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Abstract. We calculate the almost sure dimension for a general class of random affine code
tree fractals in Rd . The result is based on a probabilistic version of the Falconer–Sloan
condition C(s) introduced in Falconer and Sloan [Continuity of subadditive pressure for
self-affine sets. Real Anal. Exchange 34 (2009), 413–427]. We verify that, in general,
systems having a small number of maps do not satisfy condition C(s). However, there
exists a natural number n such that for typical systems the family of all iterates up to level
n satisfies condition C(s).

1. Introduction
In the investigation of dimensional properties of self-similar and self-conformal sets an
important tool is the thermodynamic formalism. There is a natural way to attach a pressure
function to a self-similar or self-conformal iterated function system and, for example, the
Hausdorff dimension and multifractal spectrum can be calculated using the pressure. Since
the pressure is defined by an additive potential function, there are many tools available for
the purpose of analysing it.

In his famous theorem from 1988, Falconer [5] proved that the dimension of any
typical self-affine set is equal to the unique zero of the pressure function under the
assumption that the norms of the linear parts are less than 1/3. Later, Solomyak [20]
verified that 1/3 can be replaced by 1/2, which is the best possible bound; see [18].
The potential is defined by means of the singular value functions of the iterates of the
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linear parts and, contrary to the self-conformal setting, the potential φ is not additive.
In the self-affine case φ is subadditive, guaranteeing the existence of the pressure and
its unique zero. However, φ is not superadditive—not even in the weak sense that
φ(n + m)≥ φ(n)+ φ(m)− C for some constant C . In many cases this causes severe
problems; see for example [4, 8, 10–13, 15].

There are various ways to introduce randomness to the self-affine setting. In [14],
Jordan et al considered a fixed affine iterated function system with a small random
perturbation in translations at each step of the construction. When investigating random
subsets of self-affine attractors, Falconer and Miao [9] selected at each step of the
construction a random subfamily of the original function system independently. In
both [14] and [9] there is total independence in both space, that is, between different
nodes at a fixed construction level, and scale, meaning that once a node is chosen its
descendants are chosen independently of the previous history. Such systems are called
statistically self-affine, since the law controlling the construction is the same at every
node. However, typical realizations are not self-affine. Inspired by the random V -variable
fractals introduced by Barnsley et al in [1], a new class of random self-affine code tree
fractals was proposed in [13]. In this class typical realizations mimic the self-affinity of
deterministic iterated function systems. Moreover, the probability distributions have a
certain independence only in scale and, therefore, typical realizations are locally random
but globally nearly homogeneous. In particular, the attractor is a finite union of self-
affine copies of sets with arbitrarily small diameter. Thus, typical realizations are close to
deterministic self-affine sets. In a code tree fractal the linear parts of the iterated function
system may depend on the construction step. For example, attractors of graph directed
Markov systems generated by affine maps [7], or more generally sub-self-affine sets [6],
are code tree fractals.

In this paper we generalize the dimension results in [13] concerning random affine
code tree fractals. In [13], the existence of the pressure was proven under quite
general conditions (see Theorem 3.1). However, when verifying the relation between the
dimension and the zero of the pressure several additional assumptions were needed—
the most restrictive one being that d = 2. The main cause for the extra assumptions
was the non-superadditivity of the potential defining the pressure. In the self-affine
setting various approaches have been introduced to overcome the problems caused by
the non-superadditivity of the potential. These include the cone condition [4, 8, 12, 15],
irreducibility [11] and non-existence of parallelly mapped vectors [13]. In this paper we
focus on a general condition (see Definition 2.1) introduced recently by Falconer and Sloan
[10]. Under the Falconer–Sloan condition (for brevity, F–S condition), higher dimensional
spaces can also be considered; see Theorem 3.2. The only additional assumption compared
to Theorem 3.1 is that some iterates of the system satisfy the F–S condition with positive
probability.

The F–S condition is related to a family of linear maps on Rd . The condition is open in
the sense that the set of families of linear maps satisfying it is open in any natural topology.
In this paper we also address a problem proposed by Falconer concerning the genericity
of the F–S condition. In R2, the F–S condition is easy to check but in higher dimensional
spaces the question is more delicate. It turns out that a family of linear maps {Si }

k
i=1 on Rd
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does not satisfy the F–S condition unless k is sufficiently large (see Remark 2.2(b))—the
minimal value of k being much larger than d. However, in Corollary 2.7 we prove that there
exists a natural number n depending only on d such that for any generic family {Si }

k
i=1

the family {Si1 ◦ · · · ◦ Sil | i j ∈ {1, . . . , k} for j = 1, . . . , l and 1≤ l ≤ n} satisfies the
F–S condition. The set is generic in both the topological sense, that is, it is open and dense,
and in the measure theoretic sense meaning that it has full Lebesgue measure. Theorem 2.6
provides an explicit criterion guaranteeing that a family {Si }

k
i=1 belongs to the generic set.

In Remark 2.8, we explain why the complement of this generic set is non-empty, that is,
why Corollary 2.7 is not valid for all families.

In many problems related to self-affine iterated function systems it is sufficient to study
iterates of the maps. This is also the case in Theorem 3.2. The applicability of the F–S
condition is based on the fact that the upper bound n for the number of iterates needed
in order that the family {Si1 ◦ · · · ◦ Sil | i j ∈ {1, . . . , k} for j = 1, . . . , l and 1≤ l ≤ n}
satisfies the F–S condition is a constant depending only on the dimension of the ambient
space. In particular, Corollary 2.7 implies that typical systems satisfy the assumptions of
Theorem 3.2.

The paper is organized as follows. In §2, we recall the Falconer–Sloan setting and prove
that the F–S condition is valid for a family of iterates of a generic family (Corollary 2.7).
Moreover, we give an explicit criterion implying that a family belongs to this generic set
(Theorem 2.6). In §3, we recall the notation from [13] concerning random affine code tree
fractals and prove that the dimension of a typical affine code tree fractal is given by the
zero of the pressure (Theorem 3.2).

2. Falconer–Sloan condition C(s)

In this section we consider the genericity of the F–S condition introduced in [10] for
the purpose of overcoming problems caused by the fact that in the self-affine setting the
natural potential defining the pressure (for definition see (3.1)) is not supermultiplicative.
Intuitively, the reason behind the applicability of the F–S condition is as follows: letting
A and B be d × d matrices, the norm ‖AB‖ may be much smaller than ‖A‖ · ‖B‖. This
happens if the vector v which determines the norm of B is mapped by B onto an eigenspace
of A which corresponds to some small eigenvalue of A. In the expression of the pressure
(for s = 1), there is a sum of terms of the form ‖AB‖. The F–S condition guarantees that
‖AB‖ is not much less than ‖A‖ · ‖B‖ simultaneously for all pairs (A, B).

