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1. Introduction

A digital j x k pixels image consists of j-k pixels where each pixel is assigned a “colour”, i.e. an element of some finite
set, C, e.g. C=1{0,1,2,...,255}!, where | =1 for (8bit) grayscale images or | = 3 for (24 bit RGB) colour images.

Image compression methods can be of two types: Lossless image compression methods preserves all image data, while
lossy methods removes some data from the original file and saves an approximate image with reduced file size.

One common lossless format on the internet, supported by most modern web-browsers, is PNG (Portable Network Graph-
ics). The PNG format is used in particular for images with sharp colour contrast like text and line art, and is considered to
be a suitable format for storing images to be edited.

One disadvantage with lossless formats is that the file sizes are often very large when compared with lossy formats.
Lossy compression of colour images is often obtained by reducing the colour space, or by chroma subsampling using the
fact that the human eye perceives changes in brightness more sharply than changes in colour.

The most common lossy compression format, especially for photographic images, is JPEG (Joint Photographic Experts
Group). JPEG usually gives small file sizes, but one artifact with JPEG is apparent “halos” in parts of the image with sharp
colour contrasts, reflecting the fact that the JPEG method belongs to the realm of Fourier methods. Similar “halo” features
are also apparent in the better, but more complicated and therefore less widespread, wavelet based JPEG 2000 method.

The mathematical notion of V-variability was introduced by Barnsley, Hutchinson and Stenflo in Barnsley et al. [2]. Intu-
itively, a V-variable set is built up by at most V different smaller sets at any given level of magnification. Motivated by the
fact that parts of an image often resemble other parts of the image, and the existing “fractal compression method” build-
ing on a more limited class of sets [1], it was suggested in Barnsley et al. [2] that V-variability could be used for image
compression.

One solution to the problem of how the notion of V-variability can be used for image compression was presented in
Mendivil and Stenflo [3] in terms of an algorithm for lossy image compression where, for a given digital image, the algorithm
generates a “V-variable digital image” resembling the given image despite requiring substantially less storage space.

In the present paper we address the question of finding an “optimal” V-variable digital image resembling a target image
given a certain maximally allowed storage space.
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2. V-variable image compression

For clarity and simplicity of our description we will assume here that the image is of size 2™ x 2™ pixels for some m.
We refer to Section 4.1 for the case of non-square images.

In order to specify what we mean by a “V-variable digital image” (and later a “V-variable digital image”) we need to
introduce some definitions.

Definition 1. Let m >0 be some integer, and consider a 2™ x 2™ pixels digital image. For any 0 <n <m, we may divide the
given image into 4" nonoverlapping image pieces of size 2™~ x 2M-"", We call these pieces the image pieces of level n.

We can now define what we mean by a V-variable image:

Definition 2. Let V> 1 be a fixed positive integer. We say that a digital image is V-variable if, for any 1 <n <m, the image
has at most V distinct image pieces of level n.

Example 1. The 4-variable 512 x 512 = 29 x 29 pixels digital grayscale image

can be built up by 4" image pieces of size 29" x 29" of (at most) 4 distinct types, for any n =0, 1,2, ..., 9. The appearance
of these image pieces depends on n. If e.g. n = 2 then the 16 image pieces of size 128 x 128 pixels are of the 4 types

and if n = 3 then the 64 image pieces of size 64 x 64 pixels are of the 4 types

By looking at the image, and its image pieces, we see that we can, recursively, describe the 4-variable image using 4
images of smaller and smaller size, i.e. recursively describe more and more levels of the V-variable structure of the image:
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At each stage, we replace an image piece of the current level with four image pieces from the next level. There are (at
most) V =4 types of image pieces at each level and the substitution is done according to the type. For example, we see
that in the second stage (illustrated in the figure above), all image pieces of type 3 are replaced by the same thing (image
pieces at next level with types 3,4,3,4). The first two (non-trivial) steps as shown above can be visually described by the
substitutions:

1 2 3 4

First Refinement ¢ ¢ ¢ ¢
13 2] 2 13 2|4
13 2|4 3]2 4|4

1 2 3 4

Second Refinement ¢ ¢ ¢ ¢
1|2 2|2 3|4 412
1|2 2|2 3|4 3|3

Each image piece of level 9 is a one pixel image. For such pieces we associate the corresponding colour value.

