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Abstract. The families of V -variable fractals for V D 1; 2; 3; : : : , together with their
natural probability distributions, interpolate between the corresponding families of random
homogeneous fractals and of random recursive fractals. We investigate certain random
V � V matrices associated with these fractals and use them to compute the almost sure
Hausdorff dimension of V -variable fractals satisfying the uniform open set condition.
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1 Introduction

1.1 Overview

In this paper we begin the study of analysis on V -variable fractals by computing
their Hausdorff dimension, under the assumption of an open set condition. In or-
der to make the paper self-contained we include an informal discussion of some
simple examples of V -variable fractals and their relationship to other notions of
random fractals. For more details see [4].

The key idea is to code up relevant information as a product of random V � V

matrices, one for each level in the construction of a generic V -variable fractal.
The almost sure growth rate of the norms of these products can be obtained from
a variant of the Furstenberg–Kesten theorem for products of random matrices.
Necks are defined in Definition 5.3 and used in (5.11) and (5.16) to construct
an appropriate comparison measure � on a generic V -variable fractal, and then to
bound the local mass growth rate of � in (5.17) and (5.21).

This work was partially supported by the Australian Research Council and carried out at the Aus-
tralian National University.
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446 M. Barnsley, J. E. Hutchinson and Ö. Stenflo

1.2 Background

Fractal sets generated by a single (contractive) iterated function system [IFS], and
random fractal sets generated from a family of such IFSs together with a probabil-
ity distribution on this family, are studied as mathematical models of disordered
systems. In this latter setting the most commonly studied random fractals are ran-
dom recursive fractals and random homogeneous fractals. In particular, Hausdorff,
walk and spectral dimensions have been computed in special cases.

See [7, 8, 14] for general background on fractals and random fractals, including
their applications, and see [18, 15, 6, 10, 11, 17, 12, 13, 1, 16, 21] and the refer-
ences therein for the study of the various dimensions and other analytic properties
of fractals.

The classes of V -variable fractals, together with their natural probability dis-
tributions, are defined in the next section. For V D 1; 2; : : : , they interpolate
between recursive and homogeneous fractals, and similarly for the random ver-
sions in each case. They have some initially surprising properties as noted in
Section 1.4. In particular, they correspond to the elements of the attractor of a
single deterministic IFS, operating not on Rn but on the metric space of V -tuples
of compact subsets of Rn. Their natural probability distribution can be obtained
from the unit mass measure on this deterministic IFS, and so they can be rapidly
generated by a “chaos game” or Monte Carlo Markov Chain [MCMC] algorithm.

1.3 Preliminary notation

Fix .F ; P / where F is a collection of (contractive) IFSs operating on Rn and P
is a probability distribution on F .

From this data, as sketched in the model example in Section 2, one constructs
a pair .K1;K1/ where K1 is the class of recursive fractals corresponding to
.F ; P / and K1 is a natural probability distribution on K1, see [6, 10, 17].
One also constructs a corresponding pair .K1;K1/ where K1 is the correspond-
ing class of homogeneous fractals and K1 is the natural probability distribution
on K1, see [12].

For each natural number V we also construct the family KV of V -variable
fractals together with a natural probability distribution KV on KV . These fami-
lies .KV ;KV / interpolate between the previous two classes .K1;K1/ (the V D 1
case) and .K1;K1/ (the limit case as V ! 1). Each class of V -variable ran-
dom fractals, with its probability distribution, has the surprising property that it can
be obtained from the attractor of a single IFS operating on V -tuples of compact
subsets of Rn.
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V -variable fractals: dimension results 447

For the general development of V -variable fractals see [4], and for other exam-
ples and discussion see [3, 2].

1.4 Properties of V -variable fractals

We are interested in V -variable fractals for the following reasons, see [4, 3].

(i) Families of V -variable fractals, together with their probability distributions,
interpolate between random homogeneous fractals and random recursive
fractals.

(ii) Certain families of functions .ˆa; a 2 AV ; PV / and .F a; a 2 AV ; PV /

together with the probability distribution PV on AV are IFSs with probabil-
ities in the standard sense, the first acting on �V and the other on C.R2/V .
(See (2.1) and (2.2), or Section (4.1), for the relevant definitions.) Their
measure attractors on �V and C.R2/V respectively, projected in any one of
the V component directions, give the collection of random V -variable fractal
trees and sets together with their natural probability distributions.

(iii) The chaos game for these IFSs can be used to generate a sample of V -vari-
able fractals, whose empirical distribution approaches the probability distri-
bution on V -variable fractals as the sample size approaches infinity.

(iv) Analogous results apply to V -variable fractal measures under weak local
contractive conditions as opposed to strict global contractivity. Such condi-
tions are natural, for example, in modelling stochastic processes where indi-
vidual sample paths may be bounded, but there is no uniform bound. In this
case one has an IFS operating on a non-locally compact state space. But the
chaos game result can be extended to this setting.

(v) By taking large V the chaos game gives a fast forward process for the gen-
eration of a sample of fractals approximating random recursive fractals and
their probability distribution. This is of practical interest, since normally one
builds individual examples of random recursive fractals by a computationally
expensive backward process.

2 Sierpinski gaskets, a model example

2.1 Recursive and homogeneous gaskets

Let F D .R2If1; f2; f3/ be the IFS consisting of three contraction maps on R2,
each with contraction ratio 1=2, and having fixed points that are the vertices of
an equilateral triangle T of unit diameter. Let G D .R2If1; f2; f3/ be the IFS
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448 M. Barnsley, J. E. Hutchinson and Ö. Stenflo

consisting of three contraction maps, each with contraction ratio 1=3, and having
the same fixed points as the corresponding maps in F . The attractors of F and G
are denoted by SF and SG respectively, see Figure 1.

Figure 1. Prefractal approximations to the attractors SF and SG respectively.

Consider F D¹F;Gº, together with the probability distributionP D¹1=2; 1=2º
on F . Let � denote the set of labelled trees which are rooted, 3-branching, and
infinite, where the label at each node is either F or G; see Section 3.2. A modified
Sierpinski gaket K! can be generated from each ! 2 �, see Figure 2.

Such fractals K! are examples of recursive fractals. If the nodes of ! at each
fixed level are the same but may vary from level to level, then K! is called a
homogeneous fractal.

