Ergodic Theorems for Markov chains
represented by Iterated Function Systems

Abstract

We consider Markov chains represented in the form
Xn+1 = f(Xn, I,), where {I,} is a sequence of independent, identi-
cally distributed (i.i.d.) random variables, and where f is a measurable
function. Any Markov chain {X,,} on a Polish state space may be rep-
resented in this form i.e. can be considered as arising from an iterated
function system (IFS).

A distributional ergodic theorem, including rates of convergence
in the Kantorovich distance is proved for Markov chains under the
condition that an IFS representation is “stochastically contractive”
and “stochastically bounded”.

We apply this result to prove our main theorem giving upper bounds
for distances between invariant probability measures for iterated func-
tion systems.

We also give some examples indicating how ergodic theorems for
Markov chains may be proved by finding contractive IFS representa-
tions. These ideas are applied to some Markov chains arising from
iterated function systems with place dependent probabilities.
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1 Introduction

Let (X, d) be a complete metric space, and let S be a measurable space. Consider
a measurable function w : X x S — X. For each fixed s € S, we write wy(z) :=
w(z,s). We call the set {X; ws,s € S} an iterated function system (IFS). Let
{I,}52, be a stochastic sequence with state space S. Specify a starting point
x € X. The stochastic sequence {I,} then controls the stochastic dynamical system
{Z,(2)}22,, where

Zn(®) i=wr,_y owr,_y0---owp(x), n21,  Zo(z) ==

We call this particular type of stochastic dynamical system an IFS controlled by
{I,}. (Some authors use the name stochastically recursive sequence with driver
{I.}. See e.g. Borovkov and Foss [6].) Surveys of IFS related results can be found
e.g. in the introduction paper in Stenflo [27] and in Diaconis and Freedman [8].

In this paper, we shall consider the model when the controlling sequence {I,} is
a sequence of independent, identically distributed (i.i.d.) random variables. Any ho-
mogeneous Markov chain on a complete, separable metric space can be represented
in this form with the i.i.d. random variables, {I,,}, being uniformly distributed in
(0,1) (see e.g. [14]). A representation, however, is not in general unique. In Section
4 we will describe this in more detail.

In Section 2 we are going to prove a weak ergodic theorem including rate of
convergence for Markov chains under a stochastic boundedness condition and an
average contraction condition posed on a representing IFS. Similar results of this
type can be found in e.g. [11], [21], [5], [26] and [8]. Our generality, also including
situations with representations containing an arbitrary number of discontinuous
maps on a non-compact state space, is however of importance since in general it
can not be expected that a representation with continuous maps exists.

A main ingredient in the proof of this theorem is the technique of reversing
time. This technique has flourished around the last 30-40 years and was formulated
as a principle by Letac [17]. In the paper by Propp and Wilson [22] this method
was used as a basis for their nowadays widely known algorithm for exact simulation



of invariant probability measures of Markov chains. See [8] for a nice overview.
Some additional recent papers where this method has been used in order to prove
ergodic theorems are e.g. [19], [1], [25] and [26].

In Section 3 we use the result derived in Section 2 to prove our main theorem
giving estimates of distances between IFS generated invariant probability measures.
Three related results concerning continuity of the invariant measures for iterated
function systems can be found in [10], [7], and [20]. See also e.g. [15] and [12] for
corresponding results about the invariant sets.

The escape from using a continuity condition in our theorems enables us to give
a new approach towards Markov chains generated by iterated function systems with
place dependent probabilities. This is done by representing the system by another
IFS with place independent probabilities, i.e. an IFS controlled by a sequence of
ii.d. random variables, and use the theorem derived in Section 2. An example
of this can be found in Section 4 as well as a new proof for the classical ergodic
theorem for Markov chains with “splitable” transition kernels.