We begin by recalling the notion from [10]. For all m ∈ N with 0≤ m ≤ d, we denote
by 3m the mth exterior power of Rd with the convention 30

= R. An m-vector v ∈3m

is decomposable if it can be written as v= v1 ∧ · · · ∧ vm for some v1, . . . , vm ∈ Rd . Let
3m

0 be the set of decomposable m-vectors. If {e1, . . . , ed} is a basis of Rd , then {ei1 ∧

· · · ∧ eim | 1≤ i1 < · · ·< im ≤ d} is a basis of 3m . Supposing that {e1, . . . , ed} is an
orthonormal basis of Rd , the Hodge star operator ∗ :3m

→3d−m is defined as the linear
map satisfying

∗(ei1 ∧ · · · ∧ eim )= e j1 ∧ · · · ∧ e jd−m

for all 1≤ i1 < · · ·< im ≤ d , where 1≤ j1 < · · ·< jd−m ≤ d satisfy {i1, . . . , im} ∪

{ j1, . . . , jd−m} = {1, . . . , d}. Let ω = e1 ∧ · · · ∧ ed be the normalized volume form

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 30 Jun 2016 IP address: 130.238.58.123

Falconer–Sloan condition 1519

on Rd . Recall that 3d is one dimensional. We define the inner product 〈· | ·〉 on 3m

by the (implicit) formula
〈v | w〉ω = v ∧ ∗w.

Then the inner product is independent of the choice of the orthonormal basis {e1, . . . , ed}

and, moreover, {ei1 ∧ · · · ∧ eim | 1≤ i1 < · · ·< im ≤ d} becomes an orthonormal basis
of 3m . Any linear map S : Rd

→ Rd induces a linear map S :3m
→3m such that

S(v1 ∧ · · · ∧ vm)= Sv1 ∧ · · · ∧ Svm for all v1 ∧ · · · ∧ vm ∈3
m
0 .

Now we are ready to recall the definition of the condition C(s) from [10]—first for
integer parameters and after that for non-integral parameters s.

Definition 2.1. Consider a family {Si : Rd
→ Rd

}i∈I consisting of linear maps. Let m ∈ N
with 0≤ m ≤ d. The family {Si }i∈I satisfies condition C(m) if for all 0 6= v, w ∈3m

0 there
is i ∈ I such that 〈Si v | w〉 6= 0. Let 0< s < d be non-integral and let m be the integer
part of s. The family {Si }i∈I satisfies condition C(s) if for all 0 6= v, w ∈3m

0 and 0 6=
v ∧ v, w ∧ w ∈3m+1

0 there is i ∈ I such that 〈Si v | w〉 6= 0 and 〈Si (v ∧ v) | w ∧ w〉 6= 0.

Remark 2.2. (a) The family {Si }i∈I satisfies condition C(m) if and only if for all 0 6=
v ∈3m

0 the set {Si v | i ∈ I } spans 3m . Here the if part is clear, whereas the only if
part involves a slight subtlety. Indeed, Definition 2.1 deals with decomposable vectors
and 3m

0 is not a vector space when m /∈ {0, 1, d − 1, d}. For the only if part, assume
that there exists 0 6= v ∈3m

0 such that the set {Si v | i ∈ I } does not span 3m . Letting
k be the maximal number of linearly independent vectors in {Si v | i ∈ I }, we have k <(d

m

)
= dim3m . Denote these vectors by w1, . . . , wk and consider i = 1, . . . , k. Now

u= u1 ∧ · · · ∧ um ∈3
m
0 is perpendicular to wi

= wi
1 ∧ · · · ∧ w

i
m if and only if the vectors

Pi u1, . . . , Pi um are linearly dependent. Here Pi is the orthogonal projection onto the
m-dimensional linear subspace spanned by wi

1, . . . , w
i
m . Using the notation B for the

m × m matrix whose columns are the vectors Pi u1, . . . , Pi um expressed in the basis
{wi

1, . . . , w
i
m}, we observe that the vectors Pi u1, . . . , Pi um are linearly dependent if and

only if the determinant of B is zero. This implies the existence of a polynomial map
Q : Rdm

→ R such that 〈u | wi
〉 = 0 if and only if Q(u1, . . . , um)= 0. This, in turn,

gives that for all i = 1, . . . , k the set

Mi = {(u1, . . . , um) ∈ Rdm
| 〈u | wi

〉 = 0}

has codimension one and, clearly, 0 ∈ Mi . Note that u= u1 ∧ · · · ∧ um = 0 if and only
if the vectors u1, . . . , um are linearly dependent, that is, all the m × m minors are zero
for the d × m matrix whose columns are the vectors u1, . . . , um . Since there are

(d
m

)
such minors and k <

(d
m

)
, there exists u= (u1, . . . , um) ∈

⋂k
i=1 Mi such that u 6= 0. In

particular, 〈u | wi
〉 = 0 for all i = 1, . . . , k. Therefore, condition C(m) is not satisfied.

(b) From (a), we see that there must be at least
(d

m

)
maps in the family {Si }i∈I for

condition C(m) to be satisfied. Note that when d is large and 1< m < d − 1 the number(d
m

)
is much larger than d.

(c) If m < s < m + 1 and {Si }i∈I satisfies condition C(s), then it satisfies condition C(t)
for all m ≤ t ≤ m + 1. In [10, Lemma 2.6], it is shown that the irreducibility condition
used by Feng in [11] is (essentially) equivalent to the condition C(1).
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We proceed by introducing the notation needed for studying the validity of the F–S
condition. Let F, G : Rd

→ Rd be linear mappings with d different real eigenvalues
{λ1, . . . , λd} and {t1, . . . , td}, respectively. Let {ê1, . . . , êd} and {ẽ1, . . . , ẽd} be the
corresponding normalized eigenvectors. We assume that for all k = 1, . . . , d,

λi1 · · · λik 6= λ j1 · · · λ jk and ti1 · · · tik 6= t j1 · · · t jk for all pairs

(i1, . . . , ik) 6= ( j1, . . . , jk). (2.1)

Let A = A(F, G) : Rd
→ Rd be the linear map satisfying ẽi = A−1ei , that is, ei = Aẽi for

all 1≤ i ≤ d. Let Sk = Sk(F, G) be the family of compositions of F and G up to level k,
that is,

Sk = {T1 ◦ · · · ◦ T j | 1≤ j ≤ k and Ti ∈ {F, G} ∀1≤ i ≤ j}. (2.2)

Using the eigenbasis {ê1, . . . , êd} of F as the basis of A, we view A as a d × d matrix.
Denote by Md the class of d × d matrices whose minors are all non-zero.

With the above notation, we prove two lemmas.

LEMMA 2.3. Let 1≤ m ≤ d and A ∈Md be as above. For all 1≤ i1 < · · ·< im ≤ d,
write

êi1 ∧ · · · ∧ êim =

∑
1≤ j1<···< jm≤d

c j1··· jm
i1···im

ẽ j1 ∧ · · · ∧ ẽ jm . (2.3)

Then c j1··· jm
i1···im

6= 0 for all (i1, . . . , im) and ( j1, . . . , jm).