In this 4-variable example the image is constructed using only the 4 colour values 33 and 37 (corresponding to the
almost black pixels) 138 (corresponding to the dark gray pixels) and 171 (corresponding to the light gray pixels).

See [3] and Section 2.3 for further details and the specifics on how to reconstruct the image from its code (the substitu-
tion rules).

2.1. Description of our V-variable image compression method

The goal of our method is to approximate a given digital image with a V-variable digital image.

We start with positive integers Vq, Vs, ..., Vi, which restrict the number of distinct image pieces, of each level n, n=
1,2,...,m. Note that by our choice of partitions at each of the “levels”, there are at most four times as many distinct image
pieces of level n+ 1 as there were at level n. Thus any value of V,;, which is at least 4V,,_; provides no constraint that is not
already forced by Vq,...,V,_1.

Let V = max(Vy, ..., Vin). We can find a V-variable approximation of the given image, with Vj,..,V, being restrictions on
the maximum number of allowed distinct image pieces of each level respectively, by using the following algorithm:
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EXTREME COMPRESSION OF GRAYSCALE IMAGES
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In [3], we formulated and applied the above algorithm for various choices of V and images, where m=9 and V =V, =
.= Vn (and so we only considered images which had the same “maximal variability” at each level).

The above algorithm with non-constant V; generates a V-variable image for V = max(V;, ..., V) with less memory re-
quirements than the V =V; = ... =V, case considered in Mendivil and Stenflo [3], but the image quality is also decreased.
The art is then to try to find the optimal m-tuple of positive integers V = (Vy, ..., Viy) with respect to targeted image quality
and memory requirements.

We will present computer experiments related to this question for some given test images below.

See Section 4 for a discussion of some generalizations of the algorithm.

Definition 3. Let V= (Vq,...,Vn), and V = max(Vy,...,Vn), where Vi, ...,V is a given sequence of positive integers. We
say that an 2™ x 2™ pixels digital image is V-variable if it is V-variable with maximally V; distinct image pieces of level i,
foranyi=1,...,m.

2.2. Storage requirements

The m-tuple of positive integers V = (V;, ..., Vq), chosen by the user in step 1 in the algorithm above, corresponds to the
quality of the image approximation. Larger values of the components corresponds to higher image quality of the constructed
V-variable image at the price of a larger file size. We may without loss of generality assume that V; <4V;_; for all 1<i<m
(with the convention Vy = 1):
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Each execution of step 4 requires a storing of 4V;_; numbers from the range {1....,V;} for any j, ng < j <m—1. The
image pieces extracted in step 2 are of size 4™~ pixels, and each time step 5 is reached the new image pieces are 4 times
smaller than the ones from the previous execution of step 5. Thus step 4 will be revisited at most m —ny — 1 times.

In step 6 we store the colour, i.e. an element in C, for each of the 4V,;,_; “one pixel” image representatives. As an example,
for the 8 bit grayscale images considered in this paper we need to store 4V,,_; numbers in {0, ...,255}, and we may thus,
in order to optimize the image quality for a given storage space, without loss of generality assume that Vi = 256 since the
storage does not depend on V.

Thus, our V-variable method of storing requires in total 4V;_;[log,(V;]/8 bytes for each level ny < j <m—1, where
4Vj_1 >V, plus 4V;,,_; bytes for level m in the 8bit grayscale images case.

Remark 1. We will here only consider the case when m =9 and 4V > V. for all k. In order to avoid a waste of memory
we will also only consider cases when Vj, = 2/k for some j for all k, where V,;,_; = 4"0-1 giving a total storage (in the case
m=29) of

Storage = Y "4V, 1 [log, (Vi ]/8 +4Vs = Y _ ji2/171 + 2772 bytes,
kel kel

where I = {ng < k < 8 : V; < 4V,_;}. Each k with V} = 4V,_; gives no contribution to the sum so for instance if V; = 4% = 256,
V5=28=256<45, V6=25=32, V; =4V = 128, V8=26=64 then ng=>5, j4=8, j5=8, j6=5, j7=7, and jg=6 and
thus

Storage =8-28145.281404+6.27"1 4+ 26+2 =2304 bytes,
~— ~— —_—— ——
128 128 64 256
where the zero term occur since 4Vg = V7, and thus V; causes no new restrictions not already caused by Vi, ...,Vs.