2 Ergodic theorems for IF'S controlled by i.i.d. se-
quences

Let BL denote the class of bounded continuous functions, f : X — R (with || f||ecc =
sup,cx | f(x)| < o0) that also satisfy the Lipschitz condition

— @) = f )]
V= aen <>

We set || fllsL = || flloo + ||f||z- For Borel probability measures 4 and v» we define
the metric

dw(v1,v2) = sup {| [ fd(r1 —w)|:||fllBL <1}
feBL Jx

It is well known, see e.g. [24], that this metric metrizes the topology of weak con-
vergence of probability measures (on separable metric spaces).
Consider now the Kantorovich distance defined by

di(1,) = sup{| /X fdr - w)]: Il < 1}

(See [23] for more on probability metrics.) It is evident that dy, (v1,v2) < di(v1, v2).
Denote by uZ(-) = P(Z,(x) € -).
We have the following theorem:

Theorem 1. Suppose
(A): There exists a constant ¢ < 1 such that

Ed(wlo (.’L‘), wi, (y)) < Cd(ma y);



forall x,y € X.
(B): Ed(zo,wr,(z0)) < 00, for some ¢ € X.
Then there exists a wunique invariant probability measure p for the

Markov chain {Z,(x)} such that, for any bounded set K C X there exists a positive
constant ygx such that

(1) sup d (5, ) < T2—c", n > 0.

zeK —C

Remark 1. An explicit expression and upper bound for yx is given by

vk = sup Ed(z,wy,(z)) < Ed(zq,wr, (x0)) + (¢ + 1) sup d(z,z¢) < 0.
zeEK z€K
Remark 2. The limiting probability measure p is concentrated in the sense of a
bounded first moment, or to be more precise

/ d(z0, z)du(z) < M’
X C

where ¢ and z are defined by the conditions (A) and (B). [See the inequalities in
(2) and (6) below.]

Remark 8. Obviously, we may replace the dg-distance in (1) by the d,,-distance and
thus in particular, we have weak convergence with exponential rate of convergence.
Remark 4. Note that the functions wy, are not assumed to be continuous for any
s € S. [See the example concerning IFS with place dependent probabilities given in
Section 4.2.] In the case when S is countable, however, continuity is a consequence
of condition (A).

Proof. For z € X, define the reversed iterates

Zn(w) = wiy 0wy, 00wy, (a), n>1, Zo(z) =u.

The random variables Z,(z) and Z,(z) are identically distributed. We are first
going to prove that there exists a random variable Z, such that Z,(z) converges
almost surely (a.s.) to Z. If we then define pu by u(-) = P(Z € -), we have the



following sequence of inequalities:

di (4, 1) = sup{] /X fdz — ) 11l < 1}

Zn(@)) — [ (A))I Ifll <1}
sup{EIf( w(@) = £(2)] - £z < 1}
E lim_d(Zn(), Zm(x))

m—

< Emh_r>noo Z d(Z1,(x), Zks1(z))
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We shall prove the existence of Z by first proving that {Zn(m)} is a.s. a Cauchy
sequence, which converges since X is complete, and then prove that the limit is
independent of z.

For N <n <m we have,

®3) d(Z(x), 2 <Y d(Zi(x), Zisa(x)).
=N
Thus if we prove that
(4) Eid( Zi(2), Ziy1(2)) = 0, as N = oo,
=N
then
() D d(Zi(w), Ziga(2) 30
i=N

and from (3) and (5) we conclude that {Z,(z)} a.s. forms a Cauchy sequence.



Now, by recursively using condition (A) we obtain

EZd z—‘,—l z)) = ZEd(Zz( )s Ziy1())
=N
= ZE(E(d(ZA,(IL') Zz—‘,—l( ))|w117 , Wr ))
=N
= Z (E(E(d(m0 (wr, owr,_, (z)),
=N
wry(wr, 0+ 0wy, (), -+ wy,)) )
< Z cEd(wr, o---owr,_, (x),wr, 0---owr,(x))
i=N N
< ZcZEd i, (2)) = 1 Fd(a, wy, (2).

(6)
Since using condition (A) and (B),

Ed(z, wr, (2)) < d(2,20) + Ed(20, wr, (20)) + Ed(wi, (20), wr, ()
(7) < Ed(zo, wry(20)) + (¢ + 1)d(z, o) < oo,

it follows that (4) holds and thus {Z,(z)} converges a.s. to some random element
Z(z) for each z € X. Tt remains to prove that the limit is independent of z.

