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Abstract. We work with a �nite relational vocabulary with at least one relation
symbol with arity at least 2. Fix any integer m > 1. For almost all �nite structures
(labelled or unlabelled) such that at least m elements are moved by some automor-
phisms, the automorphism group is (Z2)

i for some i ≤ (m+1)/2; and if some relation
symbol has arity at least 3, then the automorphism group is almost always Z2.
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1. Introduction

This article complements the work in [1] with quite explicit information about the auto-
morphism group of �almost all� �nite structures such that at least m elements are moved
by some automorphisms, for any �xed integer m. It turns out that the automorphism
group is almost always a power of Z2, where the maximal power is bounded by (m+1)/2.
As part of proving this we prove that almost all �nite structures such that at least m
elements are moved by some automorphisms have the property that exactly m′ elements
are moved by some automorphism, where m′ = m if m is even and m′ = m + 1 oth-
erwise. Perhaps surprisingly, we get di�erent results depending on the maximal arity
of the relation symbols (of the �nite relational language). If the maximal arity is at
least 3, then the typical automorphism group is always Z2, no matter what m is. If the
maximal arity is 2, then for each i = 1, . . . ,m′/2, (Z2)

i appears as an automorphism
group with positive probability (given by the uniform probability measure on the set of
n-element structures). The situation is slightly di�erent if we restrict attention to �nite
structures such that exactly m elements are moved by some automorphisms. Then Z3

or the symmetric group on three elements appear as a subgroup of the typical automor-
phism group if m is odd. These results hold for both labelled and unlabelled structures
(See Remark 1.3).

We now introduce some notation and terminology which will be used throughout the
article and then state the two main results. We work with a �nite relational vocabulary
(also called signature) V = {R1, . . . , Rρ}, where each relation symbol Ri has arity ri.
The number ari(V ) = max{r1, . . . , rρ} is called the maximal arity and the we assume
that it is at least 2. Let Nmax(V ) is the number of relation symbols of arity ari(V ) and
Nmax−1(V ) the number of relation symbols of arity ari(V )−1. The set of all structures for
this vocabulary with universe [n] = {1, . . . , n} is denoted Sn and we let S =

⋃∞
n=1 Sn.

For any set A, |A| is its cardinality and Sym(A) the group of all permutations of A.
Suppose that f1, . . . fk ∈ Sym(A). Then 〈f1, . . . , fk〉 denotes the subgroup of Sym(A)
generated by f1, . . . fk and we de�ne

Spt(f1, . . . , fk) = {a ∈ A : g(a) 6= a for some g ∈ 〈f1, . . . , fk〉}

and let spt(f1, . . . , fk) = |Spt(f1, . . . , fk)|. We call Spt(f1, . . . , fk) the support of f1, . . . , fk.
For any �nite structureM we let Aut(M) denote its group of automorphisms,
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spt(M) = max{spt(f) : f ∈ Aut(M)},
Spt∗(M) = {a ∈M : a ∈ Spt(f) for some f ∈ Aut(M)}, and

spt∗(M) =
∣∣Spt∗(M)

∣∣.
We call Spt∗(M) the support ofM. For every m ∈ N de�ne

Sn(spt ≥ m) = {M ∈ Sn : spt(M) ≥ m} and

Sn(spt∗ ≥ m) = {M ∈ Sn : spt∗(M) ≥ m}.

Whenever S′n ⊆ Sn is de�ned for all n ∈ N+ we let S′ =
⋃∞
n=1 S′n. With the expression

almost allM∈ S′ has the property P we mean that

lim
n→∞

∣∣{M ∈ S′n : M has P}
∣∣∣∣S′n∣∣ = 1.

Theorem 1.1. Suppose that ari(V ) = 2. Let m ≥ 2 be an integer and let m′ = m if m
is even and m′ = m+ 1 otherwise.
(i) For almost all M ∈ S(spt ≥ m), spt∗(M) = m′ and Aut(M) ∼=

(
Z2

)i
for some

i ∈ {1, . . . ,m′/2}.
(ii) For every i ∈ {1, . . . ,m′/2} there is a rational number 0 < ai ≤ 1 (where ai < 1

if m > 2) such that the proportion of M ∈ Sn(spt ≥ m) such that Aut(M) ∼=
(
Z2

)i
converges to ai as n→∞.
(iii) Parts (i) and (ii) hold if `spt ≥ m' is replaced with `spt∗ ≥ m'.

Theorem 1.2. Suppose that ari(V ) ≥ 3 and let m ≥ 2 be an integer. Let m′ = m if m
is even and m′ = m+1 otherwise. Then, for almost allM∈ S(spt ≥ m), spt∗(M) = m′

and Aut(M) ∼= Z2. The same is true if `spt ≥ m' is replaced with `spt∗ ≥ m'.

Intuitively, one may interpret the theorems as saying that �nite structures tend to be
as �rigid� as we allow them to be; their automorphisms typically move as few elements
as possible (given the restriction that some minimum number of elements are moved)
and the automorphism group typically acts in the simplest possible way on the elements
which are moved. This is a generalisation of the well known result, proved via a sequence
of articles [4, 5, 6, 7, 8], that almost allM∈ S are rigid, that is, Aut(M) is trivial (i.e.
contains only one element).

Remark 1.3. (i) Theorems 1.1 and 1.2 also hold if we consider unlabelled structures,
that is, if we count structures only up to isomorphism. This follows from the proof of
Theorem 7.7 in [1].
(ii) Theorems 1.1 and 1.2 also hold if we require that all relations are irre�exive or that
all relations are irre�exive and symmetric, in the sense explained in Remark 1.5 in [1].
Only minor modi�cations of the proofs (and some technical results) in [1] and this article
are necessary.

