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Introduction

The main subject of the article is the finite submodel property for ℵ0-categorical struc-
tures, in particular under the additional assumptions that the structure is simple, 1-based
and has trivial dependence. Here, a structure has the finite submodel property if every
sentence which is true in the structure is true in a finite substructure of it. It will be
useful to consider a couple of other finiteness properties, related to the finite submodel
property, which are variants of the usual concept of saturation.

For the rest of the introduction we will assume that M is an ℵ0-categorical (infinite)
structure with a countable language. We also assume that there is an upper bound to
the arity of the function symbols in M :s language and that, for every 0 < n < ℵ0 and
R ⊆Mn which is definable in M without parameters, there exists a relation symbol, in
the language of M , which is interpreted as R; these assumptions are not necessary for
most results to be presented, but it simplifies the statement of a result which I mention
in this introduction.

First we will consider ‘canonically embedded’ substructures of M eq. Here, a structure
N is canonically embedded in M eq if N ’s universe is a subset of M eq which is definable
without parameters and, for every 0 < n < ℵ0 and R ⊆ Nn which is ∅-definable in
M eq there is a relation symbol in the language of N which is interpreted as R; we also
assume that the language of N has no other relation (or function or constant) symbols.
We prove that if N ⊆ M eq is a structure which is canonically embedded in M eq, only
finitely many sorts are represented in N and M is included in the algebraic closure of N
(where algebraic closure is taken in M eq), then M has the finite submodel property if
and only if N has it; except for the assumptions on the language of M we only assumed
that M is ℵ0-categorical.

Then, in Section 3, we show that, under the additional assumptions that M is simple,
1-based and has trivial dependence (which implies that M has finite SU-rank), there
exists a structure N ⊆ M eq such that N is canonically embedded in M eq, only finitely
many sorts are represented in N , M is included in the algebraic closure of N and the
algebraic closure restricted to N forms a trivial (or degenerate) pregeometry.

Let N be as above and let aclN denote the algebraic closure in N (which is the same as
the algebraic closure in M eq restricted to N), so (N, aclN ) is a pregeometry. Then, to N
we may apply results from [4] where ℵ0-categorical structures M ′ such that the algebraic
closure on M ′ forms a pregeometry are studied. We do this in Section 4 where we draw
a conclusion about what happens if N does not have the finite submodel property, in
terms of the the main notions studied in [4], namely ‘polynomial k-saturation’ and ‘the
k-independence hypothesis’ (where 0 < k < ℵ0).

As Section 3 introduces the notion of ‘height’, we prove in Section 5 that the SU-rank
of M is at least as great as the height of M . Finally, Section 6 gives a couple of examples
which illustrate the notions and constructions from Section 3.

For more results on the finite submodel property in the ω-categorical setting, see
[1] and [2] which treat smoothly approximable (or equivalently, Lie coordinatizable)
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structures. The random graph and random structure have the finite submodel property,
which is proved by a probability theoretic argument (see [6], for example). A more
general approach which uses a probabilistic argument to show that a structure, satisfying
certain conditions, has the finite submodel property is given in [4].

1. Preliminaries

Notation and terminology. We will use more or less standard notation. By ā, b̄ etc.
we denote sequences of elements (from some structure, usually); these will always be
finite. Occasionally we may consider a sequence ā as a set (by disregarding the order of
the elements in the sequence). With the notation ā ∈ A we mean that each element in
the sequence ā belongs to A. For a sequence ā, |ā| denotes its length; for a set A, |A|
denotes its cardinality. Occasionally we use the notation rng(ā) to denote the set of all
elements that occur in ā. Given sets A and B we sometimes write AB instead of A∪B.

We will always assume that the language of any structure that we talk about is
countable. For a structure M , the complete theory of M is denoted by Th(M). We
write dclM (A), aclM (A) and tpM (ā/A) for the definable closure of A in M , the algebraic
closure of A in M and the type of ā over A in M ; if the subscript ‘M ’ is clear from
the context we may drop it. For a complete theory T , let Sn(T ) be the set of complete
n-types of T . For a subset A ⊆ M , let SM

n (A) denote the set of n-types over A (which
are realized in some elementary extension of M).

We say thatM is ℵ0-categorical/simple/supersimple if Th(M) is it. We will frequently
use the well-known characterization of ℵ0-categorical theories (see [6] for example). An
important consequence of this characterization is that if M is ℵ0-categorical and A ⊆M
is finite then aclM (A) is finite.

We assume familiarity with M eq but since the distinction between different sorts of
elements of M eq will be important here, we clarify now what we mean by a ‘sort’ in M eq.
For every 0 < n < ℵ0 and every equivalence relation E on Mn which is ∅-definable (i.e.
definable without parameters) Leq contains a unary relation symbol PE (which is not in
L). By a sort (in M eq) we mean a set of the form SE = {a ∈ M eq : M eq |= PE(a)} for
some E as above. If A ⊆M eq and there are only finitely many E such that A∩ SE 6= ∅
then we say that only finitely many sorts are represented in A.

In the next fact (which is Lemma 6.4 of chapter III in [7]), FE denotes the relation
symbol in Leq which in M eq is interpreted as the graph of the function which (assuming
that E is a ∅-definable equivalence relation on Mn) sends ā ∈Mn to the E-equivalence
class that ā belongs to.

Fact 1.1. [7] For every ϕ(x̄) ∈ Leq there is a formula θ(x̄) ∈ Leq such that ϕ(x̄) and
θ(x̄) are equivalent in M eq and θ(x̄) is a boolean combination of formulas of the following
forms:
(i) ∀x(x = x) or ¬∀x(x = x),
(ii) x = y,
(iii) PE(x),
(iv)

∧n
i=1 PEi(xi) → ∀ȳ1, . . . , ȳn

( ∧n
i=1 FEi(ȳi, xi) → ψ(ȳ1, . . . , ȳn)

)
, where ψ(ȳ1, . . . , ȳn)

is an L-formula.

M eq is not ℵ0-categorical (by the well-known characterization [6] of ℵ0-categorical the-
ories), even if M is. We get the following from from Fact 1.1 and the fact that an
ℵ0-categorical structure has only finitely many formulas in k free variables (up to equiv-
alence in M) for every k < ℵ0:

Fact 1.2. If M is ℵ0-categorial and A is a subset of M eq in which only finitely many sorts
are represented, then, for any 0 < n < ℵ0, only finitely many types from Sn(Th(M eq))
are realized by n-tuples in An.
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A consequence of Fact 1.2 is the following:

Fact 1.3. Suppose that M is ℵ0-categorical and that A is a subset of M eq such that
only finitely many sorts are represented in A. If B ⊆ M eq is finite then aclMeq(B) ∩ A
is finite.

Any definable set N ⊆ M eq may be considered as a structure in a language which, for
every 0 < n < ℵ0 and every relation R ⊆ Nn which is ∅-definable in M eq, contains a
relation symbol which is interpreted as R; and we assume that the language of N has
no other relation (or function or constant) symbols.

Definition 1.4. If a ∅-definable set N ⊆ M eq is considered as a structure in the way
just described above then we say that N is canonically embedded in M eq; this definition
is stronger than the one given in [1] since we require that N is definable (in M eq) without
parameters.

Note that if N is canonically embedded in M eq then N has elimination of quantifiers.
Also observe that if N is canonically embedded in M eq and ā, b̄ ∈ N then tpN (ā) =
tpN (b̄) if and only if tpMeq(ā) = tpMeq(b̄). By Fact 1.1 we get:

Fact 1.5. Suppose that M is ℵ0-categorical. If N ⊆ M eq is a canonically embedded
structure in which only finitely many sorts are represented then N is ℵ0-categorical.

From Fact 1.5 we easily derive the following:

Fact 1.6. Suppose that M is ℵ0-categorical.
(i) For any ā ∈M eq, tpMeq(ā) is isolated
(ii) M eq is ℵ0-homogeneous.

Proof. (i) Let ā ∈M eq and let

N = {b ∈M eq : b belongs to the same sort as some element in ā}.
Then N is ∅-definable, so we may regard N as a canonically embedded structure. By
Fact 1.5, N is ℵ0-categorical, so tpN (ā) is isolated. As noted above, if b̄, c̄ ∈ N then
tpN (b̄) = tpN (c̄) if and only if tpMeq(b̄) = tpMeq(c̄), so tpMeq(ā) must be isolated.

(ii) is an immediate consequence of (i). �

If ā ∈M eq and A ⊆M eq then SUM (ā/A) denotes the SU-rank of the type tpMeq(ā/A);
and SUM (ā) means SUM (ā/∅); as usual we may sometimes drop the subscript ‘M ’.