It will also be convenient to consider finite, level k, labelled trees for each
k � 0; see Figure 2. Such trees correspond to level k prefractals.

Figure 2. Level 3 recursive prefractals that are 1, 2 and 3-variable respectively,
together with the corresponding finite labelled trees. Each vertex of the triangle T is
labelled according to the function which fixes it. The labelling convention is clear:
the 3 tree labels above each node when read from left to right correspond to applying
the corresponding functions onto the bottom left, top and bottom right respectively
of the relevant triangle.

Brought to you by | Uppsala University Library (Uppsala University Library)
Authenticated | 172.16.1.226

Download Date | 5/7/12 7:45 PM



V -variable fractals: dimension results 449

Fractals such as SF and SG have the following properties:

(i) Spatial self similarity: loosely expressed, at each fixed “scale” the component
parts are equivalent up to simple transformations, for example, translations
in the case here.

(ii) Scale self similarity: the equivalence class at each scale is the same.

Homogeneous fractals have spatial self similarity but, generically, do not have
scale self similarity. Recursive fractals generically have neither spatial nor scale
self similarity. Both classes have statistical self similarity if one imposes suitable
probability distributions on their construction.

If the labels of the tree ! are chosen in an iid manner according to some prob-
ability distribution P , except that in the homogeneous case all labels at each fixed
level are same, then one obtains random recursive fractals and random homoge-
neous fractals respectively.

2.2 V -variable gaskets

Now assume that, at each level of ! 2 �, the subtrees rooted at that level have
the property that they belong to at most V distinct isomorphism classes. In this
case, ! is said to be a V -variable labelled tree, and the fractal K! is said to
be a V -variable gasket or fractal. Such fractals have a form of partial spatial
self similarity. Similarly, define V -variable finite labelled trees and V -variable
prefractals as in Figure 2. Notice that homogeneous fractals and 1-variable fractals
are the same.

Let�V denote the class of V -variable trees ! corresponding to F , and let KV

denote the corresponding class of V -variable fractals K! .
As is illustrated in Figure 3, there are natural maps ˆa from V -tuples of infi-

nite, respectively level k, labelled trees .!1; : : : ; !V / to V -tuples of infinite, re-
spectively level k C 1, labelled trees .!01; : : : ; !

0
V /, respectively. That is,

.!01; : : : ; !
0
V / D ˆ

a.!1; : : : ; !V /: (2.1)

The label at the base or level 0 node of each !0v is determined by ˆa and is either
F or G. The three subtrees of each !0v rooted at level one are also determined by
ˆa and taken from the set ¹!1; : : : ; !V º, possibly with repetition.

The mapsˆa are described by V � .M C1/ arrays a, whereM D 3 and V D 4
in Figure 3. In general, M is the maximum cardinality of the set of functions in
each IFS from the family F .
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450 M. Barnsley, J. E. Hutchinson and Ö. Stenflo

Figure 3. A V D 4 example. The map ˆa0 is described by the array a0. It is
also described by the labels in the level 0 (bottom) boxes, and the network of lines
between these boxes and the level 1 (middle) boxes.

For example, row 3 of a0 is G; 2; 4; 2. It contains the information that the third
component of ˆa0.!1; !2; !3; !4/ is the tree whose root node is labelled G, and
whose three subtrees, rooted at the next level, are !2, !4 and !2 respectively. This
information is also provided by the facts that box 3 at level 0 contains the symbolG,
and the three lines from this box in the order left to right connect to boxes 2, 4 and
2 at level 1.

Similar remarks apply to ˆa1 .

Corresponding to the family F let

AV D the set of all such arrays (indices) a;

A1V D ¹a0a1 : : : ak : : : W ai 2 AV for all iº:
(2.2)

The maps F a act on V -tuples of compact subsets of Rn in an analogous man-
ner, see Figure 4.

If a D a0a1 : : : ak : : : 2 A1V , then

.!a
1 ; : : : ; !

a
V / WD lim

k!1
ˆa0 ı � � � ıˆak�1.!01 ; : : : ; !

0
V /;

.Ka
1 ; : : : ; K

a
V / WD lim

k!1
F a0 ı � � � ı F ak�1.K01 ; : : : ; K

0
V /:

(2.3)

The limits exist and are independent of .!01 ; : : : ; !
0
V / and .K01 ; : : : ; K

0
V / respec-

tively. Up to level k, the labelled trees .!a
1 ; : : : ; !

a
V / depend only on the maps

ˆa0 ; : : : ; ˆak�1 , see Figure 4 where k D 2.
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V -variable fractals: dimension results 451

Figure 4. The map F a1 followed by F a0 act on C.R2/4, the space of 4-tuples of
compact subsets of R2, in a manner which is encoded in the corresponding arrays
a0 and a1. For example, row 3 of a0 is G; 2; 4; 2 and contains the information that,
for any .K1; K2; K3; K4/, component 3 of F .K1; K2; K3; K4/ will be g1.K2/ [
g2.K4/ [ g3.K2/. Note a0 and a1 are as in Figure 3.

2.3 Symbolic representation

There are two ways of representing V -variable fractals.
First, any V -variable fractal K can be represented by a labelled tree ! 2 � as

in Figure 2. This does not utilise the V -variability.
Second, and more useful here, the fractal sets Ka

v in (2.3) are also described
by the infinite sequence a D a0a1 : : : ak : : :, often called an address for the
V -tuple Ka. The map a 7! Ka is typically many-to-one.

The labelled trees !a
v and the fractal sets Ka

v are V -variable, and every V -vari-
able tree and fractal set can be obtained in this manner. Not only is .!a

1 ; : : : ; !
a
V /

a V -tuple of V -variable trees, but it satisfies the stronger condition that, for each
k, there are at most V isomorphism classes of trees rooted at level k, chosen from
all the !a

1 ; : : : ; !
a
V taken together. A similar remark applies to .Ka

1 ; : : : ; K
a
V /.

2.4 Random V -variable gaskets

So far we have not required a probability distribution on the class �V of V -vari-
able trees or on the class KV of V -variable fractals. However, there is a natural
probability distribution PV on AV that is inherited from the probability distribu-
tion P on the family of IFSs F D ¹F;Gº. This induces a probability distribution
on A1V , thence from (2.3) on .�V /V � �V and .KV /

V , and thence by projection
on �V and KV .

