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Summary. We consider Markov chains represented in the form Xn41 = f(Xn,In), where
{I,} is a sequence of independent, identically distributed (i.i.d.) random variables, and
where f is a measurable function. Any Markov chain {Xr} on a Polish state space may
be represented in this form i.e. can be considered as arising from an iterated function
system (IFS).

A distributional ergodic theorem, including rates of convergence in the Kantorovich
distance is proved for Markov chains under the condition that an IFS representation is
“stochastically contractive” and “stochastically bounded”.

We apply this result to prove our main theorem giving upper bounds for distances
between invariant probability measures for iterated function systems.

We also give some examples indicating how ergodic theorems for Markov chains may
be proved by finding contractive IFS representations. These ideas are applied to some
Markov chains arising from iterated function systems with place dependent probabilities.

1. Introduction. Let (X, d) be a complete metric space, and let S be a
measurable space. Consider a measurable function w : X x § — X. For each
fixed s € S, we write w,(z) := w(z,s). We call the set {X; w,, s € S} an
iterated function system (IFS). Let {I,}5%, be a stochastic sequence with
state space S. Specify a starting point € X. The stochastic sequence {I.}
then controls the stochastic dynamical system {Z,(z)}n%q, Where

Zp(z) =wy,_,owr, ,0 -owg(z), n=1, Zo(z) = z.

We call this particular type of stochastic dynamical system an IFS controlled
by {I,.}. (Some authors use the name stochastically recursive sequence with
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28 0. Stenflo

driver {I,,}. See e.g. Borovkov and Foss [6].) Surveys of IFS related results
can be found e.g. in the introduction paper in Stenflo [27] and in Diaconis
and Freedman [8].

In this paper, we shall consider the model when the controlling sequence
{I,} is a sequence of independent, identically distributed (i.i.d.) random
variables. Any homogeneous Markov chain on a complete, separable met-
ric space can be represented in this form with the i.i.d. random variables,
{I,,}, being uniformly distributed in (0,1) (see e.g. [14]). A representation,
however, is not in general unique. In Section 4 we will describe this in more
detail.

In Section 2 we are going to prove a weak ergodic theorem including rate
of convergence for Markov chains under a stochastic boundedness condition
and an average contraction condition posed on a representing IFS. Similar
results of this type can be found in e.g. [11], [21], [5], [26] and [8]. Our gener-
ality, also including situations with representations containing an arbitrary
number of discontinuous maps on a non-compact state space, is however of
importance since in general it cannot be expected that a representation with
continuous maps exists.

A main ingredient in the proof of this theorem is the technique of re-
versing time. This technique has flourished around the last 30-40 years and
was formulated as a principle by Letac [17]. In the paper by Propp and Wil-
son [22] this method was used as a basis for their nowadays widely known
algorithm for exact simulation of invariant probability measures of Markov
chains. See [8] for a nice overview. Some additional recent papers where this
method has been used in order to prove ergodic theorems are e.g. [19], [1],
[25] and [26].

In Section 3 we use the result derived in Section 2 to prove our main the-
orem giving estimates of distances between IFS generated invariant proba-
bility measures. Three related results concerning continuity of the invariant
measures for iterated function systems can be found in [10], [7], and [20].
See also e.g. [15] and [12] for corresponding results about the invariant sets.

The escape from using a continuity condition in our theorems enables
us to give a new approach towards Markov chains generated by iterated
function systems with place dependent probabilities. This is done by rep-
resenting the system by another IFS with place independent probabilities,
i.e. an IFS controlled by a sequence of i.i.d. random variables, and use the
theorem derived in Section 2. An example of this can be found in Section 4
as well as a new proof for the classical ergodic theorem for Markov chains
with “splitable” transition kernels.