Proof. We denote the set of all permutations of ( j1, . . . , jm) by Per( j1, . . . , jm) and write
sgn(σ ) for the sign of a permutation σ ∈ Per( j1, . . . , jm). Since êil =

∑d
j=1 A j il ẽ j for all

1≤ l ≤ m and the wedge product is antisymmetric and multilinear, we have

êi1 ∧ · · · ∧ êim =

d∑
j1=1

· · ·

d∑
jm=1

A j1i1 · · · A jm im ẽ j1 ∧ · · · ∧ ẽ jm

=

∑
1≤ j1<···< jm≤d

( ∑
σ∈Per( j1,..., jm )

sgn(σ )Aσ1i1 · · · Aσm im

)
ẽ j1 ∧ · · · ∧ ẽ jm

= c j1··· jm
i1···im

ẽ j1 ∧ · · · ∧ ẽ jm .

Thus, the coefficient c j1··· jm
i1···im

is the minor of A determined by the columns i1, . . . , im and

rows j1, . . . , jm and, by the definition of Md , we have c j1··· jm
i1···im

6= 0. �

For all 1≤ m ≤ d , define

B1 = {êi1 ∧ · · · ∧ êim | 1≤ i1 < · · ·< im ≤ d}

and
B2 = {ẽ j1 ∧ · · · ∧ ẽ jm | 1≤ j1 < · · ·< jm ≤ d}.

Then B1 and B2 are bases of 3m . Furthermore, the elements of B1 and B2 are
the eigenvectors of F :3m

→3m and G :3m
→3m with eigenvalues λi1 · · · λim and

t j1 · · · t jm , respectively.
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Remark 2.4. Let a1, . . . , ad ∈ R \ {0} with ai 6= a j for i 6= j and let v = (v1, . . . , vd) ∈

Rd with vi 6= 0 for all i = 1, . . . , d . Denoting by (a j )
i the i th power of a j , it follows

from the Vandermonde determinant formula that the vectors {((a1)
iv1, . . . , (ad)

ivd) | i =
k, . . . , k + d − 1} span Rd for all k ∈ N. By induction, it is easy to see that the vectors

{vi j = ((a1)
i j v1, . . . , (ad)

i j vd) | j = 1, . . . , d and i1 < · · ·< id}

span Rd . Indeed, the case d = 1 is obvious. Assuming that the claim is true for d , we
show that the vectors {vi1 , . . . , vid+1} span Rd+1. Suppose to the contrary that this is
not the case, that is, there is j such that vi j =

∑
k 6= j αkv

ik . For all k = 1, . . . , d + 1, we
denote by5k : Rd+1

→ Rd the projection which omits the kth coordinate. Fix l 6= j . Now
the induction hypothesis implies that5 jv

i j =
∑

k 6= j bk5 jv
ik and5lv

i j =
∑

k 6=l ck5lv
ik ,

where the coefficients bk and ck are unique. Since al 6= a j , we have bk 6= ck for some
k 6= j . On the other hand, 5 jv

i j =
∑

k 6= j αk5 jv
ik and 5lv

i j =
∑

k 6=l αk5lv
ik and,

therefore, αk = bk = ck for all k 6= j , which is a contradiction.

LEMMA 2.5. Let 0 6= v ∈3m and n =
(d

m

)
. Then there are at most n(n − 1) numbers i ∈ N

with the property that at least one coordinate of F i v with respect to the basis B2 is equal
to zero.

Proof. Let v= (v1, . . . , vn) be the coordinates of v with respect to the basis B1 and
let k be the number of non-zero coordinates. We denote by Vv the k-dimensional plane
spanned by those basis vectors in B1 that correspond to the non-zero coordinates of v.
Let γ1, . . . , γn be the eigenvalues of F :3m

→3m . Observe that for the i th iterate
F i of F we have F i v= (γ i

1v1, . . . , γ
i
nvn). Combining (2.1) with Remark 2.4 implies

that the set {F i1v, . . . , F ik v} spans Vv for all natural numbers i1 < i2 < · · ·< ik . For all
j = 1, . . . , n, let

W j = {w ∈3m
| w= (w1, . . . , wn) with respect to B2 and w j = 0}.

Applying Lemma 2.3 gives for all j = 1, . . . , n and 1≤ i1 < · · ·< im ≤ d that êi1 ∧ · · · ∧

êim /∈W j . Thus, the dimension of Vv ∩W j is strictly less than k. We conclude that for all
j = 1, . . . , n, there are at most k − 1 indices i such that F i v ∈W j and, therefore, there
are at most n(k − 1) indices i such that F i v ∈W j for some j = 1, . . . , n. Since this is
true for all 1≤ k ≤ n, the claim follows. �

Now we are ready to prove our main theorem in this section. For this purpose, set
n0 =max0≤m≤d

(d
m

)
. After proving Corollary 2.7, we discuss the criterion which is based

on the following theorem and gives a sufficient condition for the validity of the F–S
condition (see Remark 2.8).

THEOREM 2.6. Let F and G be as in (2.1) and assume that A = A(F, G) ∈Md . Then
the family S2n2

0
defined in (2.2) satisfies the condition C(s) for all 0≤ s ≤ d.

Proof. By Remark 2.2(c), it is enough to prove that the family S2n2
0

satisfies the condition

C(s) for non-integral s. Letting m be the integer part of s, set n1 =
(d

m

)
and n2 =

( d
m+1

)
and

define M = n1(n1 − 1)+ n2(n2 − 1)+ 1 and N = n1 + n2 − 1. Let 0 6= v, w ∈3m and
0 6= u, z ∈3m+1. By applying Lemma 2.5 to the iterates F i v and F i u, where 1≤ i ≤ M ,
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we deduce that there exists 1≤ i0 ≤ M such that all coordinates of the iterates F i0v and
F i0u with respect to the basis B2 are non-zero. Furthermore, from Remark 2.4, we see
that for all j1 < · · ·< jn1 the vectors G j1(F i0v), . . . , G jn1 (F i0v) span 3m . Hence, there
are at least N − n1 + 1 indices j = 1, . . . , N such that the points G j (F i0v) do not belong
to the orthogonal complement w⊥ of w. A similar argument implies that among these
N − n1 + 1 indices there exists j0 such that G j0(F i0u) /∈ z⊥ and, therefore,

〈G j0 F i0v | w〉 6= 0 and 〈G j0 F i0u | z〉 6= 0,

implying that SM+N satisfies C(s). Since M + N ≤ 2n2
0, this completes the proof of the

claim. �

Let k ∈ N. We identify the space of families F = {Si : Rd
→ Rd

}
k
i=1 of linear maps

with Rd2k . For F ∈ Rd2k , define

Sl(F)= {Si1 ◦ · · · ◦ Si j | 1≤ j ≤ l and Sim ∈ F ∀1≤ m ≤ j}.

With this notation, we have the following consequence of Theorem 2.6.

COROLLARY 2.7. Letting k ≥ 2 be a natural number, the set

C = {F ∈ Rd2k
| S2n2

0
(F) satisfies C(s) ∀0≤ s ≤ d}

is open, dense and has full Lebesgue measure. More precisely, Rd2k
\ C is contained in a

finite union of (d2k − 1)-dimensional algebraic varieties.