More precisely, all components of a 2 AV are chosen independently; those in
the first column from F according to P and the remaining entries from ¹1; : : : ; V º
according to the uniform distribution. The resulting probability distribution PV
on AV induces a probability distribution on A1V , obtained by choosing the ele-
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ments ak of the sequence a D a0a1 : : : ak : : : in an iid manner according to PV .
The mapping A1V ! �V given by (2.3) now induces a probability distribution on
.�V /

V � �V . The projected distribution on �V in any coordinate direction is
independent of the coordinate direction, and similarly for KV . The probability dis-
tribution on �1 obtained in this manner is the same as the random homogeneous
distribution. The distribution on �V .� �/ converges to the random recursive
distribution on � as V !1. See [4] for details.

2.5 Flow matrices

Recall that the three fixed points of f1, f2 and f3 are also the fixed points of g1, g2
and g3; namely, the vertices of an equilateral triangle T of unit diameter. Suppose
K D K! is a recursive Sierpinski triangle with labelled tree ! 2 �. The 3k

scaled triangles in the k-level prefractal approximation provide an efficient cover
of K for large k, see Figure 2 where k D 3, and Figure 4 where k D 2. In order
to study the Hausdorff measure H˛.K/, it is natural to consider

S.!; k; ˛/ WD
X

¹m2!WjmjDkº

jTmj
˛:

Here, on the right side, we are summing the diameters to the power ˛ of the 3k

triangles in the level k prefractal for K, see also (4.4).
As in Figure 5, let .K 01; : : : ; K

0
V / D F a.K1; : : : ; KV /, where .K1; : : : ; KV /

has labelled trees ! D .!1; : : : ; !V / and .K 01; : : : ; K
0
V / has labelled trees !0 D

.!01; : : : ; !
0
V /. Setting S .!; k; ˛/ D .S.!1; k; ˛/; : : : ; S.!V ; k; ˛//, one can see

by examining Figure 5 that

S .!0; k; ˛/ DM a.˛/S .!; k � 1; ˛/; (2.4)

where, in general, M a.˛/ is the V � V flow matrix constructed from a as in Defi-
nition 4.2. See also Proposition 4.1. If !a D .!a

1 ; : : : ; !
a
V / and .Ka

1 ; : : : ; K
a
V /

are as in (2.3), it follows on iterating (2.4) that

S .!a; k; ˛/ DM a0 ı � � � ıM ak�11:

The vector 1 is a vector of units, see also Proposition 4.3.
For a matrix M , let kMk be obtained by summing the absolute values of all

components. It is now plausible that there is a unique d such that kM a0 ı � � � ı

M ak�1k should diverge exponentially fast to C1 a.s. for ˛ < d , decay expo-
nentially fast to 0 a.s. for ˛ > d , and that this d should be the a.s. Hausdorff
dimension of Ka

1 ; : : : ; K
a
V . We show this is the case in the main theorem, see

Sections 4 and 5. In Section 6 we compute some examples.
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Figure 5. The first row represents fractals .K1; : : : ; K4/, or prefractals of level
� k � 1, corresponding to labelled trees ! D .!1; : : : ; !4/. The second row repre-
sents .K 01; : : : ; K

0
4/ D F a.K1; : : : ; K4/ with labelled trees !0 D .!01; : : : ; !

0
4/. If

the vth component of S .!; k � 1; ˛/ is the k � 1 level approximation to H˛.Kv/,
then, in the case here, S.!03; k; ˛/ D

�
1
3

�˛
S.!2; k� 1; ˛/C 2

�
1
3

�˛
S.!3; k� 1; ˛/.

Similarly, S .!0; k; ˛/ DM a.˛/S .!; k � 1; ˛/.

Results for walk and spectral dimensions of V -variable fractals, and their prop-
erties, have been obtained in work by Uta Freiberg, Ben Hambly and Hutchinson.

3 Notation and assumptions

The diameter of a set A is denoted by jAj. The Hausdorff measure of A in the
dimension ˛ is denoted by H˛.A/. The Hausdorff dimension of A is denoted by
dimH .A/.

3.1 A family of contractive IFSs

Fix a family F D ¹F � W � 2 ƒº of IFSs acting on the space Rn, where we have
F � D .RnIf �1 ; : : : ; f

�
M�
/, each f �m W R

n ! Rn with Lipschitz constant r�m < 1,
andƒmay be infinite. Fix a probability distribution P onƒ, or equivalently on F .

Assume

0 < rmin � r
�
m � rmax < 1; M WD max

�2ƒ
M� <1: (3.1)

We usually further assume the f �m W R
n ! Rn are similitudes. That is,

jf �m .x/ � f
�
m .y/j D r

�
mjx � yj 8x; y 2 Rn: (3.2)
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454 M. Barnsley, J. E. Hutchinson and Ö. Stenflo

In this case we will also assume that F satisfies a uniform open set condition. That
is, there exists a non-empty open set O such that

M�[
mD1

f �m .O/ � O; f �m .O/ \ f
�
n .O/ D ; if m ¤ n and � 2 ƒ: (3.3)

We note explicitly when (3.2) and (3.3) apply.

3.2 Labelled trees

We characterise the set � of labelled trees !, corresponding to the family F of
IFSs, as follows:

An (unlabelled) tree is a set ! of finite sequences m D m1 : : : mk where each
mj 2 ¹1; : : : ;M º, together with the empty sequence ;, and which is closed under
the operation of taking initial segments. Sequences m 2 ! are called nodes.
(Note that the branching number at each node is � M .) The level jmj of the node
m D m1 : : : mk is defined to be jmj D k, while j;j D 0.

Some, but not all, such trees, correspond to one or more labelled trees. More
precisely:

A labelled tree, corresponding to the family of IFSs F , is a tree ! together with
a map from the set of nodes of ! intoƒ. This map is also denoted by !. If m 2 !

and !.m/ D �, then we require that the nodes of ! whose immediate predecessor
is m are precisely m1; : : : ;mM�. The edges rooted at a node correspond in a
natural way to the functions in the IFS associated to that node.

Let� denote the set of all labelled trees which correspond to F . We frequently
refer to a labelled tree simply as a tree.

