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Abstract. We give a survey of some results within the convergence theory for iterated
random functions with an emphasis on the question of uniqueness of invariant proba-
bility measures for place-dependent random iterations with finitely many maps. Some
problems for future research are pointed out.

1. Introduction

Consider a finite set of continuous maps {wi}
N
i=1 on some locally compact separable

metric space (X, d) into itself. Associated to each map we are given continuous proba-
bility weights pi : X → (0, 1), pi(x) > 0, i ∈ S := {1, . . . , N} and

N
∑

i=1

pi(x) = 1, for each x ∈ X.(1)

We call the set {(X, d); wi(x), pi(x), i ∈ S} an IFS with place-dependent probabilities.
Specify a point x ∈ X. We are going to consider Markov chains {Zn(x)} heuristically

constructed in the following way: Put Z0(x) := x, and let Zn(x) := wi(Zn−1(x)) with
probability pi(Zn−1(x)), for each n ≥ 1.

Let C(X) denote the set of real-valued bounded continuous functions on X. Define
the transfer operator T : C(X) → C(X) by

Tf(x) =

N
∑

i=1

pi(x)f(wi(x)).

This operator characterizes the Markov chain. The fact that T maps C(X) into itself
is known as the Feller property. Markov chains with the Feller property are sometimes
denoted Feller chains. We will mainly be interested in the problem of uniqueness/non-
uniqueness of invariant probability measures. A probability measure π is invariant if

∫

X

Tfdπ =

∫

X

fdπ,(2)
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for all f ∈ C(X). If we let M(X) denote the set of Borel probability measures on X and
define T ? : M(X) → M(X) by requiring that

∫

X
fdT ?ν =

∫

X
Tfdν, for any ν ∈ M(X),

and f ∈ C(X), then (2) simply reads that π ∈ M(X) is invariant iff T ?π = π. (T ? is
well defined by the Riesz representation theorem). Since T is assumed to have the Feller
property it follows that T ? is continuous if we endow M(X) with the topology of weak

convergence (i.e. πn
w
→ π ⇔

∫

fdπn →
∫

fdπ, for all f ∈ C(X)).
It is known, see e.g. [51], that a Markov chain, {Zn(x)}, with the Feller property always

possesses at least one invariant probability measure under the mild condition that for any
ε > 0, and x ∈ X, there exists a compact set C such that
lim infn→∞(1/n)

∑n−1
j=0 P (Zj(x) ∈ C) > 1 − ε. (Note that this condition holds trivially

e.g. when (X, d) is compact.)
An invariant probability measure for the transfer operator is a stationary probability

measure for the associated Markov chain. That is, a Markov chain ”starting” according to
a stationary probability measure will form a stationary stochastic process (with discrete
time).

The first papers on random iterations were under the name “chains with complete
connections”. (Typically, the “index”-sequence is a stochastic sequence with “infinite
connections”).

Papers by Onicescu and Mihoc, e.g. [54], was motivated by applications to Urn models.
In 1937 Doeblin and Fortet [20] published a paper which has had a great impact on future
works in this subject. In 1950 Ionescu Tulcea and Marinescu [33] extended the work in
[20]. We refer to [35] for a discussion of this and for further extensions. An important
contribution was also given in Harris [29], whose ideas we are going to explore in Theorem
2 below. Place-dependent iterations has from the 50’s also been studied under the name
”learning models”, see e.g. [18], [45], [38], [37], and [52].

The reader is referred to Kaijser [42] for an extensive survey of the literature up to
1980.

In the middle of the 80’s there was a renewed attention in these kinds of models after
Hutchinson [32], and Barnsley et al., [5] and [6] had demonstrated its importance within
the theory of fractals. The concept of iterated function systems, introduced in [5], is
nowadays the most widely used terminology. We refer to [28], [36], [27], [35] and [43] for
results relating the convergence theory for IFS with results within the theory of chains
with complete connections.

Recently it has also been realized that there is a strong link to the thermodynamic
formalism of statistical mechanics. We are going to describe this connection briefly
below. This important branch of symbolic dynamics started to develop in the 70’s by
works of Sinai [60], Ruelle [57],[58], Bowen [13] and others.