2. Preliminaries

Terminology and notation 2.1. Recall the terminology and notation introduced be-
fore Theorem 1.1. So in particular we have �xed a �nite relational vocabulary with
maximal arity at least 2. Structures (for this vocabulary) are denoted A,B, . . . ,M,N
and their universes A,B, . . . ,M,N . For any set A, |A| denotes its cardinality. Since we
mainly deal with structures M ∈ S, the universe will usually be [n] = {1, . . . , n} for
some integer n > 0. For structuresM and N ,M∼= N means that they are isomorphic.
If A is a subset of the universe of M, then M�A denotes the substructure of M with
universe A, which is well de�ned since the vocabulary has only relation symbols. (See
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for example [3, 9] for basic model theory.) For groups G and H, G ∼= H means that they
are isomorphic as abstract groups.

Suppose that f is a permutation of a set Ω and that H is a group of permutations
of Ω. Then a ∈ Ω is called a �xed point of f if f(a) = a. If a is a �xed point of every
h ∈ H, then we say that a is a �xed point of H. For a structure A and a ∈ A, we call
a a �xed point of A if a is a �xed point of Aut(A), where we recall that Aut(A) is the
automorphism group of A. Sym(Ω) denotes the group of all permutations of Ω, i.e. the
symmetric group of Ω, and we let Symn = Sym([n]). Still assuming that H is a group
of permutations of Ω, we let fld(H) = |Ω| (for ��eld size� of H), we let orb1(H) be the
number of orbits of H on Ω, and orb2(H) the number of orbits of H on Ω × Ω by the
action of H on Ω× Ω given by h(a, b) = (h(a), h(b)) for h ∈ H and (a, b) ∈ Ω× Ω.

For a function f : A → B and X ⊆ A, f�X is the restriction of f to X. If H is a
permutation group on Ω and X ⊆ Ω is a union of orbits of H on Ω, then H�X = {h�
X : h ∈ H} and note that H�X is a permutation group on X. (For basic permutation
group theory see [2] for example.)

It will be convenient to extend the notation used in the main results as follows:

Sn(spt∗ = m) = {M ∈ Sn : spt∗(M) = m},
Sn(spt∗ ≤ m) = {M ∈ Sn : spt∗(M) ≤ m},

Sn(m ≤ spt∗ ≤ m′) = {M ∈ Sn : m ≤ spt(M) ≤ m′}.
We will use a some notions and results from [1] which we now state. The �rst gives an
upper bound for spt∗(M) for almost allM∈ S(spt ≥ m) and almost allM∈ S(spt∗ ≥
m).

Proposition 2.2. [1, Corollary 3.7] For every m ∈ N there is m′ ∈ N such that

lim
n→∞

∣∣Sn(spt ≥ m) ∩ Sn(spt∗ ≤ m′)
∣∣∣∣Sn(spt ≥ m)

∣∣ =

lim
n→∞

∣∣Sn(spt∗ ≥ m) ∩ Sn(spt∗ ≤ m′)
∣∣∣∣Sn(spt∗ ≥ m)

∣∣ = 1.

Note that for every structure M, Spt∗(M) is the union of all nonsingleton orbits of
Aut(M) on M , so it makes sense to speak about Aut(M)�Spt∗(M) and we always have
Aut(M)�Spt∗(M) ∼= Aut(M).

De�nition 2.3. Let A ∈ S be such that Aut(A) has no �xed point. Suppose that H is
a subgroup of Aut(A) such that H has no �xed point. For each integer n > 0, Sn(A, H)
is the set ofM∈ Sn such that there is an embedding f : A →M such that Spt∗(M) is
the image of f and Hf = {fσf−1 : σ ∈ H} is a subgroup of Aut(M)�Spt∗(M).1

Lemma 2.4. [1, Lemma 4.2] Let m ≥ 2 be an integer. There are A1, . . . ,Al ∈ Sm
without any �xed point and, for each i = 1, . . . , l, subgroups Hi,1, . . . ,Hi,li ⊆ Aut(Ai)
without any �xed point such that

S(spt∗ = m) =

l⋃
i=1

li⋃
j=1

S(Ai, Hi,j).

Recall the notation ari(V ), Nmax and Nmax−1 from the introduction.

De�nition 2.5. With r = ari(V ), k = Nmax and l = Nmax−1, let

β(x, y, z) = k

(
r

2

)
x2 − kr(r − 1)xy − l(r − 1)x + l(r − 1)y + k

(
r

2

)
z.

1 Instead of saying �embedding f : A →M such that Spt∗(M) is the image of f � we could (equiva-
lently) say �isomorphism f : A →M�Spt∗(M)�.
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Proposition 2.6. [1, Proposition 5.1] Suppose that A,A′ ∈ S are such that neither
Aut(A) nor Aut(A′) has a �xed point. Moreover, suppose that H is a subgroup of Aut(A)
without �xed any point and that H ′ is a subgroup of Aut(A′) without any �xed point. Let
p = fld(H), q = orb1(H), s = orb2(H), p′ = fld(H ′), q′ = orb1(H

′) and s′ =
orb2(H

′).
(i) The following limit exists in Q ∪ {∞}:

lim
n→∞

∣∣Sn(A′, H ′)
∣∣∣∣Sn(A, H)
∣∣ .

(ii) Suppose that ari(V ) = 2.

(a) If p− q < p′ − q′ or if both p− q = p′ − q′ and p > p′, then

lim
n→∞

∣∣Sn(A′, H ′)
∣∣∣∣Sn(A, H)
∣∣ = 0.

(b) If p− q = p− q′ and p = p′ then there is a rational number a > 0, depending only
on A, A′, H, H ′ and the vocabulary, such that

lim
n→∞

∣∣Sn(A′, H ′)
∣∣∣∣Sn(A, H)
∣∣ = a.

(iii) Suppose that ari(V ) > 2 and let β(x, y, z) be as in De�nition 2.5. If any one of the
two conditions

p− q < p′ − q′, or
p− q = p′ − q′ and β(p, q, s) > β(p′, q′, s′)

hold, then

lim
n→∞

∣∣Sn(A′, H ′)
∣∣∣∣Sn(A, H)
∣∣ = 0.