By the Chebyshev inequality, and by a recursive use of condition (A), for any
two points £ and y in X, and for any € > 0,

P(A(Za(z), 2n(y)) > ) < ZUEn(2): ZnW))

IA

< CE(BZa (@), Zao)hon, - ur, )
< ZBd(wr, oo wr, ,(z),wr, 0+~ wr, , (1))
<...< %d(m,y)
Thus
S PUA(Zn(a), Zul) > ) < 3 S )
and it follows (gef:g [24]) that -
® A(Zn(@), 2a®) 50 as.



Define Z = Z(xo). From (8), the triangle inequality, and the fact of almost sure
convergence of Zn () to Z, it follows that for any z € X, d(Zy,(z),Z) =3 0 as
n — 0o establishing the a.s. independence of z.

Combining (2) and (6) we see that

cn

dk(:u/pr’) < 1 Ed(SL',U)IO (.’L')), n > 0.

—C

Thus,

n

sup dk(ﬂfwﬂ) S YK, T 2 07

z€EK 1-c
where vk := sup, ¢ x Ed(z,wr,(x)) is a finite constant, since, by taking suprema in

(7)

(9) Yk < Ed(wo, iy (20)) + (¢ + 1) sup d(z, 20) < oo.
zeK
It remains to prove that the probability measure p is invariant and unique with
this property. To do this, we prove that the Markov chain {Z,(z)} has the (weak)
Feller property which in our terminology means that g : X — R being a bounded
and continuous function implies that the mapping

(10) z — Eg(wr,(z))

is continuous. It is well known that the limiting probability measure of an ergodic
Markov chain with the Feller property is invariant. To be self-contained, we explain
why before proving that our Markov chain has this property.

Since

(11) Eg(Zn(z)) = /XEg(wzo(y))P(Zn—l(ﬂf) € dy),

the invariance equation

/X gds = /X Eg(wr,(v))du(y)

will then follow by taking limits in (11) justified by using the continuity in (10).

We shall now prove that our Markov chain has the Feller property. Let {y,}
be a sequence in X with lim,,_,., ¥y, = y. Since, for fixed € > 0, by the Chebyshev
inequality, and from condition (A),

P(d(wiy (yn),wr, (y)) > €) < Ed(wr, (y:),wzo (v)) < cd(y:,y) 0

as n — oo, we have proved that wy, (y,) converges in probability to wy,(y). Thus
for any bounded and continuous function g

nh—>ngo Eg(wlo (yn)) = Eg(wfo (y))a

7



and the Feller property is established. Thus p is invariant.
The uniqueness follows since if v is another invariant measure, we obtain by
using Lebesgue’s convergence theorem, that

[ atv= [ Bozi@)avw = .= [ Bo(zu@)iv(a)
(e

for bounded and continuous functions g, and thus g and v coincides (see e.g. [3]).
This completes the proof of Theorem 1.
o

3 Estimation of distances between IFS generated
probability measures

We will now turn to our main theorem proving that under uniform contractivity
and stochastic boundedness assumptions (condition (C) and (D) below), we can give
upper bounds for d,,-distances between IFS generated probability measures and in
particular prove that the limiting probability measure depends “continuously” on
the parameters in the system.

For probability measures v; and v, defined on the same measurable space,
(M, M), let dry denote the total variation distance defined by

dry (v1,v2) = sup |v1(A) — v2(A)|.
AeM

Theorem 2. Let F¢ = {X; wt,s € S}, with € € [0,t] for some t > 0, be an
indexed family of iterated function systems, and let {IS}, respectively, be associated
i.i.d. controlling sequences. Define for x € X,

Zy(w) ==wpe_ owje o--owp(x), n>1, Zj(z) ==

Suppose

(C): There exists a constant 0 < ¢ < 1 such that

Ed(Z{ (), Z5(y)) < cd(z,y), for all z,y € X, and all € € [0,1].
(D): Yzo = 8UP,efo 4 Ed(wo, wig (o)) < 00, for some zo € X.
(E): There exists a function A : [0,t] = Ry such that,

sup sup d(wé (), wl(z)) < A(e), for all € € [0,1].
seSzeX



(F): There exists a function S : [0,t] = Ry such that,
dTV(Pe;PO) < ’Yzos(e)a fOT’ all € € [Oat]a
where P.(-) := P(I§ € -), and where vy, is the constant defined by condition (D).