2. Ergodic theorems for IFS controlled by i.i.d. sequences. Let
BL denote the class of bounded continuous functions, f : X — R (with
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I Flloo = supgex | f(2)] < oo) that also satisfy the Lipschitz condition
|f(z) - F(w)l

Wfllp = sup ——F—~— <00
{ zHyY d(IE) y)
We set || fllsr = || flloo + | fllz. For Borel probability measures v and vy we
_ define the metric
dulvsv) = sup {| [ Fdn - v s 15z <1}

feBL My
Tt is well known, see e.g. [24], that this metric metrizes the topology of weak
~ convergence of probability measures (on separable metric spaces).
k Consider now the Kantorovich distance defined by

dg(v1,v2) = Sup{lffd(l/l — 1/2)‘ e <€ 1}.
X

(See [23] for more on probability metrics.) It is evident that dy(v1,v2) <
- di(v1,v2). Denote by () = P(Zu(2) € ).
:‘ We have the following theorem:

THEOREM 1. Suppose
~ (A) There egists a constant ¢ <1 such that

Ed(wfo (:E), Wi (Z/)) < Cd(CE, Y),

forall z,y € X.

 (B) Ed(zo,wr,(20)) < 00 for some To € X.

Then there exists a unique invariant probability measure pi for the Markov
- chain {Zn(x)} such that, for any bounded set K C X there ezists a positive
~ constant vk such that

LS ¢, nz0

o) sup dy(pin, 1) <
‘ zeK 1-c¢c

Remark 1. An explicit expression and upper bound for vx is given by

vk i= sup Ed(z, wr,(x)) < Ed(wo, wiy(20)) + (¢ +1) sup d(z, o) < 0.
ceK e K

Remark 2. The limiting probability measure p is concentrated in the
 sense of a bounded first moment, or to be more precise

[ (oo, 0) dute) < 2022020
X

1—c¢ ’

~ where ¢ and zg are defined by the conditions (A) and (B). [See the inequal-
~ jties in (2) and (6) below]
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Remark 3. Obviously, we may replace the dg-distance in (1) by the dy,-
distance and thus in particular, we have weak convergence with exponential
rate of convergence.

Remark 4. Note that the functions w, are not assumed to be continu-
ous for any s € S. [See the example concerning IFS with place dependent
probabilities given in Section 4.2.] In the case when S is countable, however,
continuity is a consequence of condition (A).

Proof For z € X, define the reversed iterates

~

Zp(z) = wy, owy, 0---owr,_,(z), n>1, Zo(m)sm

The random variables Z,(z) and Z,(z) are identically distributed. We are
first going to prove that there exists a random variable Z, such that Zn (x)
converges almost surely (a.s.) to Z. If we then define 4 by u(-) = P (Z €,
we have the following sequence of inequalities:

@ ) = sup{]ffd(uii Al <1}

= sup{|E(f(Zn(z)) — F(2)]: (]l <1}

<s p{EIf( n(m)) £(2)]: 7l < 1}

< Bd(Zn(z), 2) = E lim d(Zn(z), Zm(2))
En}gr}m 2 d(Zi (@), Zrs1(z))

We shall prove the existence of Z by first proving that {Zn(2)} is as.
a Cauchy sequence, which converges since X is complete, and then prove
that the limit is independent of z.

For N < n < m we have
0 An(e), Bn(@) < 3 M i), Bua (@)
=N
Thus if we prove that
(4) EZd(Z Zita(z)) =0 as N — oo,

=N
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) > d(Zi(e), Zina(a)) 20

i=N

and from (3) and (5) we conclude that {Z,(z)} a.s. forms a Cauchy sequence.

Now, by recursively using condition (A) we obtain

) EZ Zi41(2))

b

= Z E(E(d( Z(SE), ZAz'—l—l(:B))IwIU o 7wIi))

== Z(E(E(d(HJIO (UJI1 ¢---0 wIi—l(m))’

(wh O---owy (m)))lwh’ s ’wli)))

N
Mg S

CEd(wfl 00 wIﬂL—l(m)7w11 O---0owy, (ZC))
=N
N

< Z&Ed (z,wr,(z)) = I—c———Ed(w wr, (2)).

Since using condition (A) and (B),

(7) Ed(wifo (m)) < d(mv .’Eo) + Ed(mO’ Wi, (m0)> + Ed(wfo (:CO)?on (LE))
< Ed(.’ro, wr, (iBo)) + (C -+ 1)d($, :Eo) < 00,

it follows that (4) holds and thus {Z, ()} converges a.s. to some random el-
ement Z (z) for each z € X. It remains to prove that the limit is independent
of z.