Proposition 2.7. [1, Proposition 5.9] Let A1, . . . ,Am,A′1, . . . ,A′m′ ∈ S be such that
none of them has any �xed point. Suppose that for every i = 1, . . . ,m and j = 1, . . . , li,
Hi,j is a subgroup of Aut(Ai) without any �xed point and that for every i = 1, . . . ,m′ and
j = 1, . . . , l′i H

′
i,j is a subgroup of Aut(A′i) without any �xed point. Then the following

limit exists in Q ∪ {∞}:

(2.1) lim
n→∞

∣∣∣⋃m′

i=1

⋃l′i
j=1 Sn(A′i, H ′i,j)

∣∣∣∣∣∣⋃m
i=1

⋃li
j=1 Sn(Ai, Hi,j)

∣∣∣ .
De�nition 2.8. Suppose that A ∈ S has no �xed point and that H is a subgroup
of Aut(A) without any �xed point. For M ∈ Sn(A, H) we say that H is the full
automorphism group of M if for every isomorphism f : A → M�Spt∗(M) such that
Hf = {fσf−1 : σ ∈ H} is a subgroup of Aut(M)�Spt∗(M) we have Hf = Aut(M)�
Spt∗(M).

Lemma 2.9. [1, Lemmas 5.11 and 5.13] Suppose that A ∈ S has no �xed point and that
H is a subgroup of Aut(A) without any �xed point.
(i) For almost every M ∈ S(A, H), Aut(M)�Spt∗(M) has the same number of orbits
as H.
(ii) Let G ≤ H. The proportion of M ∈ Sn(A, H) such that G ∼= Aut(M) converges to
either 0 or 1 as n→∞.

Lemma 2.10. Let i be a positive integer.
(i) For almost allM∈ S(spt∗ = 2i), Aut(M)�Spt∗(M) has exactly i orbits on Spt∗(M),
so every such orbit has cardinality 2.
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(ii) For almost allM∈ S(spt∗ = 2i+1), Aut(M)�Spt∗(M) has exactly i orbits, so i−1
orbits have cardinality 2 and the remaining orbit has cardinality 3.

Proof. We will use parts (ii) and (iii) of Proposition 2.6.
(i) By Lemma 2.4, there are A1, . . . ,Am ∈ S2i without �xed points and for each

i = 1, . . . ,m a number li and subgroups Hi,1, . . . ,Hi,li of Aut(Ai) without �xed points

such that Sn(spt∗ = 2i) =
⋃m
i=1

⋃li
j=1 Sn(Ai, Hi,j) for each large enough n. Moreover,

by Lemma 2.9, for almost every M ∈ S(Ai, Hi,j) the number of orbits of Hi,j on Ai,j
is orb1(Hi,j). Therefore it su�ces to prove that there are A ∈ S2i without �xed point
and a subgroup H ⊆ Aut(A) with exactly i orbits of cardinality 2 (then H has no �xed
points) and that if A′ ∈ S2i has no �xed point and H ′ is a subgroup of Aut(A′) without
�xed points such that H ′ does not have exactly i orbits of cardinality 2, then

(2.2) lim
n→∞

∣∣Sn(A′, H ′)
∣∣∣∣Sn(A, H)
∣∣ = 0.

First suppose that A ∈ S2i and that H ⊆ Aut(A) has exactly i orbits of cardinality 2.
Also suppose that A′ ∈ S2i and H

′ ⊆ Aut(A′) are as described above. Then fld(H) = 2i
and fld(H ′) = 2i. By parts (ii) and (iii) of Proposition 2.6, we have (2.2) if fld(H) −
orb1(H) < fld(H ′)−orb1(H

′). By assumption we have fld(H)−orb1(H) = 2i− i = i.
By assumption, H ′ has no �xed points, so H ′ has at most i orbits. As we also assume
that H ′ does not have i orbits, it follows that H ′ has i′ orbits for some i′ < i and
we get fld(H ′) − orb1(H

′) = 2i − i′ > i = fld(H) − orb1(H), so (2.2) follows from
Proposition 2.6.

We must now prove that there are A ∈ S2i without �xed point and a subgroup
H ⊆ Aut(A) without �xed point such that H has exactly i orbits. But this holds if we
let the interpretation of every relation symbol be empty (so Aut(A) = Sym2i) and let H
the permutation group on [2i] with only one nontrivial permutation and this one takes
α to 2α for every α ∈ [i].

(ii) Suppose that A ∈ S2i+1 has no �xed point and that H is a subgroup of Aut(A)
without �xed points. Then fld(H) = 2i + 1. For the same reasons as in part (i) we
only need to show that (subject to the constraint fld(H) = 2i+ 1) fld(H)− orb1(H) is
minimal if and only if H has exactly i orbits. As H has no �xed point it has at most i
orbits. Hence fld(H)−orb1(H) ≥ 2i+1− i = i+1 and fld(H)−orb1(H) = i+1 if and
only if H has exactly i orbits. It now su�ces to prove that there are A ∈ S2i+1 without
�xed point and a subgroup H ⊆ Aut(A) without �xed point such that H has exactly i
orbits. If i = 1 and we let the interpretation of every relation symbol be empty, then this
clearly holds. So suppose that i > 1. Let B = [2i− 2] and C = {2i− 1, 2i, 2i+ 1}. Let
the interpretation of every relation symbol be empty and let H ⊆ Aut(A) be the group
H1 ×H2, where H1 has only one nontrivial permutation and this one sends α to 2α for
every α ∈ [i− 1] and �xes every α ∈ C, every α ∈ B is a �xed point of H2 and H2�C is
the symmetric group of C. Then Aut(A) ∼= Z2 × Sym3 and A has exactly i orbits. �

3. Proof of Theorem 1.1

In this section we prove Theorem 1.1. Lemmas 3.1 and 3.2 may be of some interest in
themselves. Throughout this section we assume that ari(V ) = 2 although this assump-
tion is restated in the results.