A V -variable labelled tree ! 2 � is a labelled tree such that, for each level k,
there are at most V non-isomorphic subtrees of ! rooted at level k. Let �V � �
denote the set of all V -variable labelled trees which correspond to F .

3.3 Approximating fractal sets

For E � Rn, ! 2 � and nodes m D m1 : : : mk 2 !, define

E; D E
0
D E; Em1:::mk D f

!.;/
m1

ı f !.m1/m2
ı � � � ı f !.m1:::mk�1/mk

.E/;

Ek D
[
jmjDk

Em1:::mk :
(3.4)

When we need to make the dependence on ! explicit, we will write Em.!/ or
Ek.!/, for example.
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For O as in (3.3) we have

O � Om1 � � � � � Om1:::mk � � � � ; O � Om1 � � � � � Om1:::mk � � � � ;

Om \On D ; if jmj D jnj; m ¤ n;

O � O1 � � � � � Ok � � � � ; O � O
1
� � � � � O

k
� � � � ;

K! WD
\
k�0

O
k
.!/:

(3.5)

The set K! is the fractal set corresponding to !. Even if the open set condition
does not apply, we obtain the same set K! by replacing O by any non-empty
compact set E for which

M�[
mD1

f �m .E/ � E 8� 2 ƒ: (3.6)

The set KV of V -variable fractals sets is defined by

KV D ¹K
!
W ! 2 �V º:

4 The Hausdorff dimension of V -variable fractals

4.1 The maps ˆa and F a

(See the examples in Figures 3, 4, 5 and 6.) The index set AV is defined to be the
set of all arrays a of the form

a D

2664
I a.1/ J a.1; 1/ : : : J a.1;M/
:::

:::
: : :

:::

I a.V / J a.V; 1/ : : : J a.V;M/

3775 ; (4.1)

where I a.v/ 2 ƒ, M is as in (3.1), J a.v;m/ 2 ¹1; : : : ; V º if 1 � m � MIa.v/

and J a.v;m/ D 0 if MIa.v/ < m �M . See also [4, Section 5.3].
The probability distribution PV on AV is obtained as follows. The elements in

the first column are chosen independently according to P . The elements J a.v;m/
for 1 � m � MIa.v/ are chosen independently of one another and of elements in
the first column, according to the uniform distribution on ¹1; : : : ; V º. Any remain-
ing elements J a.v;m/ for m > MIa.v/ are set equal to 0.
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456 M. Barnsley, J. E. Hutchinson and Ö. Stenflo

The mapˆaV W �
V ! �V is defined by requiring, for any .!1; : : : ; !V / 2 �V ,

that the vth component of ˆa.!1; : : : ; !V / 2 �V is the labelled tree whose base
node is labelledF I

a.v/, and whosemth subtree rooted at level one is !Ja.v;m/ for
1 � m � MIa.v/. Any zeros at the end of each row of a are markers so that all
rows have equal length but otherwise play no role.

Similarly, for any V -tuple of sets .K1; : : : ; KV /, the map F aV W C.Rn/! Rn/
is defined by

F a.K1; : : : ; KV /

D

0@MIa.1/[
mD1

f I
a.1/

m .KJa.1;m//; : : : ;

MIa.V /[
mD1

f I
a.V /

m .KJa.V;m//

1A : (4.2)

For a D a0 : : : ak�1 : : : 2 A1V , assuming (3.6) for some compact E, we define

.!a
1 ; : : : ; !

a
V / WD lim

k!1
ˆa0 ı � � � ıˆak�1.!01 ; : : : ; !

0
V /;

.Ka
1 ; : : : ; K

a
V / WD lim

k!1
F a0 ı � � � ı F ak�1.K01 ; : : : ; K

0
V /:

(4.3)

The limits exist, and are independent of .!01 ; : : : ; !
0
V / and .K01 ; : : : ; K

0
V /, respec-

tively.
If v 2 ¹1; : : : ; V º, then !a

v 2 �V , and every V -variable labelled tree can be
obtained in this manner. However, if ��V is the set of V -tuples of labelled trees
obtained in this manner, then ��V ¨ .�V /

V .

The probability distribution P1V on A1V is defined by selecting the ak in an iid
manner according to PV . This induces a probability distribution on��V � .�V /

V

via (4.3), and thence a probability distribution �V on �V by projecting in any
of the V coordinate directions. Similarly one obtains a probability distribution
KV on KV . Both �V and KV are independent of choice of projection direction,
although the initial distributions are not product distributions. See [4].

4.2 Approximating Hausdorff measure

Assume the open set condition (3.3), and without loss of generality assume that
jOj D 1. (See Figure 2 and take O to be the interior of the triangle T .)

Suppose ! 2 � is a labelled tree with labels from F . Keeping in mind (3.5),
we think of the collection of sets ¹Om W m 2 !; jmj D kº as an “efficient” cover of
K! for large k. In order to compute the Hausdorff dimension of K! , we consider
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V -variable fractals: dimension results 457

the following quantities for ˛ > 0:

r;.!/ WD jOj D 1;

rm1:::mk .!/ WD jOm1:::mk j

D r!.;/m1
� : : : � r!.m1:::mk�1/mk

for m1 : : : mk 2 !;

S.!; k; ˛/ WD
X

¹m2!WjmjDkº

jOmj
˛

D

X
¹m2!WjmjDkº

.rm.!//
˛ ; noting S.!; 0; ˛/ D 1:

(4.4)

We are interested in the behaviour of S.!; k; ˛/ as k ! 1 since, for large k,
it is an approximation to the Hausdorff measure H˛.K!/.

4.3 Flow matrices

(See the example in Figure 5.) As remarked in the introduction, there are two
ways of representing a V -variable fractalK. One can either use the corresponding
labelled tree ! 2 �, or one can use a sequence a 2 .AV /

1 as in (4.3) which
generates a V -tuple containing K as a component. We use the latter in order to
study S.!; k; ˛/.

For .!1; : : : ; !V / 2 �V define the following vector of real numbers:

S
�
.!1; : : : ; !V /; k; ˛

�
D .S.!1; k; ˛/; : : : ; S.!V ; k; ˛// : (4.5)

Then S
�
.!1; : : : ; !V /; 0; ˛

�
D 1, the V -vector whose components all equal 1.