The present paper is organized as follows:
In Section 2 we review some results within the theory of place-independent itera-

tions. Any Markov chain can be represented as an iterated function system with place-
independent probabilities with (typically) an uncountable number of discontinuous maps
(parameterized by the unit interval), see e.g. [47] or [2]. The results discussed in Section
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2 can be considered as preliminaries for the next section where we are going to prove
a convergence theorem for iterated function systems with place-dependent probabilities
by making a place-independent representation and use techniques from the theory of
place-independent iterations to obtain our result.

In Section 3 we consider place-dependent random iterations with “stable” maps.
We start in Section 3.1 by discussing results in the case when (X, d) is a symbolic space

with finitely many symbols and the maps, wj, j ∈ S, are a simple form of contractions.
We present some smoothness conditions on the probability weights ensuring uniqueness
of invariant measures and also, on the contrary, Bramson and Kalikow’s example of a
contractive IFS with place-dependent continuous (strictly positive) probabilities with
more than one invariant probability measure. We also briefly describe the case when the
probabilistic assumption (1) is relaxed. Such cases have been well-studied in statistical
mechanics. In these cases we loose our probabilistic interpretation, but we can sometimes
normalize the transfer operator and continue our analysis as in the probabilistic case.

In Section 3.2, we show how the results on symbolic spaces may be lifted to other
compact spaces in case the maps in the IFS satisfy certain (deterministic) stability prop-
erties.

In Section 4 we discuss briefly some generalizations to stochastically stable situations,
where the lifting method does not work out.

Finally in Section 5, we point out some problems for future research.

2. Iterated Function Systems with probabilities

Let (X, d) be a complete separable metric space, and let S be a measurable space.
Consider a measurable function w : X × S → X. For each fixed s ∈ S, we write
ws(x) := w(x, s). We call the set {(X, d); ws, s ∈ S} an iterated function system (IFS).
(This generalizes the usual definition, as introduced in [5] (c.f. Section 1), where S
typically is a finite set and the functions ws = w(·, s) : X → X typically have (Lipschitz)
continuity properties.)

Let {In}
∞
n=1 be a stochastic sequence with state space S. Specify a starting point

x ∈ X. The stochastic sequence {In} then controls the stochastic dynamical system
{Zn(x)}∞n=0, where

Zn(x) := wIn
◦ wIn−1

◦ · · · ◦ wI1(x), n ≥ 1, Z0(x) = x.(3)

We refer to [7], [24], [1], [12], and [59] for an overview of results in cases when {In} has
some dependence structure.

The particular case when {In} is a sequence of independent and identically distributed
(i.i.d.) random variables allows a richer analysis. See [47], [62] and [19] for surveys of
this literature. We will assume that {In} is i.i.d. in this section and concentrate on a
result that will be useful in later sections.

Let µ denote the common distribution of the In’s. We call the set
{(X, d); ws, s ∈ S, µ} an IFS with probabilities. The associated stochastic sequence



4 ÖRJAN STENFLO

{Zn(x)} forms a Markov chain with transfer operator

Tf(x) =

∫

S

f(ws(x))dµ(s), f ∈ C(X).

For x ∈ X, define the reversed iterates

Ẑn(x) := wI1 ◦ wI2 ◦ · · · ◦ wIn
(x), n ≥ 1, Ẑ0(x) = x.(4)

Since {In}
∞
n=1 is i.i.d. it follows that Zn(x) and Ẑn(x) defined in (3) and (4) respectively

are identically distributed random variables for each fixed n and x. Thus in order to
prove distributional limit results for the Markov chain {Zn(x)} as n tends to infinity
we may instead study the pointwise more well behaved (but non-Markovian) sequence

{Ẑn(x)}.
We say that a probability measure, π, is attractive if

P (Zn(x) ∈ ·)
w
→ π(·)

for any x ∈ X, i.e. T nf(x) →
∫

X
fdπ for any f ∈ C(X) and any x ∈ X.

Proposition 1. An attractive probability measure for a Feller chain is uniquely invari-
ant.

Proof. Since Tf ∈ C(X), for any f ∈ C(X), the invariance of the attractive probability
measure, π, follows immediately by taking limits in the equality T n(Tf(x)) = T n+1f(x).
Suppose ν is an arbitrary invariant probability measure. Then for any f ∈ C(X),

∫

X

fdν =

∫

X

T nfdν →

∫

X

(

∫

X

fdπ
)

dν =

∫

X

fdπ.

Therefore ν = π.