We define the SU-rank of a simple structure M to be sup{SU(a) : a ∈ M}, if the
supremum exists (which it will in the context where it will be used). We say that M
has finite SU-rank if this supremum is finite. Observe that if M has finite SU-rank and
is ℵ0-categorical then every N such that N ≡ M is ℵ0-saturated and hence every such
N has finite SU-rank.

An ℵ0-categorical and simple (complete) theory has elimination of hyperimaginaries
(by [8], Theorem 6.1.9, for instance) and therefore the bounded closure and the algebraic
closure are the same thing; this is the reason why Fact 1.8 holds, although the definition
of 1-basedness, given below, only speaks about algebraic closure.

Definition 1.7. Let T be an ℵ0-categorical and simple (complete) theory.
(i) T is 1-based if, whenever M |= T and A,B ⊆ M eq, then A is independent from B
over aclMeq(A) ∩ aclMeq(B).
(ii) T has trivial dependence if, whenever M |= T , A,B,C1, C2 ⊆ M eq and A |̂�

B
C1C2,

then A |̂�
B
Ci for i = 1 or for i = 2.

(iii) We say that M is 1-based (or has trivial dependence) if Th(M) is 1-based (or has
trivial dependence).
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By the finite character of forking, if, in (ii) of Definition 1.7, we would only ask the
given condition to be fulfilled when C1 and C2 are finite, then the resulting definition of
triviality would be equivalent with the one given. The following fact is part of Corollary
4.7 in [5], where the terminology is different from here (the term ‘modular theory’ is
used instead of ‘1-based theory’):

Fact 1.8. If M is an ℵ0-categorical, simple and 1-based structure then M is supersimple
and has finite SU-rank.

For a more detailed understanding (which will not be needed here) of the relationships
between 1-basedness, trivial dependence and types of SU-rank 1, the reader is refered
to Corollary 4.7 in [5] and Lemma 3.22 in [3].

The Lascar inequalities ([8], Theorem 5.1.6, for instance) imply the following fact
which we call the “Lascar equation”:

Fact 1.9. (Lascar equation) If M is supersimple, ā, b̄ ∈M eq, A ⊆M eq and
SUM (ā, b̄/A) < ℵ0, then

SUM (ā, b̄/A) = SUM (ā/Ab̄) + SUM (b̄/A).

A basic fact about SU-rank is that if ā, b̄ ∈ M eq, A ⊆ M eq and b̄ ∈ aclMeq(āA) then
SUM (ā, b̄/A) = SUM (ā/A). Suppose that M has finite SU-rank. By the Lascar equation
it follows that SUM (ā) is finite for every ā ∈ M . Since every b̄ ∈ M eq is included in
dclMeq(ā) for some ā ∈M , it follows from the Lascar equation that SUM (b̄) is finite for
every b̄ ∈M eq.

Definition 1.10. An L-theory T has the finite submodel property if the following holds
for any M |= T and sentence ϕ ∈ L: If M |= ϕ then there is a finite substructure N ⊆M
such that N |= ϕ. A structure M has the finite submodel property if whenever ϕ is a
sentence such that M |= ϕ, then there is a finite substructure N ⊆M such that N |= ϕ.

If Th(M) has the finite submodel property then clearly M has it. The opposite direc-
tion holds if the language contains only finitely many relation, function and constant
symbols; because if ϕ is true in a finite substructure A = {a1, . . . , an} ⊆ M then, by
the assumption on the language, there is a quantifier free formula ψA(x1, . . . , xn) which
describes the isomorphism type of A, so ∃x1, . . . , xnψA belongs to Th(M) and hence A
is embeddable in every model of Th(M).

In Sections 3 and 4 we will speak about pregeometries; for a definition, the reader is
refered to [6], for instance.

2. The finite submodel property and saturation

In this section the main result is that if there is an upper bound to the arity of all function
symbols in the language of M and M is ℵ0-categorical and there exists a canonically
embedded structure N ⊆M eq such that M ⊆ aclMeq(N) and N has the finite submodel
property, then M has the finite submodel property. If the language of M satisfies an
additional condition then the reverse holds (i.e. if M has the finite submodel property
then so does N). We will use a lemma which relates the finite submodel property with
saturation, as we define it below.

Definition 2.1. (i) Let κ be a cardinal. A subset B ⊆ M is κ-saturated with respect
to M if, whenever A ⊆ B, |A| < κ and p(x) ∈ SM

1 (A), then there is a ∈ B such that
M |= p(a). A substructure of M is κ-saturated (with respect to M) if its universe is.
As indicated, the definitions depends on the model M in which we evaluate truth of
formulas.
(ii) If L is a first order language and k < ℵ0 then let Lk denote the set of formulas from
L in which at most k variables occur (whether free or bound).
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The next lemma shows how saturation is related to the finite submodel property.

Lemma 2.2. The following are equivalent:
(i) For every k < ℵ0, M has a finite substructure which is k-saturated with respect to
M .
(ii) M is ℵ0-categorical and if M̂ is the expansion of M obtained by, for every k < ℵ0

and every type p(x̄) ∈ Sk(Th(M)), adding a relation symbol Rp such that, for every
ā ∈Mk, M̂ |= Rp(ā) ⇔ M |= p(ā), then M̂ has the finite submodel property.

Proof. Suppose that (i) holds. If M is not ℵ0-categorical then for some n < ℵ0 there
are infinitely many n-types (over ∅) so M has no finite n-saturated substructure, con-
tradicting our assumption.

Now we show that M̂ has the finite submodel property. Let n < ℵ0 be arbitrary.
Let L be the language of M and let M̃ be the expansion of M obtained by, for every
n′ ≤ n and every p(x̄) ∈ Sn′(Th(M)), adding a relation symbol Rp such that, for every
ā ∈ Mn′ , M̃ |= Rp(ā) ⇔ M |= p(ā); so M̃ is a reduct of M̂ . Let L̃ be the language of
M̃ . Since Th(M) is ℵ0-categorical, every type of Sn′(Th(M)) (for n′ ≤ n) is isolated
and therefore, for every ϕ(x̄) ∈ L̃ (where x̄ may have arbitrary length) there is ψ(x̄) ∈ L
such that M̃ |= ∀x̄

(
ϕ(x̄) ↔ ψ(x̄)

)
. So for every k < ℵ0, there are up to equivalence in

Th(M̃) only finitely many formulas with k free variables, so M̃ is ℵ0-categorial.
Hence, there exists m < ℵ0 such that m ≥ n and, for every n′ ≤ n and every

p(x̄) ∈ Sn′(Th(M̃)), p(x̄) is isolated by a formula ϕp(x̄) ∈ L̃m. By (i) there is a finite
substructure A ⊆M which is m-saturated with respect to M . Let Ã be the substructure
of M̃ with the same universe as A

Claim: For every ā ∈ A and ψ(x̄) ∈ L̃m, M̃ |= ψ(ā) if and only if Ã |= ψ(ā).

We prove the claim by induction on the complexity of formulas. For atomic formulas
the claim is trivial. The induction step for ∧ and ¬ is straightforward so we only do
the induction step for ∃. Suppose that ∃yψ(x̄, y) ∈ L̃m, where we may assume that no
variable occurs twice in x̄ and that y is different from all variables in x̄, so |x̄| < m.
Suppose that ā ∈ A and M̃ |= ∃yψ(ā, y). Let ψ∗(x̄, y) be the formula which is obtained
by, for every n′ ≤ n and every n′-type p, replacing every occurrence of Rp(t1, . . . , tn′)
in ψ(x̄, y) by ϕp(t1, . . . , tn′), where the ti are terms. Since, for any n′ ≤ n and n′-type
p ∈ Sn′(Th(M))

M̃ |= ∀x1, . . . , xn′
(
Rp(x1, . . . , xn′) ↔ ϕp(x1, . . . , xn′)

)
,

and M̃ |= ∃yψ(ā, y), it follows (see [6], Theorem 2.6.4, for instance) that M̃ |= ∃yψ∗(ā, y).
As ψ∗(x̄, y) ∈ L we get M |= ∃yψ∗(ā, y). By the m-saturation of A there is b ∈ A such
that M |= ψ∗(ā, b) which, by a similar reasoning as above, implies M̃ |= ψ(ā, b). By
the induction hypothesis we get Ã |= ψ(ā, b) and we are done. The reverse direction is
similar but simpler, so we leave it to the reader.

By the claim, M̃ and Ã satisfy the same L̃m-sentences, so in particular the same
L̃n-sentences. Since n < ℵ0 is arbitrary and M̃ and M̂ satisfy the same L̃-sentences it
follows that M̂ has the finite submodel property.