Proposition 4.1. If .!1; : : : ; !V / 2 �V , and .!01; : : : ; !
0
V / D ˆa.!1; : : : ; !V /,

then

S.!0v; k; ˛/ D

VX
wD1

 X
¹mWJa.v;m/Dwº

�
rI
a.v/
m

�˛!
S.!w ; k � 1; ˛/:

Proof. For any ! 2 � it follows from (4.4) that

rm1:::mk .!/ D r
!.;/
m1

rm2:::mk .!
.m1//;

where !.m1/ is the labelled subtree of ! rooted at node m1 at level one. From the
definition of ˆa.!1; : : : ; !V / in Section 4.1, it follows that

rm1:::mk .!
0
v/ D r

Ia.v/
m1

rm2:::mk .!Ja.v;m1//:
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458 M. Barnsley, J. E. Hutchinson and Ö. Stenflo

Hence, from (4.4) and the above

S.!0v; k; ˛/ D
X

m1:::mk2!
0
v

�
rI
a.v/
m1

�˛ �
rm2:::mk .!Ja.v;m1//

�˛

D

MIa.v/X
m1D1

 �
rI
a.v/
m1

�˛ X
m2:::mk2!Ja.v;m1/

�
rm2:::mk .!Ja.v;m1//

�˛!

D

VX
wD1

X
¹m1WJa.v;m1/Dwº

 �
rI
a.v/
m1

�˛ X
m2:::mk2!w

�
rm2:::mk .!w/

�˛!

D

VX
wD1

 X
¹mWJa.v;m/Dwº

�
rI
a.v/
m

�˛!
S.!w ; k � 1; ˛/:

Motivated by this we make the following definition.

Definition 4.2. The V � V flow matrix M a DM a.˛/ for a 2 AV is defined by

M a
vw D

X
¹mWJa.v;m/Dwº

�
rI
a.v/
m

�˛
; 1 � v;w � V:

Flow matrices are the main book keeping tool for tracking the size of covers of
V -variable fractals.

Proposition 4.3. Suppose a 2 A1V , and ! D .!1; : : : ; !V / D !a 2 �V has
address a as in (4.3). Then,

S .!a; k; ˛/ DM a0 ı � � � ıM ak�1 1;

i.e.

S.!a
v ; k; ˛/ D

VX
wD1

�
M a0 ı � � � ıM ak�1

�
vw

for 1 � v � V:

Proof. From Proposition 4.1 and Definition 4.2, for any ! 2 �V ,

S
�
ˆa.!/; k; ˛

�
DM a S .!; k � 1; ˛/:

Hence,

S
�
ˆa0 ı � � � ıˆak�1.!/; k; ˛

�
DM a0 ı � � � ıM ak�1 S .!; 0; ˛/

DM a0 ı � � � ıM ak�1 1:

Since !a is of the form ˆa0 ı � � � ıˆak�1.!/ for some !, the result follows.
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V -variable fractals: dimension results 459

For fixed a D a0 : : : ak�1 : : : and ! as in Proposition 4.3, we often write

Sv.k; ˛/ D S.!v; k; ˛/: (4.6)

Note that Sv.k; ˛/ depends only on a0; : : : ; ak�1, and not on aj for j � k.

4.4 Computing the Hausdorff dimension

If A is a matrix, we define the norm kAk WD
P
v;w jAvw j. It is easily checked that

this norm is submultiplicative, kABk � kAk � kBk.

Main Theorem. Fix F D ¹F � W � 2 ƒº, a probability distribution P on ƒ, an
integer V � 1 and a real number ˛ > 0. Under the assumption (3.1),


.˛/ WD lim
k!1

E
1

k
log kM a0.˛/ � : : : �M ak�1.˛/k

D lim
k!1

1

k
log kM a0.˛/ � : : : �M ak�1.˛/k a.s.

In particular, the second limit is independent of a D a0 : : : ak�1 : : : for P1V a.e.
a 2 A1V . The function 
.˛/ is monotonically decreasing in ˛, and there is a
unique d such that 
.d/ D 0.

Assuming (3.2), and the open set condition (3.3), dimH .K
!/ D d for �V a.e.

! 2 �V .

This theorem is proved in Section 5. For an example see Section 6.

Remark 4.4. The limit 
.˛/ is sometimes called a “Lyapunov exponent”, since
kM a0.˛/ � : : : �M ak�1.˛/k grows like ek
.˛/ as k !1.

The fact 
.˛/ exists and is independent of a, for a.e. a 2 A1V , is a consequence
of the version of the Furstenberg–Kesten theorem [9] in [5, Theorem C, p. 72].
Individual terms 1

k
log.M a0.˛/ � : : : �M ak�1.˛//vw will not normally converge as

k ! 1. In particular, for fixed v and w, .M a0.˛/ � : : : �M ak�1.˛//vw D 0 in-
finitely often a.s. In fact, if J ak�1.u;m/ ¤ w for all u andm, which happens with
positive probability, then all entries in the w column of M ak�1.˛/ are zero, and
hence all entries in the w column of M a0.˛/ � : : : �M ak�1.˛/ are also zero. How-
ever, limk!1 1

k
logSv.k; ˛/ exists a.s. and equals 
.˛/, for every v 2 ¹1; : : : ; V º,

see Lemma 5.5.

Remark 4.5. Assuming the open set condition it follows, for random homoge-
neous fractals K! (the V D 1 case), that

dimH .K
!/ is the unique ˛ for which E� log

M�X
mD1

.r�m/
˛
D 0; for a.e. !: (4.7)
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460 M. Barnsley, J. E. Hutchinson and Ö. Stenflo

See [12] for the direct computation of the dimension in some particular cases. For
random recursive fractals K! , the “V !1” case,

dimH .K
!/ is the unique ˛ for which E�

M�X
mD1

.r�m/
˛
D 1; for a.e. !: (4.8)

See [6, 17, 10, 11].

5 Proof of the Main Theorem

The proof is broken into a number of lemmas.

Assumptions

We continue the assumptions from the beginning of Section 3, and the notation
from Sections 3 and 4. The integer V � 1 is fixed and ˛ is non-negative.