Let p¢ denote the limiting invariant probability distribution for the
Markov chain generated by the IFS and controlling sequence indexed by € (these
measures exist due to Theorem 1). Then for any € € [0,t], we have

A()4272¢5(¢) | 2704 S(e) In S(e)
(12) du}(/faﬂ’o) < A 12_00 + : Inec ) S(E) <1
| Mg, S(e) > 1

Remark 5. Tf S(e) = 0 we interpret (12) as dy, (u, u°) < ?EC)

Before we turn to the proof of Theorem 2, we illustrate the theorem with an
example.

Example 1. Consider the family of iterated function systems F¢ = {[0,1], wi(z) =
(1/2—€)z, ws(z) =(1/2—€)x+1/2+¢€}, 0< e < 1/2, with P(I§ = i) =1/2, (i.e.
independent of €) for i = 1,2. Applying the above theorem, with ¢ =1/2, A(e) =,
and S(€) = 0, shows that d,,(u¢, u°) < 2¢ and thus pu¢ — p° as € — 0 weakly which
at first glance may be somewhat conspicuous since we know that the supports of uc,
for 0 < € < 1/2, are sets of Cantor type, while u° is Lebesgue measure on [0,1].

We now turn to the proof of Theorem 2.

Proof. Define p$*(-) := P(Z¢(z) € -), for z € X, and let zo be the point defined
in condition (D). By the triangle inequality we have that

(13) duw (B, 1°) < duo (1€, p5™0) + du (570, u2™0) + do (19, 1°).

Putting in the assertion of Theorem 1 K = {z(} and applying conditions (C) and
(D) we get

(14) Ao (u"°, p) < {Y—wocc”, for alln >0, and € € [0,1].

Define, for z € X,

Zi () = wiy_, oy

"_20---011;;8(1'), n>1, Zi(z) ==z.

Let for each fixed € and n, PE(") denote the probability distribution of the
random vector {I§, If,... ,IS_;}. (Pe(l) =P)



We have the following inequalities,

du (057, 1%™) = sup {| [ fd(us™ = u%™)| : |l < 1}
fEBL X
= sup {|E(Z5(w0)) - Bf (Z3())| : |Ifllmr < 1}
fEBL

IN

fselg)L{lEf(Zi(mo)) ~ Ef(Zy(wo))| < Ifllpr < 1}
+ sup {|Ef(Z;(20)) = Ef(Z;(x0))| : [|Ifllpr < 1}
feBL

(15) 2dry (P, P{™) + Ed(Z¢ (x0), Z%(x0)).

IN

For any fixed € and n we may assume (see [9]) that IS and I are defined on
the same probability space with P(I¢ # I?) = drv (P., Py). It can also be assumed

that {(I5,I2)} is a sequence of i.i.d. random variables. Thus

dry (P, P{M) < P((IS, ..., I5_y) # (I3, . ,19_)))

n—1
= P(UEHE #10Y) < )P A 1))
i=0

n—1

(16) = Z drv (Pe, Po) < nvzoS(e)-

=0

Studying the second term appearing in (15), we obtain

Ed(Z,(z0), Zg(w0)) < Ed(w§e  (Z_1(20)),whe (Z9_1(20)))

< Ed(wio_ (Zy,_y(20)),who_ (Z5,_1(20)))
+Ed(who_ (Z,_1(20)), w5 (Z5_(20)))
< sup sup d(wj (z), wi(z))

seSzeX
+BE(E(d(wio_ (Z5_1(20)),who_ (Zn_1(z0)|Z5_1(20), Zn_y(20)))
(17) < Ale) + cBd(Z;_; (o), Zy_1(x0)),

and thus by a recursive use of (17), we see that

n—1
- . 1
(18) Bd(Z(n0), Z2(20)) < A(©) 3 ¢ < Ale) ——.
e 1-c¢
By inserting (16) and (18) in (15) we obtain that
1
(19) (570, 13%0) < 2 S(0) + A(E) T

