL(M,A), 13
ThL(A)(M), 13
ThLn(M), 13
ThLn(M,A), 13
ThLn(A)(M), 13
tp, 14
tpL, 14
tpLn , 14
type

(Ln, x̄)-, 10, 13
(L, x̄)-, 10, 13
(Φ,A)-, 34
(ϕ, x̄)-, 22

U, U-rank, 42
universal

strongly (Ln, κ)-, 15
strongly (Ln, κ,∞)-, 15
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