Lemma 3.1. Suppose that i ≥ 1 and ari(V ) = 2. For almost everyM∈ Sn(spt∗ = 2i),
Aut(M) ∼= (Z2)

t for some t ∈ {1, . . . , i}. Moreover, for every t ∈ {1, . . . , i} there is a
rational number 0 < at ≤ 1 such that

lim
n→∞

∣∣{M ∈ Sn(spt∗ = 2i) : Aut(M) ∼= (Z2)
t}
∣∣∣∣Sn(spt∗ = 2i)

∣∣ = at,
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and if i > 1 then at < 1.

Proof. By Lemma 2.10, for almost every M ∈ Sn(spt∗ = 2i), Aut(M)�Spt∗(M) has
i orbits, each one of cardinality 2. For every M ∈ Sn(spt∗ = 2i) such that Aut(M)�
Spt∗(M) has i orbits and every f ∈ Aut(M), f2 is the identity. Hence, for almost every
M∈ Sn(spt∗ = 2i) there is t ∈ {1, . . . , i} such that Aut(M) ∼= (Z2)

t.
By Lemma 2.4, there are A1, . . . ,Am ∈ S2i without �xed points and for each i =

1, . . . ,m a number li and subgroups Hi,1, . . . ,Hi,li of Aut(Ai) without �xed points such
that

Sn(spt∗ = 2i) =
m⋃
i=1

li⋃
j=1

Sn(Ai, Hi,j)

for each su�ciently large n. Recall Lemma 2.9. Fix 1 ≤ t ≤ i. Let A′i, i = 1, . . . ,m
and H ′i,j , j = 1, . . . , l′i, enumerate all pairs (Ai, Hi,j) such that Hi,j

∼= (Z2)
t and the

proportion of M ∈ Sn(Ai, Hi,j) such that Aut(M) ∼= (Z2)
t converges to 1. Now it

su�ces to prove that ∣∣∣⋃m′

i=1

⋃l′i
j=1 Sn(A′i, H ′i,j)

∣∣∣∣∣∣⋃m
i=1

⋃li
j=1 Sn(Ai, Hi,j)

∣∣∣
converges to a rational number as n → ∞. But this follows from Proposition 2.7.
Part (ii)(b) of Proposition 2.6 guarantees that the limit is larger than 0 if i > 1. �

Lemma 3.2. Suppose that i ≥ 1 and ari(V ) = 2. (i) For almost everyM ∈ Sn(spt∗ =
3), Aut(M) ∼= Z3 or Aut(M) ∼= Sym3. Moreover, for each one of these groups, call it
G, there is a rational number 0 < aG < 1 such that

lim
n→∞

∣∣{M ∈ Sn(spt∗ = 2i+ 1) : Aut(M) ∼= G}
∣∣∣∣Sn(spt∗ = 2i+ 1)

∣∣ = aG.

(ii) Suppose that i > 1. For almost everyM∈ Sn(spt∗ = 2i+ 1), Aut(M) ∼= (Z2)
t×Z3

or Aut(M) ∼= (Z2)
t×Sym3 for some t ∈ {1, . . . , i− 1}. Moreover, for each one of these

groups, call it G, there is a rational number 0 < aG < 1 such that

lim
n→∞

∣∣{M ∈ Sn(spt∗ = 2i+ 1) : Aut(M) ∼= G}
∣∣∣∣Sn(spt∗ = 2i+ 1)

∣∣ = aG.

Proof. The �rst claim of part (i) is immediate because a permutation group without
�xed points on a set of cardinality 3 must be isomorphic to either Z3 (if no nonidentity
permutation has a �xed point) or Sym3. The second claim of part (i) is proved in the
same way as the second claim of Lemma 3.1, with the help of Propositions 2.7 and 2.6
and Lemma 2.9.

Now we prove part (ii), so suppose that i > 1. By Lemma 2.10, for almost every
M∈ S(spt∗ = 2i+1), Aut(M)�Spt∗(M) has i−1 orbits, say O1, . . . , Oi−1, of cardinality
2 and one orbit Oi of cardinality 3. Hence, for the �rst statement of (ii), it su�ces to
prove that for eachM∈ Sn(spt∗ = 2i+ 1) with i− 1 orbits O1, . . . , Oi−1, of cardinality
2 and one orbit Oi of cardinality 3, Aut(M) ∼= (Z2)

t × Z3 or Aut(M) ∼= (Z2)
t × Sym3

for some t ∈ {1, . . . , i− 1}. The second statement of part (ii) is proved in the same way
as the second statement of part (i) (and the second statement of Lemma 3.1).

With the given assumptions we have

Aut(M)�(O1 ∪ . . . ∪Oi−1) ∼= (Z2)
t

for some t ≥ 1, because for every f ∈ Aut(M)�(O1 ∪ . . .∪Oi−1), f2 is the identity. The
next step is to show that Aut(M)�Spt∗(M) is the direct product of Aut(M)�(O1∪ . . .∪
Oi−1) and Aut(M)�Oi, since it follows from the case i = 1 that Aut(M)�Oi ∼= Z3 or
Aut�Oi ∼= Sym3.
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Let Oi = {a, b, c}. There is f ∈ Aut(M)�Spt∗(M) such that f(a) = b and g ∈
Aut(M)�Spt∗(M) such that g(b) = c. If f(c) = c and g(a) = a then fg has no �xed
point in Oi. Otherwise either f or g has no �xed point in Oi. So under all circumstances
there exists f ∈ Aut(M)�Spt∗(M) which has no �xed point in Oi. Since |Oj | = 2 for
every j ∈ {1, . . . , i − 1} it follows that every d ∈ O1 ∪ . . . ∪ Oi−1 is a �xed point of f2.
Take any j ∈ {1, . . . , i − 1} and let Oj = {d, e}, so both d and e are �xed points of f2.
Since there is h ∈ Aut(M)�Spt∗(M) such that h(d) = e (and h(e) = d) it follows, using
f and h, that Oj × Oi is an orbit of Aut(M)�Spt∗(M) on Spt∗(M) × Spt∗(M). This
holds for every j ∈ {1, . . . , i− 1}, and therefore

Aut(M)�Spt∗(M) ∼= Aut(M)�(O1 ∪ . . . ∪Oi−1)×Aut(M)�Oi.