Now assume that (ii) holds. Let k < ℵ0 be arbitrary. For any p(x1, . . . , xk) ∈
Sk(Th(M)) let p�k−1 be the restriction of p to the variables x1, . . . , xk−1. By the ℵ0-
categorictity of M , Sk(Th(M)) is finite so

φ =
∧

p(x1,...,xk)∈Sk(Th(M))

∀x1, . . . , xk−1

(
Rp�k−1

(x1, . . . , xk−1) → ∃xk(Rp(x1, . . . , xk)
)
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is a first order sentence which, by the finite submodel property of M̂ , is true in a finite
submodel Â ⊆ M̂ . Let ā ∈ Ak−1 and b ∈ M and suppose that M |= p(ā, b), where
p ∈ Sk(Th(M)). Then M |= p�k−1(ā) so M̂ |= Rp�k−1

(ā) and therefore Â |= Rp�k−1
(ā).

Since Â |= φ there is c ∈ A such that Â |= Rp(ā, c) and hence M̂ |= Rp(ā, c) and therefore
M |= p(ā, c). Since k < ℵ0 was arbitrary (i) follows. �

Remark 2.3. I have not been able to prove that (i) in Lemma 2.2 follows only from
the assumption that M has the finite submodel property, nor have I been able to show
the necessity of assuming that M̂ , and not just M , has the finite submodel property.
Therefore, I don’t know whether the assumptions on the language in (ii) of Corollary 2.5
are necessary.

Theorem 2.4. Suppose that M is ℵ0-categorical and that N ⊆ M eq is a canonically
embedded structure such that only finitely many sorts are represented in N and M ⊆
aclMeq(N). The following are equivalent:
(i) For every k < ℵ0, M has a finite subset which is k-saturated (with respect to M).
(ii) For every k < ℵ0, N has a finite subset which is k-saturated (with respect to N).

Proof. Suppose that M is ℵ0-categorical and that N ⊆ M eq is a canonically embedded
structure such that only finitely many sorts are represented in N and M ⊆ aclMeq(N).
We will show that if, for every k < ℵ0, N has a finite k-saturated subset, then the same
is true about M . Since only finitely many sorts (only one) are represented in M and
N ⊆ aclMeq(M) the reverse direction can be proved by switching places of M and N
in the proof that follows. In the proof we use, without mentioning it, that, since N
is canonically embedded in M eq, if ā, b̄ ∈ N then tpMeq(ā) = tpMeq(b̄) if and only if
tpN (ā) = tpN (b̄).

Suppose that N has a finite subset which is k-saturated with respect to N , for every
k < ℵ0. Let k < ℵ0. We will show that M has a finite subset which is k-saturated (in
M). Choose k1, k2, k3 < ℵ0 in such a way that:

• Any element from M is in the algebraic closure of a tuple of elements from N
which has length at most k1.

• If ā ∈ N and |ā| ≤ kk1 then
∣∣aclMeq(ā) ∩M

∣∣ ≤ k2.
• For any A ⊆ M with |A| ≤ k2, the number of 2kk1-types over A (i.e. types in
SMeq

2kk1
(A)) which are realized in N is at most k3 (recall Fact 1.2).

By assumption there exists a finite substructure N ′ ⊆ N such that N ′ is (k3 + 2)kk1-
saturated. Define

M ′ =
{
a ∈M : there is b̄ ∈ N ′, |b̄| ≤ k1 and a ∈ aclMeq(b̄)

}
.

Then M ′ is a finite subset of M . It remains to show that M ′ is k-saturated.
Suppose that ā ∈ M ′, |ā| < k and b ∈ M . We will find c ∈ M ′ such that

tpM (ā, c) = tpM (ā, b). By the choice of k1, the definition of M ′ and the assumptions
on ā, there is ā∗ ∈ N ′ such that ā ∈ aclMeq(ā∗) and |ā∗| ≤ kk1. By the choice of k1,
there is b̄∗ ∈ N such that b ∈ aclMeq(b̄∗) and |b̄∗| ≤ k1. By the choice of k2 we have∣∣aclMeq(ā∗) ∩M

∣∣ ≤ k2. Now we carry on a construction which will terminate after a
finite number of steps and give us the c ∈M ′ that we are looking for.

Step 1: Since N ′ is (k3 + 2)kk1-saturated there exists c̄∗1 ∈ N ′ such that tpMeq(ā∗, c̄∗1) =
tpMeq(ā∗, b̄∗). We get two cases:

Case (a)1: Suppose that tpMeq(ā∗, ā, c̄∗1) = tpMeq(ā∗, ā, b̄∗).
By Fact 1.6, M eq is ℵ0-homogeneous so there exists c such that tpMeq(ā∗, ā, c̄∗1, c) =
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tpMeq(ā∗, ā, b̄∗, b), so in particular tpM (ā, c) = tpM (ā, b) and c ∈ aclMeq(c̄∗1) ∩M (be-
cause b ∈ aclMeq(b̄∗) ∩M). Since c̄∗1 ∈ N ′ and |c̄∗1| = |b̄∗| ≤ k1 we have c ∈ M ′. So we
are done and the construction terminates.

Case (b)1: Suppose that tpMeq(ā∗, ā, c̄∗1) 6= tpMeq(ā∗, ā, b̄∗).
Recall that tpMeq(ā∗, c̄∗1) = tpMeq(ā∗, b̄∗). Since ā ∈ aclMeq(ā∗)∩M the assumption gives

tpMeq(ā∗, c̄∗1/aclMeq(ā∗) ∩M) 6= tpMeq(ā∗, b̄∗/aclMeq(ā∗) ∩M).

Now we proceed to step 2.

Step n+ 1 (where n ≥ 1): Suppose that c̄∗1, . . . , c̄
∗
n ∈ N ′ are defined and suppose that

(1) tpMeq(ā∗, c̄∗i ) = tpMeq(ā∗, b̄∗) whenever 1 ≤ i ≤ n,
(2) tpMeq(ā∗, c̄∗i /aclMeq(ā∗)∩M) 6= tpMeq(ā∗, b̄∗/aclMeq(ā∗)∩M) whenever 1 ≤ i ≤

n, and
(3) tpMeq(ā∗, c̄∗i /aclMeq(ā∗)∩M) 6= tpMeq(ā∗, c̄∗j/aclMeq(ā∗)∩M) whenever 1 ≤ i <

j ≤ n; if n = 1 then this last condition is omitted.
If n > 1 then from (3) and the choice of k3 it follows that n ≤ k3; if n = 1 then, as
k3 ≥ 1, we automatically have n ≤ k3. By (1), we have |c̄∗i | = |b̄∗| ≤ k1 for 1 ≤ i ≤ n.
Since N ′ is (k3 + 2)kk1-saturated there exists c̄∗n+1 ∈ N ′ which realizes

p(x̄) = tpMeq(b̄∗/ā∗, c̄∗1, . . . , c̄
∗
n).

Since c̄∗n+1 realizes p(x̄) it follows from (2) that

tpMeq(ā∗, c̄∗n+1/aclMeq(ā∗) ∩M) 6= tpMeq(ā∗, c̄∗i /aclMeq(ā∗) ∩M) whenever 1 ≤ i ≤ n.

Now we have to cases:

Case (a)n+1: Suppose that tpMeq(ā∗, ā, c̄∗n+1) = tpMeq(ā∗, ā, b̄∗).
As is case (a)1 we find c ∈ M ′ such that tpM (ā, c) = tpM (ā, b) and the construction
terminates.

Case (b)n+1: Suppose that tpMeq(ā∗, ā, c̄∗n+1) 6= tpMeq(ā∗, ā, b̄∗).
As ā ∈ aclMeq(ā∗) ∩M we get

tpMeq(ā∗, c̄∗n+1/aclMeq(ā∗) ∩M) 6= tpMeq(ā∗, b̄∗/aclMeq(ā∗) ∩M).

Now (1), (2), (3) are satisfied with n+1 in place of n, so we may proceed with step n+2.

Observe that, for any n ≥ 1, we will proceed with step n + 1 only if (1)-(3) and cases
(b)1, . . . , (b)n hold and in this situation we must have n ≤ k3, as explained above.
Therefore, for some n ≤ k3 + 1 case (a)n will hold and we find c ∈ M ′ such that
tpM (ā, c) = tpM (ā, b). �

Corollary 2.5. Suppose that M is ℵ0-categorical and that N ⊆ M eq is a canonically
embedded structure such that only finitely many sorts are represented in N and M ⊆
aclMeq(N). Also assume that for some r < ℵ0, every function symbol in the language of
M has arity at most r.
(i) If N has the finite submodel property then so does M .
(ii) Suppose that for every formula ϕ(x̄) (without parameters) in the language of M , there
is a relation symbol R in the language of M such that RM = {ā : M |= ϕ(ā)}. Then M
has the finite submodel property if and only if N has the finite submodel property.