10



and thus from (13), (14), and (19) we see that

1
1—c¢

(20) ) < iy (22,04 2002, 5(6)) + A

In order to give a more explicit expression for the right hand side of (20) we inves-
tigate the function f(z) = az + bc®, x > 0, where a,b > 0, 0 < ¢ < 1. Suppose

that a < b(1 —¢). For z = {~-1n (ﬁ) > 0, we have that

aln (345
(lrbl(z )) + lic'

fz)=flz+1) =

Since f is convex it follows that for the unique integer n such that x <n <z +1
we have that f(n) < f(x).
Thus with a = 2v,,5(¢) and b =

21%0 , we see that if S(e) < 1 then

—cC

. 220 p 29205(€)  274,S(€) In S(e)
— %o < ]
20 (1 e QTL%OS(E)) ST Inc

(If S(e) > 1 we use the trivial bound min,>q (217_23 "+ 2n%05(e)) < 217%2)

Using these estimates in (20) completes the proof of the theorem.

4 IFS representations of Markov chains

In this section, we are going to describe how a Markov chain, {X,,} with state
space X, may be represented as an IFS controlled by a sequence of i.i.d. random
variables. (We shall call such a representation an IFS representation.)

Our aim is to prepare for sections 4.1 and 4.2 where we apply the ergodic
theorem for IFS controlled by i.i.d. sequences (developed in Section 2) to prove
ergodic theorems for Markov chains by finding suitable IFS representations.

We shall start with an example where the state space X is as simple (non-trivial)
as possible.

One purpose of this example is to illustrate the non-uniqueness of an IFS rep-
resentation of a given Markov chain.

Example 2. Consider a time homogeneous Markov chain {X,} with state space
X ={0,1} and transition matriz

P= (poo P01) )
Pio P11
To find all IFS representations of this Markov chain, we take the four possible

functions wi (z) = z, wa(z) = 0, ws(z) = 1, wa(z) = 1 — =z, and let {I,} be i.i.d.

11



with P(I, = i) = p;, for i = 1,...,4. We obtain the following system of linear
equations:

pL + p2 = Poo

p+ p3 =pn

PL+p2+ p3s+ pa=1

0 S D1, D2, P3, P4 S 1

Solving this system for p;, i =1,... ,4, we finally get

j 41 0 1
p2 | _ Poo it -1 ,
D3 D11 -1
j 1 — (poo + p11) 1

max (0, poo + p11 — 1) <t < min(poo, p11)-

In this example we made a total investigation finding all representing iterated
function systems. In Section 2 we proved a theorem for iterated function systems
based on contraction conditions of the involved functions. Therefore we see that the
representation above with parameter ¢ as small as possible is the best representation
provided that we want to choose the contractive functions (wy and w3 in the above
example) with as high probability as possible.

When the state space is larger however, e.g. R, we can no longer make this type
of total investigation for representing iterated function systems. Therefore we will
be pleased if we can find an algorithm constructing one “contractive” IFS from a
given Markov chain.

If {X,} is a Markov chain on (a subset of) R with transition kernel P(z, A),
then we can define a representing IFS with,

w,(x) = inf{y : P(z, (—00,y]) > s}

and with {I,,} being an independent sequence of random variables with values uni-
formly distributed on (0, 1). This representation corresponds to the “most contrac-
tive” IFS in the above example. Note however that this is not a general statement
for larger state spaces since the above construction depends on the natural ordering
of R

The above algorithm for creating a representing IFS can be generalized if the
state space, X, is Borel measurably isomorphic to a Borel subset of the real line,
R, satisfied for instance if X is a Polish space.

In fact (see e.g. [14]), suppose there exists a one-to-one Borel map ¢ : X — R
such that M = ¢(X) is a Borel subset of R and ¢! : M — X is also Borel
measurable. Suppose that 7 : R — X equals ¢~! on M and maps R\M on some
point zy € X. For each x € X define a probability measure on the Borel o-field
B(R) of R by P(z,B) = P(z,¢~'(B N M)), for B € B(R), and for each z € X
and s € (0,1) let gy(x) = inf{y : P(z,(—00,y]) > s}. If we for each s € (0,1) let
wg = 1 o g then the construction is completed.