Define

Rmin.˛/ D inf
�

M�X
mD1

.r�m/
˛; Rmax.˛/ D sup

�

M�X
mD1

.r�m/
˛: (5.1)

The sequence a D a0 : : : ak�1 : : : 2 AV is chosen according to P1V as in
Section 4.1. The V -tuple of fractal sets corresponding to a is denoted Ka, and the
corresponding V -tuple of labelled trees is !a. Let

Ka
D .Ka

1 ; : : : ; K
a
V / D .K1; : : : ; KV /;

!a
D .!a

1 ; : : : ; !
a
V / D .!1; : : : ; !V /:

(5.2)

From the next lemma, it follows there is a unique d such that as k ! 1 the
product kM a0.˛/ � : : : �M ak�1.˛/k grows exponentially fast to1 if ˛ < d , and
decays exponentially fast to 0 if ˛ > d . This does not imply convergence to a
non-zero limit or boundedness of kM a0.d/ � : : : �M ak�1.d/k, but it does imply
that any infinite growth, or decay to zero, should be slower than exponential.

Lemma 5.1. The limit

lim
k!1

E
1

k
log kM a0.˛/ � : : : �M ak�1.˛/k DW 
.˛/

exists. In addition,

lim
k!1

1

k
log kM a0.˛/ � : : : �M ak�1.˛/k D 
.˛/ a.s.;
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V -variable fractals: dimension results 461

and in particular is a.s. independent of a. Moreover,

logRmin.˛/ � 
.˛/ � logRmax.˛/:

The function 
 is strictly decreasing, Lipschitz, has derivative in the interval
Œlog rmin; log rmax�, 
.0/ > 0 and 
.˛/! �1 as ˛ ! 1. In particular, there is
a unique d such that 
.d/ D 0.

Proof. The first two claims hold for some 
.˛/ with �1 � 
.˛/ <1. This
follows from the version of the Furstenberg–Kesten theorem in [5, Theorem C,
p. 72] since the ak are chosen in an iid manner.

SupposeA andB are square matrices of the same size with non-negative entries.
Assume

˛1 �
X
j

Aij � ˛2; ˇ1 �
X
j

Bij � ˇ2 for all i:

Let C D AB . Since
P
j Cij D

P
k Aik

�P
j Bkj

�
,

˛1ˇ1 �
X
j

Cij � ˛2ˇ2 for all i:

In particular, from Definition 4.2 and (5.1),

Rkmin.˛/ �
X
w

�
M a0.˛/ � : : : �M ak�1.˛/

�
vw
� Rkmax.˛/ for all v;

and so
VRkmin.˛/ � kM

a0.˛/ � : : : �M ak�1.˛/k � VRkmax.˛/:

Taking logs of both sides, and letting k !1, gives the third claim in the lemma.
From Definition 4.2, if 0 � ˛ < ˇ,

r
k.ˇ�˛/
min kM a0.˛/ � : : : �M ak�1.˛/k � kM a0.ˇ/ � : : : �M ak�1.ˇ/k

� rk.ˇ�˛/max kM a0.˛/ � : : : �M ak�1.˛/k:

Taking logs and letting k !1,

.ˇ � ˛/ log rmin � 
.ˇ/ � 
.˛/ � .ˇ � ˛/ log rmax:

Hence 
 is Lipschitz, differentiable a.e., monotonically decreasing to �1, and
has derivative in the range log rmin to log rmax.

Since


.0/ 2 ŒlogRmin.0/; logRmax.0/� D Œlog.min
�
M�/; logM D log.max

�
M�/�;

it follows that 
.0/ > 0, and so there exists a unique d such that 
.d/ D 0.
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462 M. Barnsley, J. E. Hutchinson and Ö. Stenflo

Remark 5.2. Bob Scealy [19] has pointed out that one can avoid using the Fursten-
berg–Kesten theorem and instead use the fact that one has a renewal process, where
the renewals are the occurrence of a neck. He has used this idea in his investigation
of V -variable fractal graphs.

In the next following lemmas, the notion of a “neck” a 2 AV will play an
important role, see Figure 6.

Figure 6. A neck a with IFSs F , G and H , and with J a.v;m/ D 2 or 0 for all v
and m.

Definition 5.3. An element a 2 AV is called a neck if all J a.v;m/ are equal for
v 2 ¹1; : : : ; V º and if m 2 ¹1; : : : ;MIa.v/º.

A neck occurs at level k in a D a0 : : : ak�1 : : : 2 A1V , or more simply we say
that k is a neck, if ak�1 is a neck.

Remark 5.4. An element a chosen according to PV is a neck with probability
at least V 1�MV . It follows that necks in a sequence a 2 A1V occur infinitely
often a.s.

If a neck occurs in a at level k, then all subtrees of .!a
1 ; : : : ; !

a
V / rooted at level

k are equal. That is, if jmj D jm0j D k and v; v0 2 ¹1; : : : ; V º, then mn 2 !v iff
m0n 2 !v0 , and in this case !v.mn/ D !v0.m

0n/.

For the following lemma recall that Sv.k; ˛/ is the sum of the elements in the
vth row ofM a0.˛/�: : :�M ak�1.˛/. From (4.4) we have that S.!; k; ˛/, for large k,
is an approximation to the Hausdorff measure H˛.K!/. See also Remark 4.4.

Lemma 5.5. For a 2 A1V and ! D !a D .!1; : : : ; !V /,

lim
k!1

1

k
logSv.k; ˛/ D 
.˛/ a.s. (5.3)
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Proof. Let Sv.k; ˛/ D S.!v; k; ˛/, as in (4.6).
Suppose the address sequence a has a neck at level p, where J ap�1.v;m/ D u

for all v 2 ¹1; : : : ; V º and m 2 ¹1; : : : ;MIap�1 .v/º. It follows that all columns
of M ap�1 are zero, except for the uth column, and hence the same is true for
M a0 ı � � � ıM ap�1 .

Suppose A and B are V �V matrices such that all columns of A are zero except
for the uth column, which we denote by a. Let b be the uth row of B . Then

AB D Œ b1a b2a : : : bV a � :

It follows that X
w

.AB/vw D av
X
w

bw D

 X
w

Avw

!X
w

bw :

In particular, the second factor is independent of v.
Apply this to

Sv.k; ˛/ D
X
w

�
M a0 ı � � � ıM ak�1

�
vw
; (5.4)

see Proposition 4.3 and (4.6), with

A DM a0 ı � � � ıM ap�1 ; B DM ap ı � � � ıM ak�1 :

It follows that
Sv.k; ˛/ D Sv.p; ˛/ g.k; ˛/; (5.5)

where g.k; ˛/ is independent of v, and where Sv.p; ˛/ > 0 for all v.
From (5.4), summing over v,

kM a0 ı � � � ıM ak�1k D

X
v

Sv.k; ˛/ D g.k; ˛/
X
v

Sv.p; ˛/:

Hence from Lemma 5.1,


.˛/ D lim
k!1

1

k
log kM a0.˛/ � : : : �M ak�1.˛/k D lim

k!1
log

1

k
g.k; ˛/ a.s.