Corollary 1. Suppose {(X, d); ws, s ∈ S, µ} is an IFS with probabilities generating a
Markov chain (3) with the Feller property. Suppose the limit

Ẑ := lim
n→∞

Ẑn(x)(5)

exists and does not depend on x ∈ X a.s., then π defined by π(·) = P (Ẑ ∈ ·) is attractive
and thus the unique invariant probability measure for {(X, d); ws, s ∈ S, µ}.

Proof. This can be seen from Proposition 1 by using that almost sure convergence im-
plies convergence in distribution for Ẑn(x) and by observing that Zn(x) and Ẑn(x) are
identically distributed for each fixed n and x ∈ X.

Remark 1. A slightly less general version of Corollary 1 was formulated as a principle
in [50].

In the case when the state space is compact, we obtain the following criteria for
uniqueness of invariant probability measures.
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Proposition 2. Let (K, d) be a compact metric space and suppose {(K, d); ws, s ∈ S, µ}
is an IFS with probabilities generating a Markov chain (3) with the Feller property.
Suppose

diam(Zn(K))
P

−→ 0,(6)

(where
P

−→ denotes convergence in probability, and diam(Zn(K)) :=
supx,y∈K d(Zn(x), Zn(y)) is the diameter of the set Zn(K)). Then there exists a unique
invariant probability measure, π, for {(K, d); ws, s ∈ S, µ}, and π is uniformly attractive
i.e.

sup
x∈K

|T nf(x) −

∫

fdπ| → 0, as n → ∞,

for any f ∈ C(K).

Remark 2. The criteria, (6), for uniqueness of invariant probability measures was in-
troduced by Öberg in [53].

Proof. Let {xn} be a sequence in K. It is sufficient to prove that the limit Ẑ :=

limn→∞ Ẑn(xn) exists and does not depend on {xn} a.s.

We are going to show that {Ẑn(xn)} is almost surely a Cauchy sequence. Since {In}

is i.i.d. it follows that condition (6) implies that diam(Ẑn(K))
P

−→ 0. Since Ẑn+1(K) ⊂

Ẑn(K), for any n, it follows that in fact diam(Ẑn(K))
a.s.
−→ 0. For any positive integers

n, and m with n < m we have

d(Ẑn(xn), Ẑm(xm)) ≤ d(Ẑn(xn), Ẑn(wIn+1
◦ · · · ◦ wIm

(xm)) ≤ diam(Ẑn(K)).(7)

Thus {Ẑn(xn)} is almost surely a Cauchy sequence which converges since K is complete.

Since (7) holds uniformly in {xn} it follows that the a.s. limit Ẑ is independent of
{xn}. Since almost sure convergence implies convergence in distribution, it follows that

T nf(xn) →
∫

K
fdπ, for any f ∈ C(K), where π(·) := P (Ẑ ∈ ·). This completes the

proof of Proposition 2.

We are going to use Proposition 2 in the section below.

Remark 3. Note that in this section we do not require the family of maps {ws} to be
finite or countable and that we do not require any of the maps in {ws} to be continuous.
Thus in particular, we do not assume any global Lipschitz condition for any of the maps
in {ws}. Related results for locally contractive IFS can be found in [40], [42], and [61].

3. Iterated Function Systems with place-dependent probabilities
(deterministically stable cases)

Let {(X, d); wi(x), pi(x), i ∈ {1, 2, ..., N}} be an IFS with place-dependent probabil-
ities. We will suppose that the pi’s are strictly positive and uniformly continuous. For a
uniformly continuous function g : X → (0,∞), define the modulus of uniform continuity

∆g(t) = sup{g(x) − g(y) : d(x, y) < t}.



6 ÖRJAN STENFLO

We are here going to present some uniform smoothness conditions on the pi’s and stability
conditions on the family of maps {wi} that guarantee a unique invariant probability
measure and see how a “phase transition” to non-uniqueness of invariant probability
measures can occur if the smoothness conditions on the pi’s are relaxed for a fixed family
of contractions {wi}.

We start by discussing the important particular case when the state space is a symbolic
space.