12



To know whether or not there exists a representing IFS with continuous func-
tions, one sufficient condition is given in Blumenthal and Corson [4]. Their condi-
tion is that the state space X is a connected and locally connected compact metric
space, the transition kernel P has the (weak) Feller property, (i.e. the operator
T defined by Tf(z) := [y P(x,dy)f(y), for all z, maps bounded and continuous
functions to itself), and for each fixed z € X, the support of P(z,-) is all of X. See
also [28] for further results.

4.1 Recurrent Markov chains

We shall now as a corollary of Theorem 1 present a proof of ergodicity for Markov
chains satisfying the classical Doeblin “splitting” condition. Although the result
is more than fifty years old and many different proofs exist in the literature, see
e.g. [18], the proof given here is non-standard and may thus be of complementary
interest. The proof also awakes the general open question on how to embed the
theory of exponentially ergodic Markov chains within the theory of iterated function
systems.

Corollary 1. Suppose {Z,} is a homogeneous Markov chain with Polish state
space X and with a transition kernel P which has the splitting property:

Pno(xa ) = ﬂQ(xa ) + (1 - /6)1/()7

for some ng > 1, transition kernel ) and probability measure v, and for every
z € X, where 0 < 8 < 1. Then there exists a unique invariant probability measure
u for {Z,}, such that

(21) sup sup |P(Zn(z) € A) — p(4)] < ;
z€X AeB(X) 1-5

where B(X) denotes the class of Borel sets in X, and Z,(x) denotes the Markov
chain with initial distribution concentrated ot © € X .

Proof. It is sufficient to prove this theorem for the case ng = 1, since we can consider
subsequences { Znn, }5%, and if the Markov chain {Z,,, }°2, satisfies (21) then for
k=0,1,2,... ,n9 — 1 we observe that

sup  sup |P(Znnotk(2) € A) — pu(A)]

z€X AEB(X)

< sup sup | [ (P(Zuns(0) € 4) = w(A)PH (2, )
z€X AeB(X) JXx

< sup [ sup |P(Zungy) € 4) — w(A) PH(o,dy) < {2,
z€X JX A€B(X) -p

and the conclusion of the theorem holds.

13



Using the algorithm described in Section 4, let f5,s € (0,1) be a set of functions
representing a Markov chain with transition kernel @ together with a sequence {1/}
of i.i.d. random variables with values in (0,1). Furthermore, let gs;,s € (0,1) be
a set of functions representing a Markov chain with transition kernel (measure) v
(together with {I},}). Let {I)'} be another (independent) such i.i.d. sequence.

Then {I,}, with I, = (I},,I!)) forms an independent sequence uniformly dis-
tributed in (0,1) x (0,1). If we define wy; = f5 for 0 < ¢t < 3 and g, otherwise, we
obtain

wr, = x(I, < B)fr, + xI, > Bgr,

where x denotes the indicator function.

Let d denote the discrete metric. The space (X, d) then constitutes a complete
metric space.

Since gs, s € (0,1) will all be constant maps, it follows that

Ed(wfo (.’L’), Wi, (y)) <

< BEd(fr(x), fry (v)) + (1 - B)Ed(9r, (x), 91, (y)) < Bz, y)

Thus {(X,d),wsy4,(s,t) € (0,1) x (0,1)} together with {I,,} forms a contractive
IFS representing the transition kernel P and Theorem 1 can be used. In fact, if
C={f:X =R, f=x forsome indicator function x} then from Theorem 1, using
YK S 17

sup |P(Zn(x) € A) — p(A)| = sup{] / faus — / Fdul}
A€eB(X) fec X X

< sup{] /X fus, — /X faul: 1l <1} < f_"ﬁ’

and the above inequality holds uniformly for all z € X. This completes the proof
of the theorem.

O

4.2 Iterated function systems with place dependent proba-
bilities

If we have an IFS with S = {1,..., N}, for some N > 1, and to each i € S we have
associated probability weights p; : X — [0,1], pi(z) >0, i € S and Efil pi(z) =1,
for each z € X, we call the set {X; w;, pi(z), ¢ € S} an IFS with place dependent
probabilities.