By the Chebyshev inequality, and by a recursive use of condition (A),
for any two points z and y in X, and for any € > 0,

Ed(Z4(2), Zn(y))

€

P(d(Z(2), Za(y)) > €) <

~

< ~B(B(d(Zn(2), Zn@))lwr, - -, wr, )

o o
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[
< ;Ed(wh o owr, (@), wr 0 owr,_,(¥))

Cn
£...& —é—d(m,y).

Thus

S Pd(Za(e), Zalt) > ) < Y Silz9) < o0
and it follow: ?soee e.g. [24]) that "
(8) d(Zn(3), Za(y)) = 0 as.

Define Z = Z(zo). From (8), the triangle inequality, and the fact of al-

most sure convergence of Zn(zo) to 7, it follows that for any = € X,

d(Zn(2), Z) 25 0asn — o0 establishing the a.s. independence of z.
Combining (2) and (6) we see that

cn
di (s, ) € 7T CEd(m,wzo(w)), n > 0.

Thus,

sup di (i 1) S v, nz0,

z€EK l1-c
where Vg = SUPgck Ed(z,wr,(z)) is a finite constant, since, by taking
suprema in (7)
9) vi < Bd(zo,wr,(%a)) + (¢ + 1) sup d(z,To) < 00

z€K

It remains to prove that the probability measure is invariant and unique
with this property. To do this, we prove that the Markov chain {Zn(z)} has
the (weak) Feller property which in our terminology means that g : X—R

being a bounded and continuous function implies that the mapping
(10) z — Bg(wr,(2))

is continuous. It is well known that the limiting probability measure of
an ergodic Markov chain with the Feller property is invariant. To be self-

contained, we explain why before proving that our Markov chain has this

property.
Since

(1) Bg(Za(@) = [ Bolwi, ) P(Zn-1(2) € &)
X

the invariance equation

[oan= [ Botwrs)) dut)
X

X
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~ will then follow by taking limits in (11) justified by using the continuity
 in (10).

We shall now prove that our Markov chain has the Feller property. Let
~ {yn} be a sequence in X with lim,_, y, = y. Since, for fixed € > 0, by the
Chebyshev inequality, and from condition (A),

P(d(wr, (yn), wi,(y)) > €) < Ed(wr, (yn), wr, (v)) < cd(Yn,y) 0

as n — oo, we have proved that wy,(y,) converges in probability to wr, (y).
- Thus for any bounded and continuous function g

nli_*lr%o Eg(wr,(yn)) = Eg(wr, (v)),

~and the Feller property is established. Thus 1 is invariant.
i The uniqueness follows since if v is another invariant measure, we obtain
by using Lebesgue’s convergence theorem, that

fg dv = ng(Zl(m))dV(a:) =...= ng(Zn(w)) dv(z)
X X X

—a}[(}[gdu)dvzlgd,u,

for bounded and continuous functions g, and thus p and v coincides (see
~ e.g. [3]). This completes the proof of Theorem 1. O

3. Estimation of distances between IFS generated probability
measures. We will now turn to our main theorem proving that under uni-
- form contractivity and stochastic boundedness assumptions (condition (C)
- and (D) below), we can give upper bounds for d,,-distances between IFS gen-
_ erated probability measures and in particular prove that the limiting prob-
~ ability measure depends “continuously” on the parameters in the system.

f For probability measures v; and vy defined on the same measurable
space, (M, M), let dpy denote the total variation distance defined by

drv(vi,vz) = ASEJI\)/I [v1(A) — v2(4)].

: THEOREM 2. Let F¢ = {X; w,s € S}, withe € [0,t] for some t > 0, be
an indezed family of iterated function systems, and let {IS}, respectively, be
associated i.i.d. controlling sequences. Define for x € X,