Proof. (i) Suppose that N the finite submodel property. By Lemma 2.2 (and the
assumption that N is canonically embedded in M eq) it follows that, for every k < ℵ0,
N has a finite subset which is k-saturated with respect to N . By Theorem 2.4, for every
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k < ℵ0, M has a finite subset which is k-saturated with respect to M . Since there is, by
assumption, an upper bound to the arity of any function symbol in the language of M ,
it follows that for all k large enough any k-saturated subset of M will be a substructure
of M . Thus, for every k < ℵ0, M has a k-saturated substructure. By Lemma 2.2, M
has the finite submodel property.

(ii) Suppose that the language of M satisfies the additional condition mentioned in
(ii), and that M has the finite submodel property. By Lemma 2.2 (and the assumption
about M :s language), for every k < ℵ0, M has a finite substructure which is k-saturated.
By Theorem 2.4, for every k < ℵ0, N has a finite subset which is k-saturated. Since
the language of N (being canonically embedded in M eq) has no constant or function
symbols, any subset is also a substructure. So by Lemma 2.2 N has the finite submodel
property. �

Remark 2.6. The condition on the language of M in part (ii) of Corollary 2.5 au-
tomatically holds for N in the same theorem, because N is assumed to be canonically
embedded inM eq; see Definition 1.4. As mentioned in Remark 2.3, I don’t know whether
this condition on M is necessary for the conclusions of (ii).

3. Trivial dependence and canonically embedded pregeometries

We will show that if M is ℵ0-categorical, simple, 1-based with trivial dependence, then
there is a canonically embedded structure N ⊆ M eq such that M ⊆ aclMeq(N), only
finitely many sorts are represented in N and (N, aclN ) forms a trivial pregeometry.
(The terminology ‘degenerate’ or ‘disintegrated’ pregeometry is also used.) Hence, by
Corollary 2.5, if M does not have the finite submodel property then neither does N .

This result will be proved via a sequence of constructions and lemmas. Throughout
this section we assume that M is ℵ0-categorical, simple, 1-based with trivial dependence.
From Fact 1.8 it follows that M is supersimple with finite SU-rank. We assume that
M is elementarily embedded in a “monster model” M which is at least |M |+-saturated.
We may naturally identify M eq with an elementary substructure of Meq (see [6], Theo-
rem 4.3.3).

Since we will only consider types over subsets of M eq we will never have a reason to
go outside of Meq when looking for realizations of such types. Recall that, by Fact 1.6,
M eq and Meq are ℵ0-homogeneous.

Notation for this section. If ā ∈ M eq and A ⊆ M eq then tp(ā/A), acl(A) and
SU(ā/A) mean tpMeq(ā/A), aclMeq(A) and SUM (ā/A), respectively. If a, b ∈ M eq then
a < b is an abbreviation for ‘a ∈ acl(b) and b /∈ acl(a)’.

The following special case of a well-known result (see [8] for example), which we prove
for completeness, will be used:

Lemma 3.1. If a ∈M eq, A ⊆M eq and SU(a/A) > 1 then there is b ∈ acl(a) such that
SU(a/Ab) = 1, and consequently SU(b/A) = SU(a)− 1.

Proof. Suppose that SU(a/A) = r > 1 where a ∈ M eq and A ⊂ M eq. By the finite
character of forking there is a finite set B ⊂ Meq such that SU(a/AB) = 1. By 1-
basedness, a is independent from AB over aclMeq(a) ∩ aclMeq(AB), so

SU
(
a/aclMeq(a) ∩ aclMeq(AB)

)
= SU(a/AB) = 1.

As M is supersimple there is finite B′ ⊆ aclMeq(a)∩aclMeq(AB) such that SU(a/B′) = 1.
Then 1 = SU(a/AB) ≤ SU(a/AB′) ≤ SU(B′) = 1 so SU(a/AB′) = 1. Since a ∈ M eq

we have B′ ⊆ aclMeq(a) = aclMeq(a) ⊆M eq and since B′ is finite there is b ∈M eq such
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that acl(b) = acl(B′). Then SU(a/Ab) = 1 and by the Lascar equation we must have
SU(b/A) = r − 1. �

Remark 3.2. Suppose that a, b ∈M eq, b ∈ acl(a) and SU(a/b) = 1. If c ∈M eq is such
that c < a and c /∈ acl(b) then a ∈ acl(b, c), since otherwise we would have

1 = SU(a/b) = SU(ac/b) = SU(a/cb) + SU(c/b) ≥ 1 + 1.

Definition 3.3. We will say that a set A ⊆ M eq is self-coordinatized if the following
holds:

(1) If a ∈ A and SU(a) > 1 then there is b ∈ A ∩ acl(a) such that SU(a/b) = 1 (and
hence SU(b) = SU(a)− 1).

(2) If a, b ∈ A, SU(a) > 1, b ∈ A ∩ acl(a), SU(a/b) = 1 and there exists c ∈ M eq

such that c < a and c /∈ acl(b) then such c exists in A.
We say that an element a ∈ A is coordinatized in A if (1) and (2) hold for a; so if
SU(a) = 1 then a is coordinatized in A. If A is not self-coordinatized then let

δ(A) = sup
{
SU(a) : a ∈ A and a is not coordinatized in A

}
,

and note that δ(A) ≥ 2 in this case. If A is self-coordinatized let δ(A) = 1.

Lemma 3.4. Suppose that A ⊆M eq is not self-coordinatized and that only finitely many
sorts are represented in A.
Then there is B ⊆M eq such that
(i) A ⊆ B,
(ii) δ(B) < δ(A),
(iii) only finitely many sorts are represented in B, and
(iv) if a ∈ B, b ∈M eq and tp(a) = tp(b) then b ∈ B.
In particular it follows that B is ∅-definable (in M eq).

Proof. Suppose that A ⊆M eq is not self-coordinatized and that only finitely many sorts
are represented in A. We may assume that (iv) is satisfied for A, since otherwise we can
add the missing elements. Let B′ include A, and in addition, elements obtained in the
following way: For every a ∈ A which does not satisfy (1) in Definition 3.3, add to B′

(by Lemma 3.1) one element b so that (1) is satisfied for a, and note that SU(b) < SU(a).
Then δ(B′) ≤ δ(A) and, by the ℵ0-categorcity of M , we may assume that (iii) is satisfied
for B′ and by adding missing elements we may also assume that (iv) holds. Now let B
include B′ and in addition contain elements obtained in the following way: For every
pair a ∈ A, b ∈ B′ which satisfy (1) (in Definition 3.3) and for which there is c ∈ M eq

such that c < a and c /∈ acl(b), but no such c exists in B′, add one such c to B; from the
Lascar equation it follows that SU(c) < SU(a). Then δ(B) < δ(A) because if a ∈ A is
not coordinatized in A then a is coordinatized in B. In the same way as for B′ we may
assume that (iii) and (iv) hold for B; this can only add elements with rank less than
δ(A). By Fact 1.6, for any a ∈ B, tp(a) is isolated. Since we made sure that (iii) and
(iv) hold for B it follows from Fact 1.2 that B is ∅-definable. �

Construction 3.5. (i) By Lemma 3.4 and induction we find a self-coordinatized ∅-
definable set C ⊆ M eq such that M ⊆ C, only finitely many sorts are represented in
C and if c ∈ C, c′ ∈ M eq and tpM (c) = tpM (c′) then c′ ∈ C. As a consequence, only
finitely many 1-types (i.e. types in S1(Th(M eq)) are realized in C. By Fact 1.9 and
the discussion following it we have SU(a) < ℵ0 for every a ∈ M eq. Therefore there is
m < ℵ0 such that if c0, . . . , cn ∈ C and c0 < . . . < cn then n ≤ m.
(ii) We define subsets Cn ⊆ C inductively by: C0 = ∅ and if Cn is defined and C 6⊆
acl(Cn) then

Cn+1 = Cn ∪
{
c ∈ C − acl(Cn) : there exists no c′ ∈ C − acl(Cn) such that c′ < c

}
.
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If C ⊆ acl(Cn) then Cn+1 is not defined. Since C0 = ∅ (by definition) and M is infinite
and ℵ0-categorical it follows that C1 is defined. As noted in part (i), there is a natural
number which bounds the length of any ‘descending chain’ (with respect to <) in C, so
it follows that if Cn+1 is defined then Cn ⊂ Cn+1, where the inclusion is proper. From
Lemma 3.7 below, it follows that there exists 0 < r < ℵ0 such that Cr+1 is undefined.

Lemma 3.6. Suppose that Cn is defined. If c ∈ Cn, c′ ∈ M eq and tp(c′) = tp(c) then
c′ ∈ Cn.

Proof. Immediate since Cn is ∅-definable, which is explained in Remark 3.9 below. �

Lemma 3.7. There exists 0 < r < ℵ0 such that Cr is defined but Cr+1 is not defined,
and hence C ⊆ acl(Cr).