Going back to (5.5), since Sv.p; ˛/ > 0, it follows that

lim
k!1

1

k
logSv.k; ˛/ D 
.˛/ a.s.

Lemma 5.6. If ˛ > d with d as in Lemma 5.1, then we have H˛.Ka
v / D 0 for

v 2 ¹1; : : : ; V º and for a.e. a. In particular, dimH .K
a
v / � d .
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464 M. Barnsley, J. E. Hutchinson and Ö. Stenflo

Proof. We usually drop the reference to a and write Kv for Ka
v , and !v for !a

v .
Let E be any set such that K1 [ � � � [KV � E, and without loss of generality

suppose jEj D 1. For v 2 ¹1; : : : ; V º and m D m1 : : : mk 2 !v, let

EvIm1:::mk D f
!v.;/
m1

ı f !v.m1/m2
ı � � � ı f !v.m1:::mk�1/mk

.E/;

as in (3.4). Then
Kv �

[
¹m2!vWjmjDkº

EvIm;

and
Sv.k; ˛/ D

X
¹m2!WjmjDkº

jEvImj
˛;

as in (4.6) and (4.4).
Since 
.˛/ < 0, it follows from (5.3) that

lim
k!1

Sv.k; ˛/ D lim
k!1

ek.
1
k

logSv.k;˛// D 0 a.s. (5.6)

Hence H˛.Kv/ D 0 a.s.

Lemma 5.7. Assume F satisfies the open set condition. If ˛ < d , where d is as
in Lemma 5.1, then we have H˛.Ka

v / > 0 a.s. for 1 � v � V . In particular,
dimH .K

a
v / � d a.s.

Proof. Suppose ˛ < d . As before, Kv D Ka
v and !v D !a

v .
For a.e. a and each 1 � v � V , we construct a unit mass measure � on Kv

such that for some c,

�.Br.x// � cr
˛ if r > 0; x 2 Rn: (5.7)

It then follows by the mass distribution principle [7, p. 60] that H˛.Kv/ > 0, and
so dim.Kv/ � d .

A. Properties of Necks. For a 2 A1V and k � 0, let na.k/ D n.k/ denote the first
level � k at which a neck occurs.

Then we claim

8� > 0 9N > 0 such that 8k
�
n.k/ � k � N C �k

�
a.s.; (5.8)

where N will depend on a.
To see this, fix � > 0 and k > 0, and let

Ek D ¹a W n
a.k/ � k > �kº:
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V -variable fractals: dimension results 465

It follows from Remark 5.4 that

P1V .Ek/ �
�
1 � V 1�MV

��k
:

Since
P
k�1 P

1
V .Ek/ < 1, it follows from the Borel–Cantelli lemma that, with

probability one, Ek occurs for only finitely many k, and so n.k/ � k � �k for all
k sufficiently large. Hence for someN depending on a and �, n.k/�k � N C �k
for all k. This proves (5.8).

B. Construction of � and �. Suppose a is as in (5.8) and consider the tree !a D

.!1; : : : ; !V /. For fixed v, a unit measure � will first be constructed on the set e!v
of infinite paths through !v.

For m 2 !v the corresponding cylinder set, a subset of e!v, is defined by

Œm� D ¹p 2 e!v W m � pº;

where m � p means that m is an initial segment of p.
The weight function w is defined on cylinder sets by

w.Œm�/ D r˛vIm WD
�
r!v.;/m1

� : : : � r!v.m1:::mk�1/mk

�˛
: (5.9)

We define a unit mass measure � on e!v by setting, if m 2 !v and jmj D k is a
neck,

�.Œm�/ D
w.Œm�/P

¹w.Œm0�/ W m0 2 !v; jm0j D kº
: (5.10)

The expression for �.Œm�/ in case jmj is not a neck can be found in (5.15).
In order to show this does define a (unit mass) measure on e!v, first recall that

a has necks of arbitrarily large size. We will prove that if k � j are both necks,
m 2 !v and jmj D k, then � satisfies the consistency condition

�.Œm�/ D
X
¹�.Œn�/ W m � n 2 !v; jnj D j º: (5.11)

Here, and elsewhere, m � n means m is an initial segment of the finite sequence n.
Note that Œm� D

S
¹Œn� W m � n 2 !v; jnj D j º, and this is a union of disjoint

sets. It follows from (5.11) that � extends to a unit mass measure on the � -algebra
of subsets of e!v generated by the cylinder sets Œm� for which jmj is a neck. This
is just the � -algebra generated by all cylinder sets, i.e. the class of Borel sets.

In order to prove (5.11), note that if m 2 !v, jmj D k where k is a neck for a,
and ms 2 !v, then it follows from (5.9) and Remark 5.4 that

r˛vIms D �
˛.s/ r˛vIm; (5.12)
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466 M. Barnsley, J. E. Hutchinson and Ö. Stenflo

where �.s/ does not depend on either m or v. Suppose now that j � k. Then
from (5.9) and (5.12),X

¹w.Œn�/ W m � n 2 !v; jnj D j º

D r˛vIm

X
¹�˛.s/ W ms 2 !v; jsj D j � kº

DW �.k; j; ˛/ r˛vIm D �.k; j; ˛/w.Œm�/;

(5.13)

where � does not depend on m or v. Replacing m by m0 and n by n0, and summing
also over m0,X

¹w.Œn0�/ W n0 2 !v; jn
0
j D j º

D �.k; j; ˛/
X
¹w.Œm0�/ W m0 2 !v; jm

0
j D kº:

(5.14)

Dividing (5.13) by (5.14) and using (5.10) gives (5.11).
If m 2 !v with jmj D k, not necessarily a neck, and j � n.k/, then