Zy(x) = Wie  Owpe o--- owi(z), nx1l, Zi)=uz.
Suppose
(C) There exists a constant 0 < ¢ < 1 such that
Ed(Zi(z), Z1(y)) < cd(z,y), forall z,y € X, and all € € [0,1)].
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(D) Yao = SUPce[o, Ed(zo, I (z0)) < o0, for some zo € X.
(E) There exists a function A: [0,t] — Ry such that,

sup sup d(ws(z),wd(z)) < Ale) fordlee [0,t].
seSzeX

(F) There ezists a function S : [0,] — Ry such that
dry(Pe, Po) < Yoo S(€), forall e € [0,¢],
where P.(-) = P(I§ € -), and where Vg, is the constant defined by condi-
tion (D).
Let u¢ denote the limiting invariant probability distribution for the Mar-
kov chain generated by the IF'S and controlling sequence indexed by € (these
measures exist due to Theorem 1). Then for any € € [0,t], we have

Ae) + 29205 (€) 4 272, 5(€) In S(e)

, S(e) <1
. 1 1
(12)  du(5 B < q A0+ 270 e
—‘T:_C——EQ’ 5(6) >1
: e , 0 A(E)
Remark 5. If S(€) = 0 we interpret (12) as dow(ps, 1) < T

Before we turn to the proof of Theorem 2, we illustrate the theorem with
an example.

Ezample 1. Consider the family of iterated function systems F¢ = {[0, 1],
wi(z) = (1/2 — &)z, wi(z) = (1/2—- €z +1/2 + e}, 0 < e < 1/2, with
P(I§ = i) = 1/2, (ie. independent of €) for 7 = 1,2. Applying the above
theorem, with ¢ = 1/2, A(e) = ¢, and S(e) = 0, shows that duw(ps, 10) < 2¢
and thus p¢ — p® as e — 0 weakly which at first glance may be somewhat
conspicuous since we know that the supports of ¢, for 0 <e <1 /2, are sets
of Cantor type, while ¥ is Lebesgue measure on [0,1].

We now turn to the proof of Theorem 2.

Proof Define p&%(-) := P(Zi(z) € ), for z € X, and let o be the
point defined in condition (D). By the triangle inequality we have that

(13) (1) < du(p, ™) + du (g™, ™) + du (70, 1)
Putting in the assertion of Theorem 1, K = {zo} and applying conditions
(C) and (D) we get
(14) duw(us™, 1) < %—“——Ecn, foralln >0, and €€ [0,

Define, for z € X,

Z¢(z) = wf,g_ °w§3_2 o owjg(a;), nxl, Zi(z)=rz.

1
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Let for each fixed € and n, Pe(n) denote the probability distribution of

the random vector {I§, If, ..., I5_1}. (Pe Y = P)
We have the following inequahtles,

(15) du(ug™, 1*) = sup {1ffd 520 — =) < I fllse < 1}

feBL

= sup {lEf(Zi(wo)) — Ef(Z3(zo))| : 1 fll5L <
fEBL

sup {|Ef(Z5(20)) — BF(Z(@o))] : | fllsz <
feBL

N

feBL
< 2dpy (P, P + Bd(ZE (m0), Z2(x0)).

1}
1}

+ sup {|Ef(Z5(20)) = Bf(Zp(wo))| : fllsr <

1}

; For any fixed ¢ and n we may assume (see [9]) that IS and I are defined
~ on the same probability space with P(I # I 0y = dTV(PE, PO) It can also
~ be assumed that {(I¢,12)} is a sequence of i.i.d. random variables. Thus

n'on

(16) dTV(Pe(n)’POn))<P((I(€)>'-'a n— 1)7&(1-0’ .- n 1))

n—1
=p(Utr#1)) < ZP(I: A1)
i=0 i=0

n-—1

= ZdTV (Pe, Po) € Y2, S(e).

i=0
Studying the second term appearing in (15), we obtain
(1) Bd(Zi(x0), Z2(av) < Bd(wiy_ (Za(@o))why_ (Z2-1(a0)
< Bd(wfe (75 1(z0)),wle_(Z5(20)))
+ Ed(uwle (Z5_1(20)),wio_ (Zn—1(20)))

< sup sup d(w§(z), w(z))
s€SzeX

T+ BBl (Zy(w0)),uly_ (Z9-1(20))|Z5-1(20), 201 (x0))

< A(e) + eBd(Z;,_y(20), Zp—1(%0));

and thus by a recursive use of (17), we see that

(18) Ed(ZE(z0), Z0(20)) < Ale) }: ¢ < A()7
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By inserting (16) and (18) in (15) we obtain that
1
l-c