Proof. We observed in Construction 3.5 (ii) that if Cn+1 is defined then Cn ⊂ Cn+1

(where the inclusion is proper). So from Lemma 3.6 it follows that at least one more
1-type is realized in Cn+1 than in Cn. But, as noted in Construction 3.5 (i), only finitely
many 1-types are realized in C and since Cn+1 ⊆ C the same holds for Cn+1. It follows
that there exists 0 < r < ℵ0 such that Cr is defined but Cr+1 is not defined. �

Construction 3.8. Let 0 < r < ℵ0 be such as in Lemma 3.7. In other words, Cr

is defined but Cr+1 is not defined which implies that C ⊆ acl(Cr). As M ⊆ C we in
particular have M ⊆ acl(Cr). We call r the height of C.

Remark 3.9. If N ≡M then N eq contains a self-coordinatized set C ′ which contains N
and has height r. The reason is the following. From Fact 1.6 (i), which says that tp(ā)
is isolated for any ā ∈M eq, it follows that if A ⊆M eq is ∅-definable then the following
relations are ∅-definable:

P (x, y) ⇐⇒ x, y ∈ A and SU(x/y) = 1,

Q(x) ⇐⇒ x ∈ A and SU(x) > 1,

Rn(x, y1, . . . , yn) ⇐⇒ x, y1, . . . , yn ∈ A and x ∈ acl(y1, . . . , yn), for n < ℵ0.

Since only finitely many 1-types are realized in C there is k < ℵ0 such that, for any n ≤ r
and c ∈ C, if c ∈ acl(Cn) then there are a1, . . . , ak ∈ Cn such that c ∈ acl(a1, . . . , ak).
From the ∅-definability of P , Q, Rn, n < ℵ0, in the case A = C, it follows that for
each n ≤ r, Cn is ∅-definable. Therefore there is a first-order sentence (in the lan-
guage of M eq) which belongs to Th(M eq) and which expresses that M eq (or any other
model of Th(M eq)) includes a self-coordinatized set which satisfies the conditions of
Construction 3.5 (i) and has height r. Hence, for any model N of Th(M), N eq includes
a self-coordinatized set which satisfies the conditions of Construction 3.5 (i) and has
height r.

Definition 3.10. If C is chosen so that no other self-coordinatized set, which satisfies
the conditions of Construction 3.5 (i), has smaller height than C, then the height of C
is called the height of M . By Remark 3.9, the height of M is an invariant of Th(M), so
we can talk about the height of Th(M).

The next lemma relates height with SU-rank. Since it will not be used in proving other
results, we postpone its proof until Section 5.

Lemma 3.11. The SU-rank of M is at least as great as the height of M .

Lemma 3.12. If n < r and c ∈ Cn+1 − Cn then SU(c/Cn) = 1.

Proof. Let c ∈ Cn+1 − Cn. Then c /∈ acl(Cn) so SU(c/Cn) ≥ 1. If SU(c) = 1 then we
must have SU(c/Cn) = 1 and we are done. Now suppose that SU(c) > 1. Since C is
self-coordinatized there is c′ ∈ C ∩ acl(c) such that SU(c/c′) = 1 and as a consequence
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c /∈ acl(c′), so c′ < c. If c′ /∈ acl(Cn) then, since c′ < c, we have a contradiction to the
assumption that c ∈ Cn+1 − Cn. Hence c′ ∈ acl(Cn) so SU(c/Cn) = 1. �

Construction 3.13. For s = 1, . . . , r let

Ns =
{
c ∈ Cs : there exists no c′ ∈ Cs such that c < c′

}
.

We will only use Nr to prove the main result (Theorem 3.19) of this section, but as the
few technical lemmas which will follow can be proved for Ns for arbitrary s ∈ {1, . . . , r},
we will do this.

Lemma 3.14. (i) Let 1 ≤ s ≤ r. If c, c′ ∈ Ns and c ∈ acl(c′) then c′ ∈ acl(c).
(ii) M ⊆ C ⊆ acl(Nr).

Proof. (i) Suppose that c, c′ ∈ Ns and c ∈ acl(c′). If c′ /∈ acl(c) then c < c′. But by the
definition of Ns, c, c′ ∈ Cs and since c ∈ Ns there cannot exist any d ∈ Cs such that
c < d, so we have a contradiction.

(ii) From Construction 3.5 (i) we have M ⊆ C. By Construction 3.8 we have C ⊆
acl(Cr). Suppose that a ∈ C. We show that a ∈ acl(Nr). By Construction 3.8 there
are c1, . . . , cn ∈ Cr such that a ∈ acl(c1, . . . , cn). Consider ci for each 1 ≤ i ≤ n. If
ci /∈ Nr then ci < c′i for some c′i ∈ Cr. We may assume that no c′′i ∈ Cr exists such that
c′i < c′′i , for otherwise we can replace c′i with c′′i . But then c′i ∈ Nr. So if ci /∈ Nr then
let c′i ∈ Nr be such that ci < c′i and otherwise let c′i = ci. Then c′1, . . . , c

′
n ∈ Nr and

a ∈ acl(c1, . . . , cn) ⊆ acl(c′1, . . . , c
′
n). �

Lemma 3.15. If a ∈ Cr, b ∈ C, A ⊆ M eq, b < a, SU(a/b) = 1 and a |̂�
b
A then

a ∈ acl(A).

Proof. Let a, b, A satisfy the assumptions of the lemma. By Construction 3.5, C0 = ∅
and Ci ⊂ Ci+1 whenever i < r, so there is n < r such that a ∈ Cn+1 − Cn. We
must have b ∈ acl(Cn) because otherwise, as b < a, we would have a contradiction
to the assumption that a ∈ Cn+1 − Cn (see Construction 3.5). The assumptions that
SU(a/b) = 1 and a |̂�

b
A imply that a ∈ acl(bA). If SU(b) = 0 then a ∈ acl(A) and we

are done. So suppose that SU(b) > 0. Since b < a it follows (from the Lascar equation)
that SU(a) > 1.

Since M is 1-based, a is independent from acl(A) over acl(a) ∩ acl(A) and since M
is supersimple there is a finite C ⊆ acl(a) ∩ acl(A) such that a is independent from
acl(a)∩ acl(A) over C. Transitivity implies that a |̂

C
A. As C is finite we may replace it

by an element c ∈ M eq. Thus we find c ∈ acl(a) ∩ acl(A) such that a |̂
c
A. If a ∈ acl(c)

then a ∈ acl(A) and we are done. Therefore it is sufficient to show that a ∈ acl(c).
So suppose, for a contradiction, that a /∈ acl(c). First we show that c /∈ acl(b). If

c ∈ acl(b) then we have acl(c) ⊆ acl(b) ⊆ acl(a) and, since A |̂
c
a (by the choice of c)

we get A |̂
acl(c)

acl(a), so transitivity of independence gives A |̂
acl(b)

acl(a) and hence A |̂
b
a

which contradicts the assumption that a |̂�
b
A.

Hence c /∈ acl(b). To sum up, we now have SU(a/b) = 1, b < a, c < a (by the
assumption that a /∈ acl(c)) and c /∈ acl(b). By assumption SU(b) > 0. Since b < a
and SU(a/b) = 1 we get SU(a) > 1 (by the Lascar equation). Also b ∈ acl(a) ∩ C and
C is self-coordinatized, so part (2) of Definition 3.3 gives us c′ ∈ C such that c′ < a
and c′ /∈ acl(b). As shown in Remark 3.2 we must have a ∈ acl(b, c′). Recall that n
was chosen so that a ∈ Cn+1 − Cn. If c′ /∈ acl(Cn) then, since c′ < a, this contradicts
that a ∈ Cn+1 − Cn (see Construction 3.5). If c′ ∈ acl(Cn) then, since b ∈ acl(Cn)
(as we concluded earlier in the proof), we have a ∈ acl(Cn) which also contradicts that
a ∈ Cn+1 − Cn. Now we have shown that a ∈ acl(c) so we are finished. �
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Lemma 3.16. If a ∈ Cr, d1, . . . , dk ∈ M eq and a ∈ acl(d1, . . . , dk) then a ∈ acl(di) for
some 1 ≤ i ≤ k.

Proof. Suppose that a ∈ Cr, d1, . . . , dk ∈ M eq and a ∈ acl(d1, . . . , dk). First suppose
that SU(a) = 1. Then tp(a/d1, . . . , dk) forks over ∅, so by the triviality of dependence
there is 1 ≤ i ≤ k such that tp(a/di) forks over ∅, which means that a ∈ acl(di).