2.3. Reconstruction of an image from its code

The process of reconstructing an image from its V-variable code is quick.
Any pixel sits within some fixed image piece of level n for all 0 <n <m— 1. An image piece of level n, 1 <n <m, is
situated within a 4 times bigger image piece from level n — 1 and can be in 4 possible positions in that bigger square:

(1) upper left, or
(2) upper right, or
(3) lower left, or
(4) lower right.

This enables a simple addressing structure, where a pixel can be described by an address a;a,...am, where a; e
{1, 2, 3,4} specifies the relative position of the square on level j in the square on level j — 1 for the given pixel.

We can now find the colour of a pixel by recursively using the V-variable code in the following way. If a pixel with
address aqa;...any sits within a square with V-variable type j of level n, 0 <n <m -1, then the V-variable type of the
square on level n+ 1 where the pixel sits can be seen by looking at the stored type of the square in position a,,; within
the square of type j on level n. The colour of the pixel is given by the stored colour of the square in position an of the type
of the square at level m — 1.

2.4. Automating the V-variable image compression algorithm

The main tool needed in order to automate the algorithm above is a way to classify n images into k clusters. (step 3).
Such a clustering can be done in many different ways. See Section 4.2 for a discussion of some basic clustering techniques.
For simplicity, in our implementation of the compression algorithm above we used Matlab’s built-in command kmeans for
this step. The K-means algorithm is a popular and basic clustering algorithm which finds clusters and cluster representatives
for a set of vectors by iteratively minimising the sum of the squares of the “within cluster” distances (the distances from
each of the vectors to the closest cluster representative). We treat the sub-images as vectors and use the standard Euclidean
distance to measure similarity. We also use random initialisation of the cluster representatives.

2.5. Finding the optimal V for a given memory requirement

For a given image and tuple V = (V1, ..., V) we may use the algorithm described in Section 2.1 to generate a V-variable
approximating image of the given image and in Section 2.2 we explained how to calculate an upper bound for the memory
requirement for a V-variable image.

A natural problem that arises is to find the optimal V for a given memory requirement with respect to image quality.
The optimal choice may depend on the image, but in general simulations show that a “good” V is often “good” for most
images.

Rather than finding the optimal choice for a a given image and memory requirement we will here give rules of thumb
for choices of V for some given memory requirements that may be used for any image.
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Fig. 2. Scatterplot of filesize versus PSNR for Image1.

2.6. Simulations

In this section we present results of some numerical experiments with the three images shown in Fig. 1. The images
are of size 512 x 512 pixels so uncompressed they are stored with 512 x 512 = 262144 B (since each pixel is assigned a
number in {0, 1, ...,255} and thus requires one byte of storage). Thus approximations stored e.g. with a file size of 2621 B
correspond to a 100:1 compression ratio. As can be seen, the three images represent a wide range of image types.

Imagel and Image2 have earlier been discussed in Mendivil and Stenflo [3].

We will here use the Peak signal-to-noise ratio (PSNR) for measuring quality of compressed images. Fig. 2 shows
the quality of V-variable approximations of Imagel (PSNR) versus memory requirement for all V= (V;,...,Vy) requir-
ing a memory less than 5000 B with V; =4,V, =16,V3 =64 and Vg =256 and V4, Vs, V5, V; and Vg chosen from
{16, 32, 64, 128, 256, 1024}.

The frontier in the plot gives a hint of how the optimal PSNR depends on the memory requirement.

The table in Fig. 3 gives rules of thumb for good tuples V for given memory requirements of 1000B, 1500B, ..., 5000B
respectively. These V:s corresponds to points close to the frontier in Fig. 2. In simulations below “Imagel-Memory” denotes
the V-variable image obtained from the algorithm to approximate Imagel, I € {1, 2, 3}, with a maximal allowed memory of
Memory ¢ {500, 1000, ..., 5000} Bytes using the rules of thumb for V = (Vy,...,Vqy) given by Fig. 3.

The image labeled Imagel:256 correspond to the best 256-variable approximation w.r.t. PSNR and has earlier been dis-
cussed in Mendivil and Stenflo [3].

For most V-variable images we may store the code in a much more efficient way than described above, so the above
memory requirements should be regarded as upper bounds (Figs. 5-7).