(19) duy (50, p2™0) < 2175, S(€) + Ale)

i

and thus from (13), (14), and (19) we see that

1
1—¢

2Ye
@) dulut i) < mip (2 4 200,500 ) + (9
In order to give a more explicit expression for the right hand side of (20) we
investigate the function f(z) = az + bc®, © > 0, where a,b > 0, 0 < c < 1.
Suppose that a < b(1 —¢). For z = (1/In¢)In{a/(b(1 — ¢))) > 0, we have

that
aln(a/(b(1 = ¢))) a
= 1) = .
f@) = fa+1) ol
Since f is convex it follows that for the unique integer n such that £ < n <
z + 1 we have that f(n) < f(z).
Thus with a = 2v,,5(¢) and b = 2v,,/(1 — ¢), we see that if S(e) < 1
then

29z = =
in (250 4 3, 5(6)) < D250, 212,S(QInS(e)
n20 1-c¢ Inc

(If S(e) > ¥ we use the trivial bound min,»o((27z, /(1 — ¢))c™ + 2ny,,5(€))

< 27, /(1 - ¢).)
Using tiese estimates in (20) completes the proof of the theorem. (]

4. IFS representations of Markov chains. In this section, we are
going to describe how a Markov chain, {X,} with state space X, may be
represented as an IFS controlled by a sequence of ii.d. random variables.
(We shall call such a representation an IFS representation. )

Our aim is to prepare for Sections 4.1 and 4.2 where we apply the ergodic
theorem for IFS controlled by i.i.d. sequences (developed in Section 2) to
prove ergodic theorems for Markov chains by finding suitable IFS represen-
tations.

We shall start with an example where the state space X is as simple
(non-trivial) as possible.

One purpose of this example is to illustrate the non-uniqueness of an IFS
representation of a given Markov chain.

Ezample 2. Consider a time homogeneous Markov chain {X,} with state
space X = {0,1} and transition matrix

P= (poo pm) .
Pio P11
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To find all IFS representations of this Markov chain, we take the four
possible functions wy(z) = z, wa(z) = 0, wa(z) =1, wa(z) = 1 — z, and let
{I,} be iid. with P(I, = i) = p;, for i = 1,...,4. We obtain the following
system of linear equations:

P+ D2 = Poo
p1+P3 = P11
p1+p2+ps+pa=1
0< D1,P2,P3,P4 <1
- Solving this system for p;, ¢ = 1,...,4, we finally get

Y2l 0 1
p2 | _ Poo Lt -1 7
D3 P11 -1
D4 1 — (poo + p11) 1

max(0, poo + p11 — 1) < t < min(poo, p11).

\ In this example we made a total investigation finding all representing iter-
~ ated function systems. In Section 2 we proved a theorem for iterated function
_ systems based on contraction conditions of the involved functions. Therefore
_ we see that the representation above with parameter ¢ as small as possible is
_ the best representation provided that we want to choose the contractive func-
~ tions (we and wj3 in the above example) with as high probability as possible.
| When the state space is larger however, e.g. R, we can no longer make
_ this type of total investigation for representing iterated function systems.
. Therefore we will be pleased if we can find an algorithm constructing one
“contractive” IFS from a given Markov chain.
If {X,} is a Markov chain on (a subset of) R with transition kernel
_ P(z,A), then we can define a representing IFS with,

ws(z) = inf{y : P(z, (—o0,y]) > s}
and with {I,} being an independent sequence of random variables with
~ values uniformly distributed on (0,1). This representation corresponds to
. the “most contractive” IFS in the above example. Note however that this is
 not a general statement for larger state spaces since the above ccustruction
depends on the natural ordering of R.

The above algorithm for creating a representing IFS can be generalized
if the state space, X, is Borel measurably isomorphic to a Borel subset of
the real line, R, satisfied for instance if X is a Polish space.

In fact (see e.g. [14]), suppose there exists a one-to-one Borel map ¢ :
X — R such that M = ¢(X) is a Borel subset of R and ¢! : M — X is
also Borel measurable. Suppose that 1 : R — X equals ¢~ on M and maps
R\ M on some point zy € X. For each € X define a probability measure on
the Borel o-field B(R) of R by P(z, B) = P(z,¢~*(BN M)), for B € B(R),
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and for each z € X and s € (0,1) let ¢,(z) = inf{y : P(z, (~o0,y]) = s}. If
we for each s € (0,1) let ws = 1 0 g5 then the construction is completed.