Proof. We start with an easy observation: assuming that F ⊂ G are families of linear
maps on Rd and F satisfies condition C(s), then G satisfies it too. Thus, it is enough to
prove the claim in the case k = 2. The set of d × d matrices with a fixed non-zero minor
is a (d2

− 1)-dimensional algebraic variety. Since the number of minors is finite, the set
Rd2
\Md can be represented as a finite union of (d2

− 1)-dimensional algebraic varieties,
implying that Md ⊂ Rd2

is open, dense and has full Lebesgue measure. Moreover, note
that the set of pairs (F, G) of linear maps having d real eigenvalues and not satisfying (2.1)
is a finite union of (2d2

− 1)-dimensional algebraic varieties. Thus, the set of pairs (F, G)
satisfying the assumptions of Theorem 2.6 is open and has positive Lebesgue measure.
For the purpose of verifying that C is dense and has full Lebesgue measure, we need to
extend our argument to the case where F and G are allowed to have complex eigenvalues
satisfying (2.1).

Recall that if λ= reiθ is a complex eigenvalue of F , also λ= re−iθ is an eigenvalue of
F and there is a two-dimensional invariant subspace V ⊂ Rd where F acts as the rotation
by angle θ composed with scaling by r . Let e1, e2 ∈ Rd be such that V is spanned by e1

and e2 and let e3 be an eigenvector of F corresponding to a real eigenvalue t . Then e3 ∧ e1

and e3 ∧ e2 span an eigenspace of F on 32 corresponding to the eigenvalue tλ. If ρ is
another complex eigenvalue of F and e4 and e5 span the corresponding eigenspace, then
e1 ∧ e2 and e4 ∧ e5 are eigenvectors of F on32 with eigenvalues λλ and ρρ, respectively.
The four-dimensional subspace spanned by {e1 ∧ e4, e1 ∧ e5, e2 ∧ e4, e2 ∧ e5} is divided
into two invariant two-dimensional subspaces corresponding to the complex eigenvalues
λρ and λρ. By (2.1), the numbers λλ, ρρ, λρ and λρ are different. In this way we find a
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basis of 3m consisting of eigenvectors of F . Since the Vandermonde determinant formula
applies also for complex entries, Theorem 2.6 is valid for an open dense set of pairs of
linear maps (F, G) having full Lebesgue measure. This completes the proof. �

Remark 2.8. (a) Let F = {Ti : Rd
→ Rd

}
m
i=1 be an iterated function system consisting of

affine mappings Ti (x)= Si (x)+ ai . When considering the validity of the F–S condition,
the translation parts ai play no role. From Theorem 2.6 and Corollary 2.7, we conclude that
if there are i 6= j such that the eigenvalues of Si and S j satisfy (2.1) and the eigenvectors
of Si are mapped to those of S j by some A ∈Md , then S2n2

0
(F) satisfies the condition

C(s) for all 0≤ s ≤ d.
(b) Let F be as in remark (a). If F is not irreducible, that is, if there exists a

non-trivial proper subspace V ⊂ Rd satisfying Si (V )⊂ V for all i = 1, . . . , m, then by
Remark 2.2(a) the family SN (F) does not satisfy the condition C(s) for any 0< s < d
and for any N ∈ N.

3. Random affine code tree fractals
In this section we consider the Falconer–Sloan setting for a class of random affine code tree
fractals introduced in [13], which are locally random but globally nearly homogeneous. It
turns out that the earlier results in [13] can be improved under a probabilistic version of
the condition C(s). We begin by recalling the notation from [13].

Let F = {Fλ = { f λ1 , . . . , f λMλ
} | λ ∈3} be a family of iterated function systems on Rd .

Here the index set 3 is a topological space. Assume that for all i = 1, . . . , Mλ the maps
f λi : R

d
→ Rd are affine, that is, f λi (x)= T λi (x)+ aλi , where T λi is a non-singular linear

mapping and aλi ∈ R
d . We consider the case where the norms and the numbers of the maps

are uniformly bounded, meaning that

sup
λ∈3,i=1,...,Mλ

‖T λi ‖< 1, sup
λ∈3,i=1,...,Mλ

|aλi |<∞ and M = sup
λ∈3

Mλ <∞.

Identifying Fλ with an element of R(d2
+d)Mλ gives F ⊂

⋃M
i=1 R(d

2
+d)i , where the union

is disjoint. We equip
⋃M

i=1 R(d
2
+d)i with the natural topology and assume that λ 7→ Fλ is

a Borel map. Similarly, the linear parts T λi are embedded in Rd2 Mλ .
We continue by introducing the concept of a code tree, which is a modification of the

standard tree construction of the attractor of an iterated function system. Indeed, instead of
using the same family of maps at each construction step, different families with different
numbers of maps are allowed in a code tree. Setting I = {1, . . . , M}, the length of a word
τ ∈ I k is |τ | = k. Consider a function ω :

⋃
∞

k=0 I k
→3, where I 0

= {∅}. We associate
to ω a natural tree rooted at ∅ as follows: let 6ω∗ ⊂

⋃
∞

k=0 I k be the unique set satisfying
the following conditions:
• ∅ ∈6ω∗ ;
• if i1 · · · ik ∈6

ω
∗ and ω(i1 · · · ik)= λ, then i1 · · · ikl ∈6ω∗ if and only if l ≤ Mλ;

• if i1 · · · ik /∈6
ω
∗ , then for all l we have i1 · · · ikl /∈6ω∗ .

The function ω restricted to 6ω∗ is called an F-valued code tree and the set of all F-
valued code trees is denoted by �. Note that in a code tree the vertex i1 · · · ik may be
identified with the function system Fω(i1···ik ) and, moreover, the edge connecting i1 · · · ik
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to i1 · · · ikl may be identified with the map f ω(i1···ik )
l . A sub code tree of a code tree ω is

the restriction of ω to a subset B ⊂6ω∗ , where B is rooted at some vertex i1 · · · ik ∈6
ω
∗

and B contains all descendants of i1 · · · ik which belong to 6ω∗ . We endow � with the
topology generated by the sets{

ω ∈�

∣∣∣∣6ω∗ ∩ k⋃
j=0

I j
= J and ω(i) ∈Ui ∀i ∈ J

}
,

where k ∈ N, Ui ⊂3 is open for all i ∈ J and J ⊂
⋃k

j=0 I j is a tree rooted at ∅ and having
all leaves in I k . With this topology, functions ω1 and ω2 are ‘close’ to each other if their
supports 6ω1

∗ and 6ω2
∗ agree up to the level k and the values ω1(i) and ω2(i) are ‘close’ to

each other for all words i with |i| ≤ k.
We equip IN with the product topology. For each code tree ω ∈�, define

6ω = {i= i1i2 · · · ∈ IN | i1 · · · in ∈6
ω
∗ ∀n ∈ N}.

Then 6ω is compact. For all k ∈ N and i ∈6ω ∪
⋃
∞

j=k I j , let ik = i1 · · · ik be the
initial word of i with length k. We use the following type of natural abbreviations for
compositions:

f ωik = f ω(∅)i1
◦ f ω(i1)

i2
◦ · · · ◦ f ω(i1···ik−1)

ik
and T ωik = T ω(∅)i1

T ω(i1)
i2
· · · T ω(i1···ik−1)

ik
.