�.Œm�/ D
X
¹�.Œn�/ W m � n 2 !v; jnj D n.k/º

D

P
¹w.Œn�/ W m � n 2 !v; jnj D n.k/ºP
¹w.Œn0�/ W n0 2 !v; jn0j D n.k/º

D

P
¹r˛vIn W m � n 2 !v; jnj D n.k/ºP
¹r˛vIn0 W n

0 2 !v; jn0j D n.k/º

D

P
¹r˛vIp W m � p 2 !v; jpj D j ºP
¹r˛vIp0 W p

0 2 !v; jp0j D j º
;

(5.15)

using (5.12) in the final equality.
Define the mape� W e!v ! Kv bye�.p1p2 : : : pk : : :/ D lim

k!1
f !v.;/p1

ı f !v.p1/p2
ı � � � ı f !v.p1:::pk�1/pk

.x0/ 2 Kv;

and note that the limit does not depend on x0.
The measure � on e!v projects to the unit mass measure � on Kv, defined

�.A/ D �¹p 2 e!v We�.p/ 2 Aº (5.16)

for A a Borel subset of Kv.

C. An upper estimate for �. Again assume a satisfies (5.8), and consider the cor-
responding tree !a D .!1; : : : ; !V /. Fix v. We show for m D m1 : : : mk 2 !v
that

�.Œm�/ � c1r
˛
vIm; (5.17)

for some constant c1 depending on a but not on m.
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From (5.15),

�.Œm�/ D

P
¹r˛vIn W m � n 2 !v; jnj D n.k/ºP
¹r˛vIn0 W n

0 2 !v; jn0j D n.k/º
�
r˛vImM

n.k/�k

Sv.n.k/; ˛/
: (5.18)

To establish this inequality use (5.9) with m there replaced by n, note that each
r˛j � 1 and the branching number of !v is bounded by M , and use the expression
in (4.4) for Sv.n.k/; ˛/ D S.!v; n.k/; ˛/.

From (5.8), for any � > 0, there exists N.�/ such that

M n.k/�k
�MN.�/M k� (5.19)

for all k.
From (5.3), since ˛ < d and so 
.˛/ > 0, there exists c2 2 R such that for

all j ,

logSv.j; ˛/ � c2 C
j

2

.˛/:

Hence,
Sv.n.k/; ˛/ � c3e

1
2
n.k/
.˛/

� c3e
1
2
k
.˛/ (5.20)

for some c3 > 0 and all k.
Choose � � 1

2

.˛/= logM so that e

1
2
k
.˛/

�M k�, and then chooseN DN.�/.
Dividing (5.19) by (5.20), and using (5.18), gives (5.17) with c1 DMN =c3.

D. The estimate for �. Fix a 2 A1V satisfying (5.8), in which case (5.17) holds.
Assume the open set condition (3.3) holds with the open set O.

Fix x 2 Rn and r > 0. With � the measure on Kv as in (5.16), we show by a
standard argument, see [15, p. 737] or [7, p. 131], that

�.Br.x// � cr
˛: (5.21)

Here c is independent of x and r , and Br.x/ is the open ball of radius r centred
at x.

First note that, for each infinite sequence p D m1m2 : : : mk : : : 2 e!v D e!a
v ,

there is a least k such that

rminr � rvIm1:::mk < r: (5.22)

Let Q.r/ D Qa.r/ be the set of all such m D m1 : : : mk . The sets OvIm for
m 2 Q.r/ are disjoint from (3.5) and the definition of Q.r/, although the jmj are
not necessarily equal. Let Q.x; r/ D Qa.x; r/ be the set of m 2 Q.r/ such that
OvIm meets Br.x/.
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468 M. Barnsley, J. E. Hutchinson and Ö. Stenflo

Choose a1 and a2 so that O contains an open ball of radius a1, and is con-
tained in an open ball of radius a2. Then the sets OvIm each contain a ball of
radius a1rvIm, and hence of radius a1rminr , and they are contained in a ball of
radius a2rvIm, and hence of radius a2r . It follows by a volume comparison that if
q D q.x; r/ is the cardinality of Q.x; r/, since the inner balls are disjoint and are
subsets of B.1C2a2/r.x/, that

q.a1rminr/
n
� .1C 2a2/

nrn;

and so q is bounded independently of x and r .
Hence,

�.Br.x// D �.Br.x/ \Kv/

D �
�
¹p W �.p/ 2 Br.x/ \Kvº

�
� �

�[
¹Œm� W m 2 Q.x; r/º

�
D

X
¹�.Œm�/ W m 2 Q.x; r/º

� c1
X
¹r˛vIm W m 2 Q.x; r/º

� c1qr
˛;

using the definition of Q.x; r/, the disjointedness of the m 2 Q.x; r/ � Q.r/,
the estimate (5.17) and (5.22). This establishes (5.7) and hence the lemma.

6 Examples

For the model problem in the introduction, with F and G each chosen with prob-
ability 1=2, it follows from (4.7) that, for random homogeneous Sierpinski tri-
angles, the dimension is d.1/ D 2 log 3=.log 2 C log 3/ � 1:226. For the cor-
responding random recursive case, from (4.8) the dimension is the solution d of
1
2
3
�
1
2

�d
C

1
2
3
�
1
3

�d
D 1, i.e. d.1/ � 1:262. For V > 1 we used Maple 10 to

compute the values of 
V .˛/ shown in Figure 7. The computed graphs for V > 1

are concave up, although this does not show on the scale used.
Subsequent calculation similarly gave .V; d/ for 1 � V � 20 as follows:

1; 1:2262 2; 1:2402 3; 1:2463 4; 1:2500 5; 1:2524

6; 1:2538 7; 1:2549 8; 1:2557 9; 1:2565 10; 1:2570

11; 1:2576 12; 1:2580 13; 1:2583 14; 1:2585 15; 1:2588

16; 1:2590 17; 1:2592 18; 1:2594 19; 1:2596 20; 1:2597
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d(infty)d(5)d(2)d(1)

α

γ(α)

–0.04

–0.03

–0.02

–0.01

0

0.01

0.02

0.03

1.23 1.24 1.25 1.26 1.27

Figure 7. Graphs of 
V .˛/ D 
.˛/ for V D 1; 2; 5 respectively from left to right.
Here F D ¹F;Gº and P D ¹1=2; 1=2º as in the introduction.
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