To know whether or not there exists a representing IFS with continuous
functions, one sufficient condition is given in Blumenthal and Corson [4].
Their condition is that the state space X is a connected and locally con-
nected compact metric space, the transition kernel P has the (weak) Feller
property, (i.e. the operator T defined by Tf(z) := [y P(z,dy) f(y), for all ,
maps bour:ded and continuous functions to 1tself) and for each ﬁxed z € X,
the support of P(z,-) is all of X. See also [28] for further results.

4.1. Recurrent Markov chains. We shall now as a corollary of Theorem 1
present a proof of ergodicity for Markov chains satisfying the classical Doeblin
“splitting” condition. Although the result is more than fifty years old and
many different proofs exist in the literature, see e.g. [18], the proof given here
is non-standard and may thus be of complementary interest. The proof also
awakes the general open question on how to embed the theory of exponentially
ergodic Markov chains within the theory of iterated function systems.

COROLLARY 1. Suppose {Z,} is a homogeneous Markov chain with Pol-
ish state space X and with a transition kernel P which has the splitting
property:

P™(z,) = pQ(z,) + (1 = B)v(),
for some ng = 1, transition kernel Q and probability measure v, and for ev-
eryz € X, where 0 < § < 1. Then there exists a unique nvariant probability
measure p for {Z,}, such that

ﬁ["/no}

(21) sup sup |P(Zn(z) € A) = u(4)| < 1-3

zeX AeB(X)

where B(X) denotes the class of Borel sets in X, and Z,(z) denotes the
Markov chain with initial distribution concentrated at x € X.

Proof. Itissufficient to prove this theorem for the case ng = 1, since we
can consider subsequences {Znn, }5% o, and if the Markov chain {Znn, fazo
satisfies (21) then for k = 0,1,2,...,n0 — 1 we observe that

sup sup |P(Zpng+k(z) € A) — pn(A4)]

z€X AeB(X)
<sup sup f (P(Zuno(y) € A) = w(A)) PH(z, dy)
z€X AeB(X)

<sup | sup | P(Zan,(y) € A) — p(A)| PH(z, dy) <
2€X y AEB(X) 1-p

and the conclusion of the theorem holds.
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Using the algorithm described in Section 4, let fs,s € (0,1) be a set of
functions representing a Markov chain with transition kernel @ together with
a sequence {1’} of i.i.d. random variables with values in (0, 1). Furthermore,
let gs,5 € (0,1) be a set of functions representing a Markov chain with
transition kernel (measure) v (together with {I;,}). Let {I;} be another
(independent) such i.i.d. sequence.

Then {I,,}, with I, = (I},, I}]) forms an independent sequence uniformly
distributed in (0,1) x (0,1). If we define w,; = fs for 0 < ¢ < B and g
otherwise, we obtain

wr, = x(Iy < B)fr, +x(I; > Bar,,
where x denotes the indicator function.
Let d denote the discrete metric. The space (X,d) then constitutes a
complete metric space.
Since gs,5 € (0,1) will all be constant maps, it follows that

Ed(wfo (:C), Wi, (y))
< BEd(fry (), f1;(y)) + (1 — B)Ed(gr; (%), 915 (v)) < Bd(z,y)-
Thus {(X,d), ws ¢, (s,t) € (0,1)x(0,1)} together with {I,} forms a contrac-
tive IFS representing the transition kernel P and Theorem 1 can be used.

In fact, if C = {f : X — R; f = x for some indicator function x} then from
Theorem 1, using v < 1,

sup [P(Zn(z) € A) — u(A)]

AeB(X)
=§1ég{|)[fdui~!fdﬂ.}

<suw{|[rauz = [ :171s <1} < —

and the above inequality holds uniformly for all € X. This completes the
proof of the theorem. |

4.2. Tterated function systems with place dependent probabilities. If we
have an IFS with S = {1,..., N}, for some N > 1, and to each i € S we
have associated probability weights p; : X — [0,1], pi(x) > 0, ¢ € S and
Zf;lpi(a}) = 1, for each z € X, we call the set {X; w;, pi(z), i € S} an
IFS with place dependent probabilities.