Observe that, by the definition of the topology on �, the maps ω 7→ f ωik and ω 7→ T ωik are
Borel measurable. The code tree fractal corresponding to ω ∈� is Aω = {Zω(i) | i ∈6ω},
where Zω(i)= limk→∞ f ωik (0). Note that the attractor Aω is well defined since the maps
f λi are uniformly contracting and the translation vectors aλi belong to a bounded set. For
k ∈ N, ω ∈� and i ∈6ω, the cylinder of length k determined by i is

[ik] = {j ∈6ω | jl = il ∀l = 1, . . . , k}.

Next we introduce the concept of a neck level, which is an essential feature of our
model. The existence of neck levels guarantees that in our setting the attractor is globally
nearly homogeneous. In fact, if Nm ∈ N is a neck level of ω, then all the sub code trees of
ω rooted at vertices i ∈6ω∗ with |i| = Nm are identical. In particular, the attractor Aω is a
finite union of affine copies of the attractor of the common sub code tree. Neck levels play
an important role in the study of V -variable fractals; see for example [1–3].

A neck list N = (Nm)m∈N is an increasing sequence of natural numbers. Let �̃ be the
set of (ω, N ) ∈�× NN satisfying:
• Nm < Nm+1 for all m ∈ N; and
• if iNm jl , i′Nm

∈6ω∗ , then i′Nm
jl ∈6

ω
∗ and ω(iNm jl)= ω(i′Nm

jl).
The first condition means that N is a neck list and the second condition guarantees that the
sub code trees rooted at a certain neck level are identical. A shift 4 : �̃→ �̃ is defined by
means of neck levels, that is, 4(ω, N )= (ω̂, N̂ ), where N̂m = Nm+1 − N1 and ω̂(jl)=

ω(iN1 jl) for all m, l ∈ N. We denote the elements of �̃ by ω̃ and, for all i ∈ N, we write
Ni (ω̃)= Ni for the projection of ω̃ = (ω, N ) onto the i th coordinate of N . Moreover, on
�̃ we use the topology generated by the cylinders

[(ω, N )m] = {(ω̂, N̂ ) ∈ �̃ | N̂i = Ni ∀i ≤ m and ω̂(τ )= ω(τ) ∀τ with |τ |< Nm}.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 30 Jun 2016 IP address: 130.238.58.123

Falconer–Sloan condition 1525

For any function φ of ω, we use the notation φ(ω̃) to view φ as a function of ω̃. Finally,
for all n < m ∈ N ∪ {0}, let

6ω̃∗ (n, m)= {iNn+1 · · · iNm | iNn iNn+1 · · · iNm ∈6
ω̃
∗ },

where N0 = 0.
For the purpose of defining the pressure, we proceed by recalling the notation from [5].

Let T : Rd
→ Rd be a non-singular linear mapping and let

0< σd ≤ σd−1 ≤ · · · ≤ σ2 ≤ σ1 = ‖T ‖

be the singular values of T , that is, the lengths of the semi-axes of the ellipsoid T (B(0, 1)),
where B(x, ρ)⊂ Rd is the closed ball with radius ρ > 0 centred at x ∈ Rd . We define the
singular value function by

8s(T )=

{
σ1σ2 · · · σm−1σ

s−m+1
m if 0≤ s ≤ d,

σ1σ2 · · · σd−1σ
s−d+1
d if s > d,

where m is the integer such that m − 1≤ s < m. The singular value function is
submultiplicative, that is,

8s(T U )≤8s(T )8s(U )

for all linear maps T,U : Rd
→ Rd . For further properties of the singular value function,

see for example [5]. We assume that there exist σ , σ ∈ (0, 1) such that

0< σ ≤ σd(T λi )≤ σ1(T λi )≤ σ < 1

for all λ ∈3 and for all i = 1, . . . , Mλ. Note that, whilst the condition σ < 1 follows from
the uniform contractivity assumption, the existence of σ > 0 is an additional assumption.

For all k ∈ N and s ≥ 0, let

Sω̃(k, s)=
∑

ik∈6ω̃∗

8s(T ω̃ik ).

The pressure is defined as follows:

pω̃(s)= lim
k→∞

log Sω̃(k, s)
k

(3.1)

provided that the limit exists. Since T 7→8s(T ) is a continuous function, the map ω̃ 7→
pω̃(s) is Borel measurable.

According to the following theorem, the pressure exists and has a unique zero for typical
random affine code tree fractals.

THEOREM 3.1. Assume that P is an ergodic 4-invariant Borel probability measure on �̃
such that

∫
�̃

N1(ω̃) d P(ω̃) <∞. Then, for P-almost all ω̃ ∈ �̃, the pressure pω̃(s) exists
for all s ∈ [0,∞[. Furthermore, pω̃ is strictly decreasing and there exists a unique s0 such
that pω̃(s0)= 0 for P-almost all ω̃ ∈ �̃.

Proof. See [13, Theorem 4.3]. �
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In [13, Remark 2.1], it was shown that any compact subset of the attractor of an iterated
function system is a code tree fractal and, in particular, any sub-self-affine set is a code
tree fractal. While verifying this, one ends up studying subsystems of the original iterated
function system. For example, suppose that F1

= { f1, f2, f3} and let F2
= { f1, f2} and

F3
= { f2, f3}. When changing the translation vector of the second map in F2, one needs

to modify also the translation vector of the first map in F3, since these maps are the
same. Therefore, it is useful to allow identifications of translation vectors between different
families. For this purpose, we equip the set 3̂= {(λ, i) | λ ∈3, i = 1, . . . , Mλ} with an
equivalence relation ∼ satisfying the following assumptions:
• the cardinality A of the set of equivalence classes a := 3̂/∼ is finite;
• for every λ ∈3, we have (λ, i)∼ (λ, j) if and only if i = j ; and
• the equivalence classes, regarded as subsets of 3, are Borel sets.
The notation a for the set of equivalence classes refers to the fact that some translation
vectors of the maps f λi are identified even though the maps are not. The second condition
means that different translation vectors inside a system Fλ are never identified. The first
condition allows us to view the set of equivalence classes a as an element of RdA. From
now on, we will write Aω̃a for the attractor of a code tree ω̃ to emphasize that it depends on
the set of equivalence classes of translation vectors a.

Now we are ready to state our main theorem in this section. Generalizing the earlier
results in [13], we prove that, under the assumptions of Theorem 3.1, for random affine
code tree fractals the Hausdorff, packing and box counting dimensions, denoted by dimH,
dimp and dimB, respectively, are almost surely equal to the unique zero of the pressure
provided that a probabilistic version of the F–S condition is satisfied. We denote by s0 the
unique zero of the pressure given by Theorem 3.1.

THEOREM 3.2. Assume that 0< σ ≤ σ < 1
2 . Let P be an ergodic 4-invariant Borel

probability measure on �̃ such that
∫
�̃

N1(ω̃) d P(ω̃) <∞. Suppose that for all 0< s < d

P{ω̃ ∈ �̃ | {T ω̃j | j= il , 1≤ l ≤ N1 and iN1 ∈6
ω̃
∗ (0, 1)} satisfies condition C(s)}> 0.