Hence, for either G = Z3 or G = Sym3, and some t ∈ {1, . . . , i−1}, Aut(M)�Spt∗(M) ∼=
(Z2)

t × G, and clearly the same holds with Aut(M) in place of Aut(M)�Spt∗(M). �

The next corollary is an immediate consequence of Lemmas 3.1 and 3.2.

Corollary 3.3. Let m ≥ 2. Almost every M ∈ S(spt∗ = m) has an automorphism
whose support has cardinality m.

Lemma 3.4. Suppose that i ≥ 1 and ari(V ) = 2. Then

lim
n→∞

∣∣Sn(spt∗ = 2i+ 1)
∣∣∣∣Sn(spt∗ = 2i)

∣∣ = 0.

Proof. By Lemma 2.10, for almost everyM ∈ Sn(spt∗ = 2i), H = Aut(M)�Spt∗(M)
has exactly i orbits, and for almost every M′ ∈ Sn(spt∗ = 2i + 1), H ′ = Aut(M′)�
Spt∗(M′) has exactly i orbits. For such H and H ′ we have

fld(H)− orb1(H) = i < i+ 1 = fld(H ′)− orb1(H
′),

so if A = M�Spt∗(M) and A′ = M′�Spt∗(M′) (and M and M′ are as above), then
Proposition 2.6 (ii) implies that

∣∣Sn(A′, H ′)
∣∣/∣∣Sn(A, H)

∣∣ → 0 as n → ∞. The lemma
follows from this because, by Lemma 2.4, each one of S(spt∗ = 2i) and S(spt∗ = 2i+ 1)
is a union of �nitely many sets of the form S(A, H). �

Lemma 3.5. Suppose that i ≥ 1 and ari(V ) = 2. Then

lim
n→∞

∣∣Sn(spt∗ = 2i+ 1)
∣∣∣∣Sn(spt∗ = 2i+ 2)
∣∣ = 0.

Proof. By Lemma 2.10, for almost everyM∈ Sn(spt∗ = 2i+2),H = Aut(M)�Spt∗(M)
has exactly i + 1 orbits, and for almost everyM′ ∈ Sn(spt∗ = 2i + 1), H ′ = Aut(M′)�
Spt∗(M′) has exactly i orbits. It follows that

fld(H)− orb1(H) = 2i+ 2− (i+ 1) = i+ 1 = 2i+ 1− i = fld(H ′)− orb1(H
′)

and

fld(H) = 2i+ 2 > 2i+ 1 = fld(H ′).

So ifM andM′ are as above, A =M�Spt∗(M) and A′ =M′�Spt∗(M′), then Propo-
sition 2.6 (ii) implies that

∣∣Sn(A′, H ′)
∣∣/∣∣Sn(A, H)

∣∣ → 0 as n → ∞. The lemma follows
because each one of S(spt∗ = 2i + 1) and S(spt∗ = 2i + 2) is a union of �nitely many
sets of the form S(A, H). �

Lemma 3.6. Suppose that ari(V ) = 2 and either m = 0 or m ≥ 2. Then

lim
n→∞

∣∣Sn(spt∗ = m+ 2)
∣∣∣∣Sn(spt∗ = m)

∣∣ = 0.
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Proof. The case m = 0 follows from the fact that almost all M ∈ S are rigid [5].
Now suppose that m ≥ 2. By Lemma 2.10, for almost every M ∈ Sn(spt∗ = m), H =
Aut(M)�Spt∗(M) has exactly bm2 c orbits, and for almost everyM′ ∈ Sn(spt∗ = m+ 2),

H ′ = Aut(M′)�Spt∗(M′) has exactly bm+2
2 c = bm2 c+ 1 orbits. Since

fld(H)− orb1(H) = m−
⌊m

2

⌋
< m−

⌊m
2

⌋
+ 1 = fld(H ′)− orb1(H

′),

it follows that if M and M′ are as above, A = M�Spt∗(M) and A′ = M′�Spt∗(M′),
then Proposition 2.6 (ii) implies that

∣∣Sn(A′, H ′)
∣∣/∣∣Sn(A, H)

∣∣→ 0 as n→∞, which in
turn implies the lemma (just as in the proofs of the preceeding two lemmas). �

Lemma 3.7. Suppose that ari(V ) = 2. Also assume that m = 0 or m ≥ 2 and that
T > m and T ≥ 2. Let m′ = m if m is even and m′ = m+ 1 otherwise. Then

lim
n→∞

∣∣Sn(spt∗ = m′)
∣∣∣∣Sn(m ≤ spt∗ ≤ T )
∣∣ = 1.

Proof. The case when m = 0 follows from [5], so suppose that m ≥ 2. If T = m+1 then
the result follows from Lemmas 3.4 and 3.5. Now suppose that m ≥ 2 and T ≥ m + 2.
For each i ∈ {m+ 2, . . . , T} we have, by Lemma 3.6,∣∣Sn(spt∗ = i)

∣∣∣∣Sn(m ≤ spt∗ ≤ T )
∣∣ ≤

∣∣Sn(spt∗ = i)
∣∣∣∣Sn(spt∗ = i− 2)
∣∣ → 0

as n→∞. From this it follows that

lim
n→∞

∣∣Sn(spt∗ = m) ∪ Sn(spt∗ = m+ 1)
∣∣∣∣Sn(m ≤ spt∗ ≤ T )

∣∣ = 1.

The lemma now follows from Lemmas 3.4 and 3.5. �

Lemma 3.8. Suppose that ari(V ) = 2 and m ≥ 2. Let m′ = m if m is even and
m′ = m+ 1 otherwise. Then

lim
n→∞

∣∣Sn(spt ≥ m) ∩ Sn(spt∗ = m′)
∣∣∣∣Sn(spt ≥ m)

∣∣ = lim
n→∞

∣∣Sn(spt∗ = m′)
∣∣∣∣Sn(spt∗ ≥ m)
∣∣ = 1.