Now suppose that SU(a) > 1. By Construction 3.5, C0 = ∅ and Ci ⊂ Ci+1 whenever
i < r, so there is n < r such that a ∈ Cn+1 − Cn. Since a ∈ C (because Cr ⊆ C) and C
is self-coordinatized it follows that there is b ∈ C such that b ∈ acl(a) and SU(a/b) = 1;
we must have b ∈ acl(Cn) because otherwise we would have a contradiction to the as-
sumption that a ∈ Cn+1−Cn (see Construction 3.5). By assumption, tp(a/b, d1, . . . , dk)
forks over b and since dependence is trivial there exists 1 ≤ i ≤ k such that tp(a/b, di)
forks over b, that is, a |̂�

b
di. Since we also have a ∈ Cr, b ∈ C, di ∈ M eq, b < a and

SU(a/b) = 1 we get a ∈ acl(di) from Lemma 3.15. �

Construction 3.17. Fix any s ∈ {1, . . . , r}. It follows from the argument in Remark 3.9
that Ns is a ∅-definable subset of M eq. From now on we will consider Ns as a structure
which is canonically embedded in M eq. In other words, for every 0 < n < ω and every
relation R ⊆ Nn which is ∅-definable in M eq, the language of N contains a relation
symbol which is interpreted as R; and we assume that the language of N has no other
relation (or function or constant) symbols.

Lemma 3.18. Let 1 ≤ s ≤ r.
(i) Ns is ω-categorical.
(ii) If A ⊆ Ns then aclNs(A) = aclMeq(A) ∩Ns.
(iii) (Ns, aclNs) is a trivial pregeometry.

Proof. (i) By its definition as a structure, Ns is canonically embedded in M eq. Only
finitely many sorts are represented in C (by its construction) so the same holds for Ns,
since Ns ⊆ C. So by Fact 1.5, Ns is ω-categorical.
(ii) This is a straightforward consequence of the fact that Ns is canonically embedded
in M eq.
(iii) This is a consequence of lemmas 3.14 and 3.16 and part (ii). �

Theorem 3.19. Suppose that M is an ω-categorical, simple, 1-based structure with
trivial dependence. Then there is an ω-categorical structure N which is canonically em-
bedded in M eq and (N, aclN ) forms a trivial pregeometry and M ⊆ aclMeq(N); moreover,
only finitely many sorts (from M eq) are represented in N .

Proof. The lemmas in this section have been obtained under the assumption that M is
ω-categorical, simple, 1-based structure with trivial dependence. If Nr is the canonically
embedded (in M eq) structure from Constructions 3.13 and 3.17 then, by lemmas 3.14
and 3.18, only finitely many sorts are represented in Nr, Nr is ω-categorical, (Nr, aclNr)
forms a trivial pregeometry and M ⊆ aclMeq(Nr). �

Remark 3.20. By Corollary 2.5, if N in Theorem 3.19 has the finite submodel property
then so does M . We don’t claim that it is, in practise, easier to determine if N (as in
Theorem 3.19) has the finite submodel property than if M has it. The point is rather
that if M does not have the finite submodel property then M eq canonically embeds a
structure N as in Theorem 3.19, which in some sense is less complicated than M (for
example (N, aclN ) is a trivial pregeometry while (M, aclM ) need not necessarily be a
pregeometry, as the ‘exchange property’ may fail), but still N does not have the finite
submodel property.

Remark 3.21. (i) The proof of Lemma 3.16 is the only place where we use the assump-
tion that dependence is trivial. Lemmas 3.14 and 3.16 together imply that aclMeq forms
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a (trivial) pregeometry on Ns, 1 ≤ s ≤ r. Without the assumption that dependence is
trivial the given arguments even fail to show that aclMeq forms a pregeometry on Ns

(whether trivial or not).
(ii) One may consider the following question: Suppose that M satisfies all conditions of
Theorem 3.19 except that we don’t insist that dependence is trivial. Is it the case that
M eq canonically embedds a (not necessarily trivial) pregeometry? The author guesses
that the answer is ‘no’, but has not been able to prove it.

4. Polynomial k-saturation

In Theorem 3.19 we found a canonically embedded N ⊆ M eq such that (N, aclN ) is a
pregeometry and if N has the finite submodel property then so does M . As N is ℵ0-
categorical and (N, aclN ) is a pregeometry we can apply results from [4] to N and get
some information about what happens, in terms of two notions studied in [4] (defined
below), if N does not have the finite submodel property.

In this section N will be an ℵ0-categorical structure such that (N, aclN ) forms a trivial
pregeometry; recall that this is the case for the strucure N from Theorem 3.19.

Assumptions on the language of N . Throughout this section L will be the language
of N , although all the definitions, and a couple of the results, which will follow could
be given for any language. Since N is ℵ0-categorical there exists m < ℵ0 such that∣∣aclN (a)| ≤ m for every a ∈ N . We will suppose that L has symbols P , Q andR1, . . . , Rm

which are interpreted in the following way:

PN =
{
a ∈ N : a ∈ aclN (∅)

}
,

QN =
{
(a, b) ∈ N2 : a ∈ aclN (b)

}
,

RN
i =

{
a ∈ N − aclN (∅) :

∣∣aclN (a)
∣∣ = i

}
for i = 1, . . . ,m.

If, originally, the language of N does not have such symbols (with interpretations as
above) then we can expand N to N ′ so that the above holds for N ′ and N ′ is ℵ0-
categorical and (N ′, aclN ′) forms a pregeometry.

Note that the above assumptions on the language of N hold by definition if N is canon-
ically embedded in M eq (for some ℵ0-categorical M).

Definition 4.1. Lacl denotes the sublanguage of L which has as its relation symbols
exactly the symbols P , Q, R1, . . . , Rm (and =) and which has no function or constant
symbols.

If L and L′ are first-order languages, L′ is a sublanguage of L and M is an L-structure
then M�L′ is the reduct of M to L′. The following fact appears as Claim 1.13 in [4]:

Fact 4.2. (i) N�Lacl has elimination of quantifiers.
(ii) For any subset A ⊆ N , aclN�Lacl

(A) = aclN (A); in other words, aclN�Lacl
an aclN

coincide.

Definition 4.3. (i) If M is a structure such that (M, aclM ) forms a pregeometry and
A ⊆M then we define the dimension of A to be

dimM (A) = inf
{
|B| : B ⊆ A and A ⊆ aclM (B)

}
.

(ii) For a structure M and a type p(x̄) over A ⊆ M , we say that p(x̄) is algebraic if it
has only finitely many realizations; otherwise we say that p(x̄) is non-algebraic.

Definition 4.4. Let 0 < k < ℵ0 and suppose that M is a structure (in any language)
such that (M, aclM ) forms a pregeometry. We say that M is polynomially k-saturated if
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there is a polynomial F (x) such that for every n0 < ℵ0 there is a natural number n ≥ n0

and a finite substructure A ⊆M such that:
(1) n ≤ |A| ≤ F (n).
(2) A is algebraically closed (in M).
(3) Whenever ā ∈ A, dimM (ā) < k and q(x) ∈ SM

1 (ā) is non-algebraic there are
distinct b1, . . . , bn ∈ A such that M |= q(bi) for each 1 ≤ i ≤ n.

Examples of structures which are polynomially k-saturated for every 0 < k < ℵ0 include
infinite vector spaces over a finite field and the random graph; this is shown in [4]. From
[4] we also have the following:

Fact 4.5. If M is polynomially k-saturated for every 0 < k < ℵ0, then M has the finite
submodel property.

The following fact appears as Claim 1.14 in [4]:

Fact 4.6. N�Lacl is polynomially k-saturated for every 0 < k < ℵ0.

Notation. (i) If s̄ = (s1, . . . , sn) is a sequence of objects and I = {i1, . . . , im} ⊆
{1, . . . , n}, where we assume i1 < . . . < im, then s̄I denotes the sequence (si1 , . . . , sim).
(ii) If p(x̄) is a type and x̄′ is a subsequence of x̄, then p�{x̄′} is the set of all formulas
ϕ(x̄′) such that ϕ(x̄′) ∈ p(x̄); so in particular, p�{x̄′} is a type.

In the following definition and in Fact 4.8 it is not essential that L is the language of
N (which is a standing assumption of this section).

Definition 4.7. Suppose that M is an ℵ0-categorical L-structure such that (M, aclM )
is a pregeometry. Let L be a sublanguage of L. We say that M satisfies the k-
independence hypothesis over L if the following holds for any ā = (a1, . . . , an) ∈ Mn

such that dimM (ā) ≤ k:
If I = {i1, . . . , im} ⊆ {1, . . . , n} and p(x̄I) ∈ Sm(Th(M)) (where x̄I = (xi1 , . . . xim)) are
such that

(a) aclM (āI) = rng(āI), dimM (āI) < k, p(x̄I) ∩ L = tpM�L(āI) and for every J ⊂ I
with dimM (āJ) < dimM (āI), p�{x̄J} = tpM (āJ),

then there is b̄ = (b1, . . . , bn) ∈Mn such that
(b) tpM�L(b̄) = tpM�L(ā), tpM (b̄I) = p(x̄I) and, for every J ⊂ {1, . . . , n} such that

āI 6⊆ aclM (āJ), tpM (āJ) = tpM (b̄J).