Let i be a non-negative integer. By regarding all “almost constant” blocks with pixel values varying less than or
equal to i, as constant blocks in each step of the construction of the approximating image, we can reduce the stor-
age further at a small price in image quality if i is small. To illustrate this method, let us look at V= (V,...,Vy) =
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Label Vi | Vs | Vs | Ve | Vg Memory] PSNR | PSNR | PSNR
(B) Imagel | Image2 | Image3
Imagel-500 16 |16 |16 |16 |64 | 480 20.6 15.1 13.9
Imagel-1000 || 256 |32 |16 |16 |64 992 23.5 15.9 14.7
Imagel-1500 || 256 |64 |64 |32 |64 1472 24.5 16.3 15.3
Imagel-2000 || 128 | 512 |32 |32 |64 1936 25.4 16.9 16.5
Imagel-2500 || 256 | 256 | 32 | 128 |64 2304 25.9 17.1 16.8
Imagel-3000 || 256 | 256 |64 | 128 | 128 || 2976 26.5 17.4 17.2
Tmagel-3500 || 256 | 256 | 1024| 16 | 64 3328 26.8 17.9 18.4
Tmagel-4000 || 256 | 1024| 64 | 128 | 64 3936 27.5 18.6 17.3
Imagel-4500 || 256 | 256 | 1024| 64 | 64 4544 27.7 18.5 20.0
Imagel-5000 || 256 | 1024| 128 | 128 | 128 || 4992 28.1 19.1 17.9
Imagel:256 256 | 256 | 256 | 256 | 256 | 5120 274 18.2 19.2

Fig. 3. Suggested values of V.= (Vy, ...,

Vo) gives rules of thumb for a given upper bound memory requirement. Here V; = 4,V, = 16, V53 = 64, and Vy = 256.
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Fig. 4. Scatterplots of memory versus PSNR for Imagel (upper left plot), Image2 (upper right plot) and Image3 (lower left plot). Points where blocks
varying less than a given threshold have been regarded as constant have been marked with different colours, here green (0), red (15), blue (30) and yellow
(45), where the threshold is given within the brackets. The scatterplots indicates that a threshold of 30 is optimal with respect to PSNR and memory, for
compression ratios around 150:1, and the optimal threshold tends to decrease with file size. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 5. V-variable approximations of Image1 with storage of size 1000 B (PSNR 24.0), 1500 B (PSNR 25.5), 2000 B (PSNR 26.1), and 2500 B (PSNR 26.7).
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Fig. 7. V-variable approximations of Image3 with storage of size 500 B (PSNR 14.6), 1500 B (PSNR 16.5), 2500 B (PSNR 18.4), and 3500 B (PSNR 19.9). The
approximating images are rather sharp despite having small PSNR values reflecting the fact that the original image is coloured with two extreme colours
and any misprediction at colour boundaries gives a high negative influence on the PSNR.

(4,16, 64, 256, 256, 32, 128, 64, 256) (our rule of thumb V for a storage requirement less than 2500 B). Below we have for

each ie{0, 15, 30} simulated a V-variable approximating image of Image1, where we, in each step of the construction, regard

blocks with pixel values varying less than or equal to i as constant. We refer to the corresponding image as “Image1-2500-i".
The following tabular shows the proportion of constant substitutions at each level:

Image1-2500-i

Level Block size Proportion of constant Proportion of constant Proportion of constant
substitutions (i = 0) substitutions (i = 15) substitutions (i = 30)

4 32 x32 4/256 6/256 8/256

5 16 x 16 24[256 26/256 36/256

6 8x8 0 0 0

7 4x4 35/128 45/128 75/128

8 2x2 2/64 32/64 51/64

Recall that if Vj, = 2Jk for some ji for all k, where Vig-1 = 4701 then the upper bound for storage where we ignored the
information about constant blocks was

Storage = Y _ ji2/11 42572 Bytes,
kel

where [ = {ng <k <8:V, <4V,_4}.
If p, denotes the proportion of constant substitutions at level k, ny <k <8, then since we need only one instead of four
numbers to store each such substitution, the storage can be reduced to

Storage = Y ji2/<173(4 —3p,_1) + 27 (4 —3ps) Bytes.
kel
For Image1-2500-0, V, =44 =256, V5 =28 =256 <45, V5=2°>=32, V, =4V =128, V3 =26=64 ie. ng=5, j4 =8,
js =8, je =5, j;=7, and jg =6, and py = 4/256, ps = 24/256, p; = 35/128, and pg = 2/64. Thus