Proof. Let m ≥ 2. Proposition 2.2 says that there is T > m such that

lim
n→∞

∣∣Sn(m ≤ spt∗ ≤ T )
∣∣∣∣Sn(spt∗ ≥ m)

∣∣ = lim
n→∞

∣∣Sn(spt ≥ m) ∩ Sn(spt∗ ≤ T )
∣∣∣∣Sn(spt ≥ m)

∣∣ = 1.

By Corollary 3.3 it su�ces to prove that

lim
n→∞

∣∣Sn(spt∗ = m′)
∣∣∣∣Sn(m ≤ spt∗ ≤ T )
∣∣ = 1,

but this follows from Lemma 3.7. �

We get Theorem 1.1 by combining Lemmas 3.1 and 3.8.

4. Proof of Theorem 1.2

Theorem 1.2 is proved in this section, but Lemmas 4.1 and 4.4 may be of interest in
themselves. In this section we assume that ari(V ) ≥ 3.

Lemma 4.1. Suppose that ari(V ) ≥ 3 and i ≥ 1. For almost all M ∈ S(spt∗ =
2i), Aut(M)�Spt∗(M) has exactly 2i2 orbits on Spt∗(M)× Spt∗(M), so every orbit on
Spt∗(M)× Spt∗(M) has cardinality 2.
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Proof. First note that if H is the permutation group on Ω = {v1, . . . , vi, w1, . . . , wi}
whose only nontrivial permutation sends vj to wj for every j, then H has i orbits on
Ω and 2i2 orbits on Ω × Ω, because every orbit on Ω × Ω has cardinality 2. Hence
orb2(H) = 2i2. Moreover, for every permutation group on Ω without �xed points, the
number of orbits on Ω × Ω cannot exceed (2i)2/2 = 2i2. So if H is as described then
orb2(H) is maximal among permutation groups on a set of cardinality 2i. We also have
fld(H) − orb1(H) = i which is minimal among permutation groups without any �xed
point on a set of cardinality 2i.

Let A be any structure without �xed point with universe A = Ω and H a subgroup
of Aut(A) without any �xed point. For example, let the interpretation of every relation
symbol be empty. Suppose that A′ is a structure with universe of cardinality 2i and
without any �xed point and suppose, moreover, that H ′ is a subgroup of Aut(A′) such
that H ′ has no �xed point and either orb1(H

′) < i or orb2(H
′) < 2i2. If orb1(H

′) < i
then, as fld(H ′) = fld(H) = 2i, we get fld(H ′) − orb1(H

′) > i = fld(H) − orb1(H).
Otherwise orb1(H

′) ≥ i so fld(H ′) − orb1(H
′) ≤ i and (as explained above) we have

i = fld(H)−orb1(H) ≤ fld(H ′)−orb1(H
′), so fld(H)−orb1(H) = fld(H ′)−orb1(H

′)
and hence fld(H) = fld(H ′) and orb1(H) = orb1(H

′). Hence, in any case (using that
orb2(H) = 2i2 and that orb2(H

′) < 2i2 if orb1(H
′) ≥ i), Proposition 2.6 (iii) implies

that
∣∣Sn(A′, H ′)

∣∣/∣∣Sn(A, H)
∣∣ → 0 as n→∞. (The assumption that ari(V ) > 2 is used

in the application of Proposition 2.6 (iii).) By Lemma 2.9, almost allM∈ S(A, H) have
the property that the number of orbits of Aut(M)�Spt∗(M) on Spt∗(M) is orb1(H) = i
and the number of orbits of Aut(M)�Spt∗(M) on Spt∗(M)×Spt∗(M) is orb2(H) = 2i2.
Now the lemma follows, because S(spt∗ = 2i) is a union of �nitely many sets of the form
S(A, H) where the universe of A has cardinality 2i, A has no �xed point and H is
subgroup of Aut(A) without �xed point. �

Lemma 4.2. Suppose that ari(V ) ≥ 3 and i ≥ 1. For almost all M ∈ S(spt∗ = 2i),
Aut(M) ∼= Z2.

Proof. Since Aut(M)�Spt∗(M) ∼= Aut(M) it su�ces to prove that for almost all
M ∈ S(spt∗ = 2i), Aut(M)�Spt∗(M) ∼= Z2. By Lemmas 2.10 and 4.1 it su�ces to
prove that if H is a permutation group on [2i] such that every orbit of H on [2i] has
cardinality 2 and every orbit of H on [2i]× [2i] has cardinality 2, then H ∼= Z2. This is
obvious if i = 1, so for the rest of the proof we assume that i ≥ 2.

So suppose that H is a permutation group on [2i] such that every orbit of H on [2i]
has cardinality 2 and every orbit of H on [2i]× [2i] has cardinality 2. We �rst prove an
auxilliary claim.

Claim. If a and b belong to di�erent orbits of H on [2i] and f ∈ H is not the identity,
then {f(a), f(b)} ∩ {a, b} = ∅.

Proof. Suppose for a contradiction that the claim does not hold. Then there are orbits
{a, c}, {b, d} ⊆ [2i] and a permutation f ∈ H such that f(a) = c and f(b) = b. Then
f(d) = d and as {b, d} is an orbit there is g ∈ H such that g(b) = d and g(d) = b. If
g(a) = a then {a, c}× {b, d} is an orbit of H on [2i]× [2i], contradicting the assumption
that all orbits on [2i] × [2i] have cardinality 2. Hence g(a) = c and g(c) = a. Then
gf(a) = a and gf(b) = d and again, by the use of f , gf and compositions of them, it
follows that {a, c} × {b, d} is an orbit, contradicting our assumption. �

Now we prove that if f ∈ H is not the identity, then f has no �xed point. Suppose, for
a contradiction, that f ∈ H is not the identity and has a �xed point a. As the orbit to
which a belongs, say {a, c}, has cardinality 2 and we assume that i ≥ 2 it follows that
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there is b ∈ [2i]\{a, c} such that f(b) 6= b. Then we have a = f(a) ∈ {f(a), f(b)}∩{a, b},
contradicting the claim.