Specify a point x € X. Using this system we can construct a Markov chain
{Z,(z)} in the following way: Put Zo(z) := =z, and let Z,(z) = w;(Zp_1(z))
with probability p;(Z,_1(x)), for each n > 1. Some papers where this model is
considered are [2], [13], and [16].

For any IFS with place dependent probabilities, there is an IFS with place inde-
pendent probability weights (i.e. an IFS controlled by an i.i.d. sequence) generating

14



the same Markov chain. (We call iterated function systems generating the same
Markov chain equivalent.)
We illustrate this with the following example.

Example 3. Consider the IFS  with place  dependent  probabilities
{X; wi(z), pi(x),i € {1,2}}, with w;, i = 1,2, being continuous.
The IFS {X; fs, s € (0,1)} with
_ ’LU1(-73), lfpl(.fL')ZS, .CL'EX,
fs(z) = { wa(z), otherwise ’

controlled by o sequence of independent random wvariables, uniformly distributed in
(0,1), is equivalent with the above system. It is more well behaved in the sense
that it has place independent probabilities but the loss is that it generally has a
denumerable set of discontinuous functions.

As corollaries of Theorem 1 we obtain:

Corollary 2. Let w; and ws be bounded contractions i.e. functions satisfying the
Lipschitz conditions d(w;(z), w;(y)) < cd(z,y), c <1, forallz,y € X, andi =1,2,
with b := sup, ,cx d(w1(z), w2(y)) < oc.

Suppose, for some r > 1 and all z,y € X,

—c

d(z,y)-
& d,y)
Then there exists a unique invariant probability measure p for the Markov chain
{Z,.(x)} such that, for any bounded set K C X there exists a positive constant
such that

I1(2) - p1 ()] < -

1—c\"
sup dy (K5, 1) < 7<C+ —)
zeK r

where pZ(-) := P(Z,(z) € -).
Proof. Take the representing IFS {X; f;, s € (0,1)} constructed as in Example
3 above. We are going to use Theorem 1. We thus have to check condition (A).

(Condition (B) trivially holds.)
Now, for z,y € X we may suppose that p; () < p1(y) and thus

B, (0), J1a(9)) < pr (@) (2), wa 0)
+Hp1(0) — () @), w1 0) + (L= 1) (0), w2 0))
< d(e ) (@) + T b+ el - pi(y))

0 < e+ T )dey)

< d(z,y)(c(pr(z) +1—pi(y)) +
The conditions in Theorem 1 are satisfied and thus there exists a probability mea-

sure p such that, for any bounded set K C X there exists a positive constant
such that
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z 1—cy\m
sup dy, (i, ) < 7(0+ —)
zeK r

O

Corollary 3. Consider the functions wi(x) = cx + ¢1 and wa(x) = cx + c2, with
¢ <1, on a compact subset K of R (together with the Fuclidean metric).

Suppose, the probability weights are affine i.e. py(xz) = p1 + c3x, for some con-
stants py and c3. Denote by L := ¢ + |cs|ler — co|. If L < 1 then there exists a
unique invariant probability measure p for the Markov chain {Z,(z)} and a positive
constant vy such that

sup dy, (g, ) < yL"
zeK

where pZ(-) := P(Zy(z) € -).

Proof. Take the representing IFS {X; f;, s € (0,1)} constructed as in Example
3 above. We are going to use Theorem 1. We thus have to check condition (A).
(Condition (B) trivially holds.)

Now, (for p1(z) < p1(y))

A

E|f1,(2) - f1,()| < pr(z)elz —y| + (p1(y) — p1(2))(cx + 2 — (cy + c1))
+(1 = p1(y))clz —y|

clz —y|(1 = (p1(y) — p1(2)))

+(p1(y) — p1(z))(clz —y| + [e1 — c2)

clz —y| + (p1(y) — p1(z))]e1 — cof

|z —y|(c + |es|ler — e2]) = Lz — y].

IN

IN

The conditions in Theorem 1 are satisfied and thus the conclusion follows.
O
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