In [4] examples are given of structures which either satisfy or fail to satisfy the k-
independence hypothesis for various k. Also, it is shown that if M is an ℵ0-categorical
L-structure which is simple with SU-rank 1 and (M, aclM ) forms a pregeometry, then
M satisfies the 3-independence hypothesis over Lacl; as a consequence of Theorem 2.1
in [4], any sentence in which at most 3 distinct variables occur and which is true in M
has a finite model. From [4] (Theorem 2.2) we have the following:

Fact 4.8. Let M be an ℵ0-categorical L-structure such that (M, aclM ) forms a prege-
ometry. Suppose that there is a sublanguage L ⊆ L such that aclM�L coincides with
aclM and, for every 0 < k < ℵ0, M�L is polynomially k-saturated and M satisfies
the k-independence hypothesis over L. Then M is polynomially k-saturated, for every
0 < k < ℵ0, and M has the finite submodel property.

From now on, suppose that N does not have the finite submodel property. Then, by
Fact 4.5, N is not polynomially k-saturated for some 0 < k < ℵ0. Recall that L is the
language of N . Sublanguages of L can be partially ordered by inclusion. By Fact 4.6,
N�Lacl is polynomially k-saturated for every 0 < k < ℵ0. Suppose that L is a maximal
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sublanguage of L, with respect to ⊆, such that Lacl ⊆ L and N�L is polynomially k-
saturated for every 0 < k < ℵ0. By assumption L is a proper sublanguage of L. Now
let S be any symbol which occurs in the vocabulary (i.e. signature) of L but not in the
vocabulary of L. Let L′ be the language obtained by adding S to (the vocabulary of) L,
so we have Lacl ⊆ L ⊂ L′ ⊆ L. By the maximality of L, for some 0 < k1 < ℵ0, N�L′ is
not polynomially k1-saturated. From Fact 4.2 it follows that aclN�L and aclN�L′ coincide.
Therefore, by Fact 4.8, there exists 0 < k2 < ℵ0 such that N�L′ does not satisfy the
k2-independence hypothesis over L. The argument just given proves the following:

Theorem 4.9. Let N be an ℵ0-categorical L-structure such that (N, aclN ) forms a
trivial pregeometry. Suppose that the language L is subject to the assumptions made in
the beginning of this section and let Lacl be defined as in Definition 4.1. If N does not
have the finite submodel property, then there are sublanguages L and L′ of L such that

(1) Lacl ⊆ L ⊂ L′ ⊆ L and there is exactly one symbol which occurs in L′ but not in
L,

(2) N�L is polynomially k-saturated for every 0 < k < ℵ0, and
(3) N�L′ does not satisfy the k′-independence hypothesis over L for some 0 < k′ <

ℵ0.

5. Height and rank

In this section we adopt all assumptions from Section 3, so M is ℵ0-categorical, simple
and 1-based with trivial dependence; we also use the same notation as in that section.
By Lemma 3.4 and Construction 3.5 it follows that there is a self-coordinatized set
C ⊆ M eq which satisfies the conditions of Construction 3.5 (i). The number r and the
sets C0, . . . , Cr are as given by Construction 3.5 (ii). We may assume that r is the height
of M (see Construction 3.5 (ii) and Definition 3.10). We will show that the SU-rank of
M is always at least as big as the height of M . For this we need two lemmas.

Lemma 5.1. If 1 ≤ s ≤ r and a ∈ acl(Cs) ∩ C then a ∈ acl
(
acl(a) ∩ Cs

)
.

Proof. Recall that Ci ⊂ Cj if i < j and that Ci ⊆ C for every i. Let a ∈ acl(Cs) ∩ C.
Suppose for a contradiction that a /∈ acl

(
acl(a) ∩ Cs

)
. Let b̄ = acl(a) ∩ Cs. Then a |̂�

b̄
Cs

by the assumption that a ∈ acl(Cs). Let t ≤ s be minimal such that a |̂�
b̄
Ct, so Ct 6= ∅

and t > 0. By the minimality of t, a |̂�
b̄Ct−1

Ct so by the triviality of dependence there is

c ∈ Ct such that
(1) a |̂�

b̄Ct−1

c, and hence

(2) ab̄ |̂�
Ct−1

c.

Thus c /∈ Ct−1 so, by Lemma 3.12, SU(c/Ct−1) = 1; this together with (1) implies that
b̄ |̂
Ct−1

c. So by (2) and the triviality of dependence we must have a |̂�
Ct−1

c, so

(3) c ∈ acl(aCt−1).
We have SU(c) ≥ 1 (by (1) for example). First suppose that SU(c) = 1. Then c /∈
acl(∅) = acl(C0), and there is no c′ ∈ C − acl(C0) such that c′ < c, because this would
(by the Lascar equation) imply that SU(c) > 1. Therefore c ∈ C1. This together with
(1) implies that t − 1 = 0, so (3) implies that c ∈ acl(a). But c ∈ Ct ⊆ Cs (because
t ≤ s) so we get c ∈ acl(a) ∩ Cs = b̄, which contradicts (1).

Now suppose that SU(c) > 1. From (1) it follows that c /∈ Ct−1, so c ∈ Ct−Ct−1. Since
C is self-coordinatized there is c′ ∈ C such that c′ < c and SU(c/c′) = 1, and because
c ∈ Ct−Ct−1 we get c′ ∈ acl(Ct−1) (see Construction 3.5). From SU(c/Ct−1) = 1 (which
we concluded above), SU(c/c′) = 1 and c′ ∈ acl(Ct−1) it follows that
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(4) c |̂
c′
Ct−1.

Together with (3) this means that c |̂�
c′
aCt−1; this together with (4) and the triviality of

dependence implies that c |̂�
c′
a. By the choices of the elements we have c ∈ Ct, a, c′ ∈ C,

c′ < c and SU(c/c′) = 1, so we can apply Lemma 3.15 to get c ∈ acl(a). Since c ∈ Ct ⊆ Cs

we have c ∈ acl(a) ∩ Cs = b̄, but this contradicts (1). �

Lemma 5.2. If n < r and a ∈ C − acl(Cn) then a |̂�
Cn

Cn+1.

Proof. By induction on SU(a). If a ∈ C and SU(a) = 0 then a ∈ acl(Cn), for every
n < r, so the assertion of the lemma is vacuously satisfied. Now suppose that a ∈ C and
that the assertion of the lemma holds for every a′ ∈ C such that SU(a′) < SU(a). Let
n < r and suppose that a /∈ acl(Cn). If a ∈ acl(Cn+1) then clearly a |̂�

Cn

Cn+1. So suppose

that a /∈ acl(Cn+1). Recall that by Lemma 3.7 and Construction 3.8, C ⊆ acl(Cr) so
a ∈ acl(Cr). Let s ≤ r be minimal such that a ∈ acl(Cs) and let b̄ = acl(a) ∩ Cs. Since
we assume that a /∈ acl(Cn) we have s ≥ 1. By Lemma 5.1, we have a ∈ acl(b̄). Let b̄′

be a subsequence of b̄ of minimal length such that a ∈ acl(b̄′).
First suppose that |b̄′| ≥ 2. For any bi in the sequence b̄′, if b̄′′ is the subsequence of

b̄′ which contains all elements of b̄′ except bi, then we have

SU(a) = SU(a, b̄′′, bi) = SU(a/b̄′′bi) + SU(b̄′′, bi) = 0 + SU(b̄′′/bi) + SU(bi).

By the minimality of |b̄′| we have SU(b̄′′/bi) ≥ 1, which together with the above equation
implies that SU(bi) < SU(a). There must exist bi in b̄′ such that bi /∈ acl(Cn) because
otherwise we would have a ∈ acl(b̄′) ⊆ acl(Cn) which would contradict one of the
assumptions on a. So let bi in b̄′ be such that bi /∈ acl(Cn). As noted above, we have
SU(bi) < SU(a). By applying the induction hypothesis to bi we get bi |̂�

Cn

Cn+1. It follows

that b̄′ |̂�
Cn

Cn+1. Since acl(a) = acl(b̄′) we get a |̂�
Cn

Cn+1, which is what we wanted to prove.

Now suppose that |b̄′| = 1, so b̄′ consists of a single element from Cs which we call
b′. Then acl(a) = acl(b′) and therefore a ∈ Cs (see Construction 3.5). The assumption
that a /∈ acl(Cn+1) implies that SU(a) ≥ 1. By assumption, a ∈ C so if SU(a) = 1
then, by Construction 3.5 (ii), a ∈ C1 ⊆ Cn+1 which contradicts that a /∈ acl(Cn+1).
Hence SU(a) > 1. Since C is self-coordinatized there is b ∈ C such that b < a and
SU(a/b) = 1. As s was chosen to be minimal such that a ∈ acl(Cs), it follows that
a ∈ Cs − Cs−1; therefore it must be the case that b ∈ acl(Cs−1). If it would be the case
that SU(a/bCn+1) = 0 then a |̂�

b
Cn+1, so Lemma 3.15 would imply that a ∈ acl(Cn+1),

contradicting one of the assumptions on a. Hence, SU(a/bCn+1) = 1 and therefore
SU(a/bCn) = 1 (since SU(a/b) = 1).