Next, we prove that H has a unique nonidentity permutation from which it follows
that H ∼= Z2. So suppose for a contradiciton that f, g ∈ H are nonidentity permutations
and f(a) 6= g(a) for some a. Then a, f(a) and g(a) belong to the same orbit. Since
neither f nor g has any �xed point, as we proved above, some orbit of H on [2i] contains
at least three elements, contradicting our assumption. �

The next result deals only with permutation groups and is independent of the ingredients
from formal logic such as relation symbols and their interpretations.

Lemma 4.3. Suppose that i ≥ 2. Let H be a permutation group without �xed points
on [2i + 1] such that H has exactly i − 1 orbits of cardinality 2, exactly one orbit of
cardinality 3 and no other orbits. If orb2(H) is maximal among all H subject to the
given constraints, then H ∼= Z2 × Z3 and orb2(H) = 2i2 − 2i+ 3.

Proof. Suppose that H is a permutation group without �xed points on [2i + 1] such
that H has exactly i− 1 orbits of cardinality 2, exactly one orbit of cardinality 3 and no
other orbits. Let O1, . . . , Oi−1 be the orbits with cardinality 2 and let Oi be the orbit
with cardinalty 3. Let Ω = O1 ∪ . . . ∪ Oi−1. It is easy to see that there is f ∈ H�Oi
without any �xed point. From this it is straightforward to check that the number of
orbits of H�Oi on Oi×Oi is at most 3; indeed if we take distinct a, b ∈ Oi, then Oi×Oi
is the union of the following orbits (which may coincide): one orbit containing (a, a), one
orbit containing (a, b), and one orbit containing (b, a).

We �rst show that if H�Ω ∼= Z2, H�Oi ∼= Z3 and H ∼= (H�Ω) × (H�Oi), then
orb2(H) = 2i2 − 2i + 3. So suppose that H�Ω ∼= Z2. Then H�Ω has exactly i − 1
orbits on Ω, each one of cardinality 2, and H�Ω has exactly 2(i − 1)2 orbits on Ω × Ω.
Now suppose that H�Oi ∼= Z3. Then it is easy to see that no f ∈ H�Oi other than the
identity has a �xed point in Oi and therefore H�Oi has exactly 3 orbits on Oi×Oi. Sup-
pose, in addition to previous assumptions and conclusions, that H ∼= (H�Ω) × (H�Oi).
Then it easily follows that for every j = 1, . . . , i− 1, Oj × Oi and Oi × Oj are orbits of
H on [2i + 1] × [2i + 1]. Hence, the number of orbits of H on [2i + 1] × [2i + 1] which
contain (a, b) such that a ∈ Ω and b ∈ Oi, or vice versa, is 2(i− 1). Altogether, we get

orb2(H) = 2(i− 1)2 + 3 + 2(i− 1) = 2i2 − 2i+ 3.

We now show that if orb2(H) is maximal among all H subject to the given constraints
in the lemma, then H ∼= Z2 × Z3. This will conclude the proof.

So suppose that orb2(H) is maximal among all permutation groups on [2i+1] without
�xed points and with exactly i−1 orbits of cardinality 2, exactly one orbit of cardinality
3 and no other orbits. As before, let O1, . . . , Oi−1 be the orbits with cardinality 2, let
Oi be the orbit with cardinalty 3 and let Ω = O1 ∪ . . .∪Oi−1. By the same argument as
in the proof of Lemma 3.2 there exists f ∈ H without any �xed point in Oi, and then,
just as in that proof, it follows that for every j = 1, . . . , i− 1, Oj ×Oi and Oi ×Oj are
orbits of H on [2i+ 1]× [2i+ 1]. Hence the number of orbits of H on [2i+ 1]× [2i+ 1]
that contain a pair (a, b) such that a ∈ Ω and b ∈ Oi, or vice versa, is at most 2(i− 1).
The number of orbits of H on [2i+ 1]× [2i+ 1] that contain a pair (a, b) where a, b ∈ Ω
is at most (2(i − 1))2/2 = 2(i − 1)2, because every orbit has at least two members. As
explained in the beginning of the proof, the number of orbits of H on [2i+ 1]× [2i+ 1]
that contain a pair (a, b) where a, b ∈ Oi is at most 3. This means that

orb2(H) ≤ 2(i− 1) + 2(i− 1)2 + 3 = 2i2 − 2i+ 3.

By the assumption that orb2(H) is maximal and since the value 2i2 − 2i + 3 can be
reached, as shown above, we get orb2(H) = 2i2 − 2i + 3. From the argument above it



TYPICAL AUTOMORPHISM GROUPS 11

follows that orb2(H) cannot be maximal unless H�Ω has a maximal number of orbits on
Ω×Ω. Hence H�Ω must have the maximal possible number of orbits on Ω×Ω which is
(2(i− 1))2/2 = 2(i− 1)2 and consequently every orbit of H�Ω on Ω×Ω has cardinality
2. By the argument in the proof of Lemma 4.2 it follows that H�Ω ∼= Z2.

We have seen that H�Oi can have at most 3 orbits on Oi ×Oi. Also it is easy to see
that H�Oi has 3 orbits on Oi × Oi if and only if for any distinct a, b ∈ Oi, (a, b) and
(b, a) belong to di�erent orbits. Moreover, if for any distinct a, b ∈ Oi, (a, b) and (b, a)
belong to di�erent orbits, then no f ∈ H�Oi has order 2, so H�Oi ∼= Z3.

By the same argument as in the proof of Lemma 3.2, using only the assumptions about
the orbits of H on Ω, it follows that H ∼= (H�Ω)× (H � Oi) ∼= Z2 × Z3. �

Lemma 4.4. Suppose that ari(V ) ≥ 3.
(i) For almost allM∈ Sn(spt∗ = 3), Aut(M) ∼= Z3.
(ii) If i ≥ 2 then for almost all M ∈ S(spt∗ = 2i + 1), Aut(M) ∼= Z2 × Z3 and
s
(
Aut(M)�Spt∗(M)

)
= 2i2 − 2i+ 3.