(3.2)
Then, for P-almost all ω̃ ∈ �̃,

dimH(Aω̃a )= dimp(Aω̃a )= dimB(Aω̃a )=min{s0, d}

for LdA-almost all a ∈ RdA.

Remark 3.3. (a) In [13, Theorem 5.1], a special case of Theorem 3.2 was proven under
substantially stronger assumptions. First of all, [13, Theorem 5.1] deals only with the
planar case d = 2. Moreover, instead of (3.2) the following non-existence of parallelly
mapped vectors is assumed:

P{ω̃ ∈ �̃ | ∃v ∈ R2
\ {0} such that T ω̃iN1

(v) are parallel ∀iN1 ∈6
ω̃
∗ (0, 1)}< 1. (3.3)

Observe that in the case d = 2 the condition C(s) is equivalent to the condition C(1) for
all 0< s < 2. Furthermore, for a family {Si }

k
i=1 condition C(1) means that for all vectors

v, w ∈ R2
\ {0} there exists i such that 〈Siv | w〉 6= 0. Therefore, condition (3.3) implies

condition (3.2) in the case d = 2. Condition (3.2) is weaker than condition (3.3), since
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in the former one all iterates up to level N1 are considered whilst in the second one only
iterates at level N1 play a role. In [13, Theorem 5.1], there are also technical conditions
concerning the measure P which are not needed here. As explained in [13], the upper
bound 1

2 for σ is optimal in Theorem 3.2.
(b) The map N1(ω̃) is Borel measurable as a projection. Since ω̃ 7→ T ω̃j is a Borel map

for all finite words j and the set of families of linear maps satisfying condition C(s) is
open, the set in (3.2) is a Borel set.

Before the proof of Theorem 3.2, we present an example which demonstrates how
certain random V -variable and random graph directed systems fit in our framework.

Example 3.4. Let 3 be a finite set of directed labelled multigraphs λ= (W, Eλ, Fλ),
where W = {1, 2, . . . , V } is the common finite set of vertices for all λ ∈3, Eλ is a finite
set of directed edges and, for each directed edge e ∈ Eλ, there is an associated map φλe ∈
Fλ which is a contraction on Rd . For all edges e, we denote by i(e) and t (e) the initial
and terminal vertices of e, respectively.

Recall that in the general setting of graph directed systems (see for example [17]), for
each vertex v ∈W , there is an associated metric space Xv and, for each edge e ∈ Eλ,
the associated map is φλe : X t (e)→ X i(e). Here we make the simplifying assumption that
Xv = Rd for all v ∈ V . Let

M =max
v∈W
λ∈3

#{e ∈ Eλ | i(e)= v}

be the maximum number of maps within any fixed graph λ ∈3 with the same range.
Recall that in a deterministic graph directed system there is only one graph λ and the
composition φe1◦ φe2 is allowed provided that t (e1)= i(e2). In some random graph
directed models (see for example [19]) the graph λ is fixed and the maps φe are random,
whereas in our model the graphs are allowed to be random as well.

Fix a probability measure µ on3 and set G =3{0}∪N. Let µ∞ = µ{0}∪N be the product
measure on G and let σ : G→ G,

σ(g0g1 · · · )= g1g2 · · · for all g= g0g1 · · · ∈ G,

be the left shift. To all g ∈ G, we associate a V -tuple of code trees ω = (ω1, . . . , ωV )

as follows: for all λ ∈3 and v ∈ {1, 2, . . . , V }, let Fλ
v = {φ

λ
e | e ∈ Eλ and i(e)= v} be

the iterated function system consisting of those maps in λ whose ranges correspond to the
vertex v. We write I = {1, . . . , M} and rename the edges with i(e)= v as e1, . . . , em .
Observe that m may depend on v ∈W and λ ∈3. The definition of M implies that
m ≤ M . For all v ∈W , set ωv(∅)= F g0

v . Now we proceed inductively. Assuming
that ωv(i1 · · · in)= F gn

w = {φ
gn
e1 , . . . , φ

gn
em } for some w ∈W , define ωv(i1 · · · inin+1)=

F gn+1
t (ein+1 )

for in+1 = 1, . . . , m. Observe that every g ∈ G defines a sequence of graphs,
which, in turn, determines a sequence of ordered walks starting from v. The code tree
fractal corresponding to ωv is the set of the limit points of the set of maps associated to
all infinite paths starting from v. This code tree fractal is the vth component in the graph
directed set corresponding to the infinite sequence g.

A V -tuple ω of code trees defines a V -tuple of code tree fractals Āω = (Aω1 , . . . , AωV )
componentwise as described at the beginning of this section. Note that for fixed g ∈ G,
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any sub code tree rooted at level n is determined by the code of its top node. Since this
code is an element of the set {F gn

k }
V
k=1, there are at most V distinct code trees at a fixed

level. By definition, this means that ω = (ω1, . . . , ωV ) and the corresponding code tree
fractals, {Aωv | v ∈W }, are V -variable.

In order to apply Theorem 3.2 to the above system, we need some further assumptions.
Suppose that φλe (x)= T λe (x)+ aλe is a non-singular affine map on Rd with singular values
uniformly bounded from below by σ > 0 and from above by σ < 1

2 for all λ ∈3 and
e ∈ Eλ. We equip the set 3̂= {(λ, e) | λ ∈3 and e ∈ Eλ} with the trivial equivalence
relation, that is, (λ, e)∼ (λ′, e′) if (λ, e)= (λ′, e′). Then the set of equivalence classes
a= 3̂/∼ may be identified with the collection of all translation vectors. Since 3 is finite
and the number of edges is bounded, the number A of equivalence classes in a is finite
and, therefore, a ∈ RdA. To ensure that the V -tuple of code trees corresponding to g has
no ‘dying’ branches and, in particular, defines a V -tuple of non-empty code tree fractals,
we assume that in µ-almost all graphs λ ∈3 every vertex is an initial vertex of some edge,
that is,

µ{λ ∈3 | ∀v ∈W ∃e ∈ Eλ with i(e)= v} = 1.

In addition to the above assumptions, the existence of neck levels needs to be
guaranteed. Recall that at a neck level all the sub code trees are identical. Such levels
exist provided that there is a vertex v0 ∈W such that the µ-measure of the set of graphs
λ ∈3 all of whose edges have terminal vertex equal to v0 is positive. Hence, we assume
that there exists a vertex v0 ∈W such that µ(3preneck) > 0, where

3preneck = {λ ∈3 | t (e)= v0 ∀e ∈ Eλ}.

We emphasize that this is a natural assumption for a collection of random graphs. For
example, it is satisfied if the random graphs are constructed as follows: first choose for
each v ∈W the number of edges with initial vertex equal to v. Then for each edge choose
the terminal vertex independently according to a probability vector (p1, . . . , pV ) with
pv0 > 0. We first define auxiliary neck levels inductively as follows: set

Ñ1(g)=min{n ≥ 0 | t (e)= v0 ∀e ∈ Egn } + 1

and define
Ñk+1(g)=min{n ≥ Ñk(g) | t (e)= v0 ∀e ∈ Egn } + 1.