Claim. b /∈ acl(Cn).

Suppose for a contradiction that b ∈ acl(Cn). We will show that a ∈ Cn+1 which
contradicts the assumption that a /∈ Cn+1. Since, by assumption, a /∈ acl(Cn) we need
to show that there is no c ∈ C such that c < a and c /∈ acl(Cn). Suppose that such c
exists. By assumption, b ∈ acl(Cn), so c /∈ acl(b) and hence SU(c/b) ≥ 1. We also have

1 = SU(a/b) = SU(a, c/b) = SU(a/cb) + SU(c/b),

so SU(a/cb) = 0, which gives a |̂�
b
c. We concluded above that SU(a) > 1 and a ∈ Cs ⊆

Cr. By the choice of b ∈ C we also have b < a and SU(a/b) = 1. Hence, Lemma 3.15
implies that a ∈ acl(c) which contradicts the assumption that c < a. Hence no c ∈ C
exists such that c < a and c /∈ acl(Cn), and therefore a ∈ Cn+1. But this contradicts
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the assumption that a /∈ acl(Cn+1), so we have proved the claim.

Recall that we have proved that SU(a/bCn+1) = SU(a/bCn) = SU(a/b) = 1. We now
get

SU(a/Cn+1) = SU(a, b/Cn+1)

= SU(a/bCn+1) + SU(b/Cn+1) = 1 + SU(b/Cn+1)

< 1 + SU(b/Cn) by the induction hypothesis, since SU(b) < SU(a)

and, by the claim, b /∈ acl(Cn)

= SU(a/bCn) + SU(b/Cn) = SU(a, b/Cn) = SU(a/Cn),

so a |̂�
Cn

Cn+1, which is what we wanted to prove. �

Now we can prove:

Lemma 3.11 The SU-rank of M is at least as great as the height of M .

Proof. We are assuming that C ⊇ M is chosen so that the height of C, which is r,
equals the height of M . Hence, it is sufficient to show that there exists a ∈M such that
SU(a) ≥ r. By the construction of Cn, n = 1, . . . , r, there is a ∈ C such that a /∈ acl(Cn)
whenever n < r. Since M ⊆ C and C ⊆M eq ⊆ acl(M) there is, in fact, a ∈M such that
a /∈ acl(Cn) whenever n < r. By Lemma 5.2, SU(a/Cn) < SU(a/Cn−1) for n = 1, . . . , r,
so SU(a) ≥ r. �

6. Examples

We illustrate the constructions made in Section 3 (Constructions 3.5 and 3.13) with a
couple of examples. These examples will be ℵ0-categorical, simple, 1-based with trivial
dependence, but not stable. The notation C0, . . . , Cr and N1, . . . , Nr is like in Section 3
for each M and C considered below. All examples that follow have the finite submodel
property, which is left for the reader to verify, but it essentially follows from the fact
that the random graph has it. By ‘acl’ we mean ‘aclMeq ’ for the structure M under
consideration.

Example 6.1. If M is the (infinite countable) random graph (see [6]) then it is easy to
see that if C = M then C is self-coordinatized, C0 = ∅, C1 = C = M and, of course,
C ⊆ acl(C1), so the height of M is 1 (since it cannot be less than 1, for we always have
C0 = ∅ by definition). It is well-known that the SU-rank of M is 1 so SU-rank and
height coincide for M . We also have N1 = C1 = M .

Example 6.2. We construct M with SU-rank 3 and height 2. Let the language L have
as its relation symbols P , Q, R and E, where the two first are unary and the other
two are binary, and assume that L has no function or constant symbols. Let M be an
L-structure satisfying:

(1) M is the disjoint union of PM and QM where |PM | = ℵ0.
(2) (a, b) ∈ RM =⇒ a, b ∈ PM .
(3) (a, b) ∈ EM =⇒ a ∈ PM , b ∈ QM .
(4) If A is the substructure of M with universe PM then the reduct of A to the

language with symbols R and = is the random graph. (This point serves only
to make M unstable.)

(5) For every b ∈ QM ,
∣∣{a ∈ PM : (a, b) ∈ EM}

∣∣ = 2.
(6) For any two distinct a1, a2 ∈ PM ,∣∣{b ∈ QM : (a1, b) ∈ EM and (a2, b) ∈ EM}

∣∣ = ℵ0.
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For any A ⊆M , define

cl(A) = A ∪
{
a ∈ PM : ∃b ∈ A ∩QM , (a, b) ∈ EM

}
.

Observe that |cl(A)| ≤ 2|A| for every A ⊆ M . We say that A is closed if cl(A) = A.
Any subset A of M will also be considered as an L-structure, namely the substructure
of M which has A as its universe.
The following is easy to prove, by a back and forth argument (as M is countable):

Claim. If A,B ⊆M are finite and closed and σ : A→ B is an isomorphism, then there
is an automorphism τ : M →M which extends σ.

From the claim and the already mentioned fact that |cl(A)| ≤ 2|A| it follows that for
any 0 < n < ℵ0, up to equivalence in M , there are only finitely many formulas in the
free variables x1, . . . , xn. Hence M is ℵ0-categorical. It also follows that if ā ∈ M is
closed then tp(ā) is isolated by a quantifier free formula.

Now suppose that A ⊆ M is finite and a ∈ M − cl(A). It is not hard to see that
there are distinct bi, i < ℵ0, and isomorphisms τi : cl(A ∪ {a}) → cl(A ∪ {bi}) such
that τi extends the identity map on cl(A) and sends a to bi. By the claim, there are
automorphisms τ ′i : M →M , i < ℵ0, such that τ ′i extends τi. It follows that a /∈ aclM (A).
If on the other hand a ∈ cl(A) then, by the definition of cl and (5), we have a ∈ aclM (A).
So we have proved that cl(A) = aclM (A) for any finite A ⊆M . But since for any A ⊆M ,
cl(A) =

⋃
{cl(B) : B ⊆ A, B is finite}, we have cl(A) = aclM (A) for any A ⊆M .

We outline a proof that M is supersimple with SU-rank 3. From here on we may
replace the original M with any structure which is elementarily equivalent to it. The
main step is to prove that if A ⊆ B ⊂M are finite and closed then

(∗) tp(ā/B) divides over A if and only if cl(ā) ∩B 6⊆ A.

From (∗) it follows that there are no ā ∈M and b̄i ∈M , i < ℵ0, such that tp(ā/b̄0 . . . b̄i+1)
divides over b̄0 . . . b̄i for every i < ℵ0. By Proposition 2.8.13 in [8], M is supersimple.
From (∗) one also deduces, in a similar way, that SU(a) ≤ 3 for all a ∈M and SU(a) = 3
if a ∈ QM . We leave it to the reader to verify that M has trivial dependence; from this
it follows that all types with SU-rank 1 are trivial and hence 1-based; by Proposition 4.6
in [5] it follows that M is 1-based.

Now we find a self-coordinatized set C. For any a, b ∈M define

a ∼ b⇐⇒ a, b ∈ PM or a, b ∈ QM and aclM (a) ∩ PM = aclM (b) ∩ PM .

Then ∼ is a ∅-definable equivalence relation on M , so the equivalence classes of ∼ are
elements of M eq. Let C = PM ∪ QM/∼ ∪ QM where QM/∼ is the set of ∼-classes
which contain (only) elements from QM . It is straightforward to verify that C is self-
coordinatized and M = PM ∪QM ⊆ C. By Construction 3.5 we have C0 = ∅, C1 = PM ,
C2 = PM ∪ QM and C ⊆ acl(C2) so C3 is not defined and the height of C is 2; hence
the height of M is at most 2. We leave it to the reader to show that the height of M is
exactly 2. By Construction 3.13, we have N1 = PM and N2 = QM .

Example 6.3. Suppose that we construct M in the same way as in Example 6.2 except
that we replace (5) and (6) by

(5)’ For every b ∈ QM ,
∣∣{a ∈ PM : (a, b) ∈ EM}

∣∣ = 1.
(6)’ For every a ∈ PM ,

∣∣{b ∈ QM : (a, b) ∈ EM}
∣∣ = ℵ0.

Then one can show, in a similar way as in Example 6.2, that M has height 2 and SU-
rank 2. In this case the set C = PM ∪ QM is self-coordinatized and we get C1 = PM ,
C2 = PM ∪QM , N1 = PM and N2 = QM .
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