Specify a point € X. Using this system we can construct a Markov
chain {Z,(z)} in the following way: Put Zo(z) := =, and let Z.(z) =
wi(Z,_1(z)) with probability p;(Z,-1(z)), for each n > 1. Some papers
where this model is considered are [2], [13], and [16].
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For any IFS with place dependent probabilities, there is an IFS with
place independent probability weights (i.e. an IFS controlled by an i.i.d.
sequence) generating the same Markov chain. (We call iterated function
systems generating the same Markov chain equivalent.)

We illustrate this with the following example.

Ezample 3. Consider the IFS with place dependent probabilities {X;
wi(x), ps(z), ¢ € {1,2}}, with w;, i = 1,2, being continuous.
The IFS {X; fs, s € (0,1)} with

_Jwi(z) ifpi(z)=2s,z€X,
fol@) = {wg (z) otherwise,
controlled by a sequence of independent random variables, uniformly dis-
tributed in (0, 1), is equivalent with the above system. It is more well be-
haved in the sense that it has place independent probabilities but the loss
is that it generally has a denumerable set of discontinuous functions.

As corollaries of Theorem 1 we obtain:

COROLLARY 2. Let wy; and ws be bounded contractions i.e. functions
satisfying the Lipschitz conditions d(w;(z), w;(y)) < cd(z,y), ¢ < 1, for all
T,y € X, and 1= 1,2, with b := sup, ,c x d(w1(z),wa(y)) < co.

Suppose, for somer >1 and all z,y € X,

P1(e) - (W) < =z, ).

Then there exists a unique invariant probability measure p for the Markov
chain {Z,(z)} such that, for any bounded set K C X there ezists a positive
constant vy such that

1—-¢\"
Sup o (1, 1) < 7<C+ )
zeK T

where pf () == P(Z,(z) € ).

Proof. Take the representing IFS {X; fs, s € (0,1)} constructed as
in Example 3 above. We are going to use Theorem 1. We thus have to check
condition (A). (Condition (B) trivially holds.)

Now, for z,y € X we may suppose that p;(z) < p1(y) and thus

Ed(f1,(2), f1,(y)) < pr(z)d(wi(z), w1(y))
+ (P1(y) — pr(2))d(w2(z), wi(y))
+ (1= p1(y))d(wa(z), w2(y))

<d(z,y)(epi(z) + %%—Eb +c(1-p1(y)))
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< d(a)(clpr(e) +1-ma) + =)

< <c+ ! - c)d(w,y).

The conditions in Theorem 1 are satisfied and thus there exists a probability
measure p such that, for any bounded set K C X there exists a positive
constant « such that

n
sup dw(uﬁ,u)<7<c+ ! C) O
z€K r

COROLLARY 3. Consider the functions wi(z) = cx + ¢1 and we(z) =
cT+cy, with ¢ < 1, on a compact subset K of R (together with the Euclidean
metric).

Suppose, the probability weights are affine i.e. pi(z) = p1 + c3z, for
some constants py and c3. Denote by L := ¢+ |cs||c1 — ¢2]. If L < 1 then
there exists a unique tnvariant probability measure y for the Markov chain
{Z.(z)} and a positive constant y such that

sup dy, (g, p) < yL"
zEK

where pZ(-) = P(Z,(z) € ).

Proof Take the representing IFS {X; fs, s € (0,1)} constructed as
in Example 3 above. We are going to use Theorem 1. We thus have to check
condition (A). (Condition (B) trivially holds.)

Now, (for p1(z) < p1(y))

E|f1,(z) = fro()] < pr(@)elz — y| + (p1(y) — pr(@))(cz + c2 — (cy + 1))
+ (1= p1(y))elz -y
<z —yl(1 - (p(y) — pa(2)))
+ (p1(y) — p1(2))(clz — y[ + |er — ca])
= clz = y| + (p1(y) — p1(z))lc1 — c2
< |z = yl(e+lesller — cal) = Llz —y.

The conditions in Theorem 1 are satisfied and thus the conclusion fol-
lows. |
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