This sequence is well defined for µ∞-almost all g ∈ G since the distances Ñk+1 − Ñk form
a sequence of independent geometrically distributed random variables and, therefore, for
the expectation we have∫

Ñk(g) dµ∞(g)= k
∫

Ñ1(g) dµ∞(g) <∞ (3.4)

for all k ∈ N. The neck list is defined by Nk = Ñ2n2
0k for all k ∈ N, where n0 is as in

Theorem 2.6.
Observe that the existence of neck levels implies that Aωv0

is a finite union of affine
copies of the attractor determined by the common sub code tree at the first neck level N1.
Since all the sub code trees at this level are identical, all the components of the V -tuble
attractor Āω are finite unions of affine images of the same fixed set. Thus, the dimensions
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of the components of Āω are equal to that of Aωv0
. For the purpose of calculating the almost

sure dimension value of Aωv0
, we apply Theorem 3.2.

We proceed by verifying that the assumptions of Theorem 3.2 are satisfied. Since we
attached to almost every code tree ωv0 a unique neck list, we may identify �̃ with the
space of all code trees ωv0 . Moreover, the product measure µ∞ determines a mixing,
thereby ergodic, 4-invariant measure P on �̃. Now (3.4) and the definition of N1 imply
that

∫
N1(ω̃v0) d P(ω̃v0) <∞.

Finally, we have to ensure that the F–S condition (3.2) is valid. Intuitively, this is
achieved if we assume that there are many allowed sequences of edges with initial and
terminal vertices equal to v0 such that the associated maps satisfy the assumptions of
Theorem 2.6. More precisely, we suppose that there exists l ∈ N such that

µl
{(λ1, . . . , λl) ∈3

l
| λ j 6∈3preneck for j = 1, . . . , l − 1, λl ∈3preneck,

∃eλ1
i1
· · · eλl

il and eλ1
j1
· · · eλl

jl with i(eλ1
i1
)= i(eλ1

j1
)= t (eλl

il )= t (eλl
jl )= v0 and

F := T λ1
ei1
· · · T λl

eil
and G := T λ1

e j1
· · · T λl

e jl
satisfy the assumptions of Theorem 2.6}

> 0. (3.5)

Since we use the product measure µ∞ on G, there is positive probability that the same
pair of maps (F, G) appears successively 2n2

0 times. Therefore, from Theorem 2.6 we see
that the condition (3.2) is satisfied. Observe that the condition (3.5) is satisfied with l = 1
if there are maps φλe and φλe′ as in Theorem 2.6 with i(e)= i(e′)= t (e)= t (e′)= v0 and
λ ∈3preneck is chosen with positive probability. This, in turn, is true for typical families
by Corollary 2.7.

For the proof of Theorem 3.2, we need the following notation and auxiliary results.

Definition 3.5. Let c > 0 and 0< s < d . We say that a family of non-singular linear
mappings {S j : Rd

→ Rd
}
k
j=1 is (c, s)-full if

k∑
j=1

8s(U S j V )≥ c8s(U )8s(V )

for all non-singular linear mappings U, V : Rd
→ Rd .

In Lemmas 3.6 and 3.7, we explore consequences of the probabilistic version of the F–S
condition (3.2).

LEMMA 3.6. Assuming that the condition (3.2) is satisfied, there exists c > 0 such that

% = P
{
ω̃ ∈ �̃|{T ω̃iN1

}iN1∈6
ω̃
∗ (0,1)

is (c, s)-full
}
> 0.

Proof. Since the set of (c, s)-full families is a Borel set, the set in the definition of % is a
Borel set. Let U, V : Rd

→ Rd be non-singular linear maps. Suppose that

F = {T ω̃j | j= il , 1≤ l ≤ N1 and iN1 ∈6
ω̃
∗ (0, 1)}

satisfies the condition C(s). By the proof of [10, Proposition 2.1] (see also [10,
Corollary 2.2]), there exists j such that

8s(U T ω̃j V )≥ C(F)8s(U )8s(V ), (3.6)
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where the constant C(F) is independent of U and V . Observe that C(F) depends on s but
it is an interpolation of the constants obtained by replacing s by m and m + 1, where m is
the integer part of s (recall Remark 2.2). Let iN1 ∈6

ω
∗ (0, 1) be such that j= i|j|. Writing

T ω̃
iN1
= T ω̃j T

ω̃(i|j|)
i|j|+1

· · · T
ω̃(iN1−1)

iN1
and applying (3.6) gives

8s(U T ω̃iN1
V )≥ σ N1−|j|8s(U TjV )≥ C(F)σ N18s(U )8s(V ).

This implies that ∑
iN1∈6

ω̃
∗ (0,1)

8s(U T ω̃iN1
V )≥ C(F)σ N18s(U )8s(V ) (3.7)

for all linear mappings U, V : Rd
→ Rd . From (3.2), we conclude that there exists c > 0

such that
P{ω̃ ∈ �̃ | C(F)σ N1 > c}> 0,

giving the claim. �

In the following lemma we denote by #A the number of elements in a set A.

LEMMA 3.7. Assume that the condition (3.2) is satisfied and let % and c be as in
Lemma 3.6. Define for all n, m ∈ N

E ω̃(n, n + m)= #{n < j ≤ n + m | {T4
j−1(ω̃)

iN1
} is (c, s)-full}

and suppose that P is 4-invariant and ergodic. Then, for P-almost all ω̃ ∈ �̃, the
following is true: for all ε > 0 there exists n1(ω̃, ε) > 0 such that for all n > n1(ω̃, ε)

we have
E ω̃(n, n + dεne)≥ 1,

where dxe is the smallest integer m with x ≤ m.

Proof. Let χ be the characteristic function of the set {ω̃ ∈ �̃ | {T ω̃iN1
} is (c, s)-full}. Since

E ω̃(0, n)=
n−1∑
j=0

χ(4 j (ω̃)),

we obtain from the Birkhoff ergodic theorem that for P-almost all ω̃ ∈ �̃

lim
n→∞

E ω̃(0, n)
n

=

∫
�̃

χ(ω̃) d P(ω̃)= %. (3.8)

Fix ω̃ ∈ �̃ satisfying (3.8) and let ε > 0. Defining 0< ε̃ = (%εn − 1)/((ε + 2)n) < %
for sufficiently large n, there exists n1(ω̃, ε) > 0 such that for all n > n1(ω̃, ε) and for all
m ≥ 0 we have

(% − ε̃)(n + m) < E ω̃(0, n + m) < (% + ε̃)(n + m)

and, therefore,

E ω̃(n, n + m)= E ω̃(0, n + m)− E ω̃(0, n) > (% − ε̃)m − 2ε̃n.