SwmgﬂmwﬂQHMO)z832073~£¥>+532@43~21)+0

256 256
35 2
+ﬁqq}—afﬁ)+mcpe.a)~m&5

Similarly

Storage(Image1-2500-15) = 8 - 32(4 -3. %) +5- 32(4 -3 26 ) +0
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+6.16<4_3.£> +64(4—3.g) — 20408,

128
and
Storage(Image1-2500-30) — 8 32(4 _3 i) +5 32(4 _3 ﬁ) +0
gelimag =o " 256 ' " 256
75 51
+6- 16(4—3 : ﬁ) +64(4—3 : @) ~ 1891B.

The scatterplots in Fig. 4, where we have plotted memory requirement versus PSNR for V-variable approximations of our
3 test images, illustrates the interesting phenomena that we get approximations with both higher PSNR and lower storage
space if we regard all blocks varying less than a given threshold as being constant (the average of the grayscale values). The
optimal threshold depends on the given memory requirement and decreases with increased memory requirements.

3. Comparison with other image compression methods

In [3] we discussed compression of the test image here denoted by “Image1” with standard fractal block compression. V-
variable compression is slightly better than Fractal compression on Image1 at compression ratios around 100:1 (in the sense
of smaller storage size and higher PSNR), and much better on Image2 and Image3. Both Fractal compression and V-variable
compression are slow methods with respect to compression time, but decompression is fast.

Fourier and wavelet based methods like JPEG and JP2 works well on photographic images, like Imagel, but are not
recommended for line art, like Image2 and Image3, where a specialized format like DjVu works much better. JPEG gives
roughly the same image quality as V-variable image compression at compression ratios around 100:1 for Image1 and better
image quality on Imagel for larger file sizes. It is however worse at all compression levels for Image2 and Image3. This
comparison is based on files generated by the free and open source software ImageMagic where we saved the image in
JPEG at different quality levels and smaller filesizes than 1.8 KB are then not possible to achieve. One advantage with V-
variable compression compared to JPEG is that image quality is not affected by repeated compression. One disadvantage
with V-variable compression compared to JPEG is that compression time is slower.

JPEG 2000 gives (based on files generated in ImageMagic) better image quality than V-variable image compression at all
compression ratios for Image1 and roughly the same image quality for Image2 at high compression ratios. The image quality
is worse than V-variable image compression for Image2 for larger file sizes and worse than V-variable image compression
for Image3 at “all” compression ratios.

DjVu is a file format mainly designed for scanned documents that, like V-variable compression, stores images containing
a combination of text and line drawings, like Image2 and Image3, well.

It seems like V-variable compression could be a competitive format for intermediate images like digital photos containing
line art.

4. Generalisations
4.1. Non-square images

The general case of a non-square j x k image can be treated by e.g. letting m be the smallest integer such that both j <2™
and k<2™, and consider a square image of size 2™ x 2™ where the pixelvalue of a given pixel (a, b) in the squared image
is given by the pixelvalue of the pixel closest to (j-a/2™, k-b/2™) in the original image. We then encode the new squared
image and transform the resulting image back in the end.

4.2. Clustering methods

The efficiency of our algorithm depends crucially on the clustering method we use. For simplicity in our implementation
above we used Matlab’s built-in command kmeans for this step.

There are many approaches to clustering and it is an interesting future problem to explore these in order to find better
V-variable approximations than the ones provided by our simple implementation. In particular, the methods used in vector
quantization for constructing the codebook could be explored. We can also introduce parameters specifying transformations
of image pieces as a pre-processing step before clustering. Matlab also supports “hierarchical clustering” which could have
been another simple pre-processing alternative.

4.3. Generalised image pieces

Our definitions of image pieces, and V-variable images can be generalised in various ways. We may define the image
pieces as arising from some arbitrary given sequence of refining partitions of a given digital image.

Iterated function systems can be used to recursively define a sequence of refining partitions. Thus the IFS machinery
gives us great flexibility in designing recursive partitions and can be used in our scheme. Any periodic self-affine tiling is
such an example.
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4.4. Reducing the colour space

Reducing the colour space corresponds to chosing the tuple V= (Vy, ..., Vy;) with Vi, small. This corresponds to using a
colour palette with V};, different predetermined colours.
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