Proof. We start with part (ii), so suppose that i ≥ 2. Suppose that A ∈ S2i+1 has no
�xed point and suppose that H is a subgroup of Aut(A) without �xed point. Note that
fld(H) = 2i+ 1. We have seen, in the proof of Lemma 2.10 (ii), that fld(H)− orb1(H)
is minimal when orb1(H) = i (under the assumption that H acts on a set of cardinality
2i + 1 and has no �xed points), which implies that H has i − 1 orbits of cardinality 2
and one orbit of cardinality 3. Also, recall De�nition 2.5 of β(x, y, z) and the notation
from the introduction and preliminaries. Observe that if we let

r = ari(V ), k = Nmax, l = Nmax−1,

p = fld(H) = 2i+ 1, q = orb1(H) = i and s = orb2(H), then

β(p, q, s) = k

(
r

2

)
(2i+1)2 − kr(r−1)(2i+1)i − l(r−1)(2i+1) + l(r−1)i + k

(
r

2

)
s,

where r, k, l and i are �xed parameters. So under the assumptions that fld(H) = 2i+ 1
and orb1(H) = i, β(p, q, s) is maximised when s = orb2(H) is maximised. From
Proposition 2.6 (iii) and the fact that S(spt∗ = 2i + 1) is a union of �nitely many sets
of the form S(A, H), where A ∈ S2i+1, A has no �xed point and H is a subgroup of
Aut(A) without any �xed point, it follows that almost everyM ∈ S(spt∗ = 2i+ 1) has
the following properties: H = Aut(M)�Spt∗(M) has exactly i orbits (i−1 of cardinality
2 and one of cardinality 3) and orb2(H) is maximal among all permutation groups on
[2i+ 1] with i orbits and without a �xed point. From Lemma 4.3 it now follows that for
almost every M ∈ S(spt∗ = 2i + 1), Aut(M) ∼= Z2 × Z3 and s

(
Aut(M)�Spt∗(M)

)
=

2i2 − 2i+ 3.
Now we consider part (i). If M ∈ S(spt∗ = 3) and H = Aut(M)�Spt∗(M) then

fld(H) = 3 and orb1(H) = 1. So the question is what H = Aut(M)�Spt∗(M) looks like
when orb2(H), the number of orbits on Spt∗(M) × Spt∗(M), is maximised. It is easy
to see that orb2(H) ≤ 3, and orb2(H) = 3 if and only if H ∼= Z3. (We argued similarly
in Lemma 4.3.) �

From Lemmas 4.2 and 4.4 we get the following:

Corollary 4.5. Suppose that ari(V ) ≥ 3 and m ≥ 2. Almost every M ∈ S(spt∗ = m)
has an automorphism whose support has cardinality m.

Lemma 4.6. Suppose that i ≥ 1 and ari(V ) ≥ 3. Then

lim
n→∞

∣∣Sn(spt∗ = 2i+ 1)
∣∣∣∣Sn(spt∗ = 2i)

∣∣ = 0.
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Proof. Exactly as the proof of Lemma 3.4. �

Lemma 4.7. If β(x, y, z) is de�ned as in De�nition 2.5, then

β(2i+ 2, i+ 1, 2(i+ 1)2) − β(2i+ 1, i, 2i2 − 2i+ 3) = 2k

(
r

2

)
(2i− 1).

Proof. Straightforward, but long, calculation. �

Lemma 4.8. If ari(V ) ≥ 3 and i ≥ 1 then

lim
n→∞

∣∣Sn(spt∗ = 2i+ 1)
∣∣∣∣Sn(spt∗ = 2i+ 2)
∣∣ = 0.

Proof. By Lemmas 2.10 and 4.1, for almost allM∈ Sn(spt∗ = 2i+2), if H = Aut(M)�
Spt∗(M) then p := fld(H) = 2i+2, q := orb1(H) = i+1 and s := orb2(H) = 2(i+1)2.
By Lemmas 2.10 and 4.4, for almost all M′ ∈ Sn(spt∗ = 2i + 1), if H ′ = Aut(M′)�
Spt∗(M) then p′ := fld(H ′) = 2i + 1, q′ := orb1(H

′) = i and s′ := orb2(H
′) =

2i2 − 2i+ 3. For such H and H ′ we have

p− q = i+ 1 = p′ − q′

and by Lemma 4.7 we also have

β(p, q, s) > β(p′, q′, s′),

so Lemma 4.8 follows from Proposition 2.6 (iii). �

Lemma 4.9. Suppose that ari(V ) ≥ 3 and either m = 0 or m ≥ 2. Then

lim
n→∞

∣∣Sn(spt∗ = m+ 2)
∣∣∣∣Sn(spt∗ = m)

∣∣ = 0.

Proof. Exactly as the proof of Lemma 3.6. �

Lemma 4.10. Suppose that ari(V ) ≥ 3 and suppose that m = 0 or m ≥ 2. Let m′ = m
if m is even and m′ = m+ 1 otherwise. Then For every integer T such that T > m and
T ≥ 2,

lim
n→∞

∣∣Sn(spt∗ = m′)
∣∣∣∣Sn(m ≤ spt∗ ≤ T )
∣∣ = 1.

Proof. As the proof of Lemma 3.7, but now using Lemmas 4.6, 4.8 and 4.9. �

Lemma 4.11. Suppose that ari(V ) ≥ 3 and m ≥ 2. Let m′ = m if m is even and
m′ = m+ 1 otherwise. Then

lim
n→∞

∣∣Sn(spt ≥ m) ∩ Sn(spt∗ = m′)
∣∣∣∣Sn(spt ≥ m)

∣∣ = lim
n→∞

∣∣Sn(spt∗ = m′)
∣∣∣∣Sn(spt∗ ≥ m)
∣∣ = 1.

Proof. Like the proof of Lemma 3.8, but now using Corollary 4.5 and Lemma 4.10. �

By combining Lemmas 4.2 and 4.11 we get Theorem 1.2.
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