Finally, taking m ≥ εn gives (% − ε̃)m − 2ε̃n ≥ 1, which implies that E ω̃(n, n + m)≥ 1.
In particular, E ω̃(n, n + dεne)≥ 1. �
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LEMMA 3.8. Under the assumptions of Theorem 3.1, we have for P-almost all ω̃ ∈ �̃ that

lim
n→∞

Nn+dεne(ω̃)− Nn−1(ω̃)

Nn(ω̃)
= ε

for all ε > 0.

Proof. Since Nn(ω̃)=
∑n−1

j=0 N1(4
j (ω̃)), the Birkhoff ergodic theorem implies that for

P-almost all ω̃ ∈ �̃

lim
n→∞

Nn(ω̃)

n
=

∫
�̃

N1(ω̃) d P(ω̃)= b <∞.

Now, for any typical ω̃, we have

lim
n→∞

Nn+dεne(ω̃)

Nn(ω̃)
= lim

n→∞

Nn+dεne(ω̃)

n + dεne
·

n + dεne
n

·
n

Nn(ω̃)
= b(1+ ε)

1
b
= 1+ ε

and similarly we see that limn→∞ (Nn−1(ω̃)/Nn(ω̃))= 1. Therefore,

lim
n→∞

Nn+dεne(ω̃)− Nn−1(ω̃)

Nn(ω̃)
= ε. �

Now we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. In [13, (5.20)], it is proven that under the assumptions of
Theorem 3.1 we have dimB(Aω̃a )≤min{s0, d} for P-almost all ω̃ ∈ �̃. Here dimB is the
upper box counting dimension. Note that the assumption d = 2 is not needed in the proof
of [13, (5.20)]. Since always dimH ≤ dimp ≤ dimB (see for example [7, (3.17) and (3.29)]),
it is sufficient to verify that

dimH(Aω̃a )≥min{s0, d} (3.9)

for P-almost all ω̃ ∈ �̃. Let s <min{s0, d}. In the proof of [13, Theorem 3.2], it is shown
that (3.9) follows provided that for P-almost all ω̃ ∈ �̃ there exist a probability measure
µω̃ on 6ω̃ and a constant D(ω̃) > 0 such that

µω̃([il ])≤ D(ω̃)8s(T ω̃il ) (3.10)

for all i ∈6ω̃ and l ∈ N.
For the purpose of verifying (3.10), we define for all ω̃ ∈ �̃ and m ∈ N

µω̃m =

∑
iNm∈6

ω̃
∗ (0,m)

8s(T ω̃iNm
)δiNm∑

iNm∈6
ω̃
∗ (0,m)

8s(T ω̃iNm
)
, (3.11)

where δiNm
is the Dirac measure at some fixed point of the cylinder [iNm ]. The choice

of the cylinder point plays no role in what follows. Since 6ω̃ is compact, the sequence
(µω̃m)m∈N has a weak*-converging subsequence with a limit measure µω̃. We proceed by
showing that µω̃ satisfies (3.10).

By Lemma 3.8, the following is true for P-almost all ω̃ ∈ �̃: for all ε > 0, there exists
n2(ω̃, ε) > 0 such that for all n > n2(ω̃, ε),

Nn+dεne(ω̃)− Nn−1(ω̃) < 2εNn(ω̃). (3.12)
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Furthermore, it follows from the definition of the pressure that for P-almost all ω̃ ∈ �̃
there exists for all ε > 0 a number n3(ω̃, ε) > 0 such that for all n > n3(ω̃, ε), we have

e(p
ω̃(s)−ε)Nn(ω̃) <

∑
iNn∈6

ω̃
∗ (0,n)

8s(T ω̃iNn
) < e(p

ω̃(s)+ε)Nn(ω̃). (3.13)

Let ε > 0. Consider ω̃ ∈ �̃ satisfying Lemma 3.7, (3.12) and (3.13) and set
n0(ω̃, ε)=max{n1(ω̃, ε), n2(ω̃, ε), n3(ω̃, ε)}. For all il ∈6ω̃∗ with l > Nn0(ω̃,ε), there
exists n > n0(ω̃, ε) such that Nn−1 < l ≤ Nn . Now Lemma 3.7 implies the existence
of 1≤ k ≤ dεne such that {T4

n+k−1(ω̃)
jN1

} is (c, s)-full. Let m be a natural number
with m > εn. In the remaining part of the proof we use the following abbreviations:∑

j =
∑

j:il j∈6ω̃∗ (0,n+k−1),
∑

N1
=
∑

jN1∈6
ω̃
∗ (n+k−1,n+k),

∑
Nm−k
=
∑

kNm−k∈6
ω̃
∗ (n+k,n+m)

and
∑

Nn+k−1
=
∑

iNn+k−1∈6
ω̃
∗ (0,n+k−1), and denote by T ω̃

(il )j the last |j| maps of T ω̃il j. Using

the definition of µω̃n+m , applying the submultiplicativity of 8s in the numerator and
utilizing the (c, s)-fullness in the denominator, we obtain

µω̃n+m([il ]) =

∑
j
∑

N1

∑
Nm−k

8s(T ω̃il jT
4n+k−1(ω̃)

jN1
T4

n+k (ω̃)
kNm−k

)∑
Nn+k−1

∑
N1

∑
Nm−k

8s(T ω̃iNn+k−1
T4

n+k−1(ω̃)
jN1

T4
n+k (ω̃)

kNm−k
)

≤

8s(T ω̃il )
∑

j
∑

N1

∑
Nm−k

8s(T ω̃
(il )j)8

s(T4
n+k−1(ω̃)

jN1
)8s(T4

n+k (ω̃)
kNm−k

)

c
∑

Nn+k−1

∑
Nm−k

8s(T ω̃iNn+k−1
)8s(T4

n+k (ω̃)
kNm−k

)

=

8s(T ω̃il )
∑

j
∑

N1
8s(T ω̃

(il )j)8
s(T4

n+k−1(ω̃)
jN1

)

c
∑

Nn+k−1
8s(T ω̃iNn+k−1

)
.

Recall that in every family there are at most M maps, 8s(T j )≤ 1 for all j and k ≤ dεne,
and suppose that ε < pω̃(s). Applying (3.12) in the numerator and (3.13) in the
denominator, we obtain for all l > Nn0(ω̃,ε) that

µω̃n+m([il ])≤
8s(T ω̃il )M

Nn(ω̃)−Nn−1(ω̃)+Nn+dεne(ω̃)−Nn(ω̃)

ce(pω̃(s)−ε)Nn+k−1(ω̃)
≤
8s(T ω̃il )M

2εNn(ω̃)

ce(pω̃(s)−ε)Nn(ω̃)
.

Taking ε so small that M2ε < epω̃(s)−ε, we set

D(ω̃)=max
{

c−1, max
l≤Nn0(ω̃,ε)

{
µω̃[il ]
8s(T ω̃il )

}}
.

Then for all l > 0 we have

µω̃n+m([il ])≤ D(ω̃)8s(T ω̃il ).

Letting m tend to infinity and recalling that cylinders are open, we obtain (3.10) from the
Portmanteau theorem [16, Theorem 17.20]. �
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foundation. BL is the corresponding author.

REFERENCES
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