3.1. The case when X is a symbolic space. Let ΣN := {1, 2, ..., N}
�

and introduce
a topology on ΣN induced by the metric

ρ(i, j) :=







2−n, if i and j differ for the first time in the
nth digit

0, if i = j

The space (ΣN , ρ) is a compact metric space.
For j ∈ {1, 2, ..., N} and i = i1i2... ∈ ΣN , let ji = ji1i2.... Consider a continuous

function g : ΣN → (0,∞), and suppose that g is normalized in the sense that

N
∑

j=1

g(ji) = 1, for any i ∈ ΣN .(8)

(Such a function g is called a (strictly positive, continuous) g-function, see [46].)
Define pj(i) = g(ji), and wj(i) = ji. Then {(ΣN , ρ); wj(i), pj(i), j ∈ {1, 2, ..., N}} is

an IFS with place-dependent probabilities. Note that the maps wj are contractions, and
that this system can be represented by the function g. Invariant probability measures
for IFSs associated to a g-function are called g-measures. In Section 3.2 below we are
going to see how results for this particular IFS can be lifted to prove results for IFSs on
other state spaces by establishing a semi-conjugacy.

If we define Φ(i) = log g(i) and let θ denote the shift map (i.e. θ(i1i2...) = i2i3....), we
see that the transfer operator can be written as

Tf(i) =
N

∑

j=1

pj(i)f(wj(i)) =
N

∑

j=1

eΦ(ji)f(ji) =
∑

y∈θ−1i

eΦ(y)f(y).(9)

The right hand version of (9) is how this operator is most commonly expressed. The
transfer operator, sometimes also called the Ruelle-Perron-Frobenius operator, occurs
naturally in statistical physics but then the normalization condition (8) is not so natural.

We call the system, {(ΣN , ρ); wj(i), pj(i), j ∈ {1, 2, ..., N}}, a weighted IFS in cases
when g does not necessarily satisfy condition (8).

The following theorem is a consequence of a version of the “Ruelle-Perron-Frobenius
theorem” proved by Walters [66].
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Theorem 1. (Walters (1975)) Let g : ΣN → (0,∞) be continuous, and let
{(ΣN , ρ); wj(i), pj(i), j ∈ {1, 2, ..., N}} be the associated weighted IFS. Suppose

∞
∑

k=0

∆g(2
−k) < ∞.(10)

Then there exists a constant λ > 0 (the spectral radius of T ), a unique λ-invariant
probability measure i.e. distribution, π, satisfying

∫

ΣN

Tfdπ = λ

∫

ΣN

fdπ,

for all f ∈ C(ΣN ), and a unique function h ∈ C(ΣN) with h > 0 such that

Th = λh, and

∫

ΣN

hdπ = 1.

The probability measure π is uniformly attractive in the sense that

sup
x∈ΣN

|λ−nT nf(x) − h

∫

fdπ| → 0, as n → ∞,

for any f ∈ C(ΣN ).

Proof. We refer to [66] for a rigorous proof. We will here only give some idea of its
structure.

The existence of λ and π, follows immediately by applying the Schauder-Tychonoff fix-
point theorem (see [22], p.456) to the map ν → (

∫

ΣN

∑N

i=1 pi(x)dν(x))−1T ?ν,

ν ∈ M(ΣN ).
The existence of h is more intricate. This is proved by finding a carefully chosen convex

compact subset of the non-negative functions in C(ΣN) that a normalized version of the
transfer operator leaves invariant. The Schauder-Tychonoff fix-point theorem then gives
the existence of h. Given h > 0 it is possible to define a strictly positive and continuous
g-function and proceed as in the probabilistic case. Indeed, it can be shown that the
function ĝ defined by

ĝ(i) =
g(i)h(i)

λh(θi)
(11)

is a g-function satisfying the conditions of Theorem 2 below.

Remark 4. Note that λ = 1, and h ≡ 1, in the probabilistic case when g is normalized.
(Invariant measures is a short notation for 1-invariant measures.)

Remark 5. Theorem 1 is of importance in the thermodynamic formalism in statisti-
cal mechanics. The functions g (or Φ) are sometimes called “potentials”. Condition
(10) means that g is Dini-continuous. This condition (posed on φ) is usually referred to
as “summable variation” in the thermodynamic formalism literature. Observe that g is
Dini-continuous iff Φ is Dini-continuous since g is assumed to be strictly positive and
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continuous and thus bounded away from zero. Observe also that Hölder-continuous func-
tions are Dini-continuous. If g is assumed to be Hölder-continuous then the convergence
rate is exponential, see [13]. The letter g refers to ”Gibbs” since the probability measure
π̃, defined by π̃(B) :=

∫

B
hdπ, for Borel sets B of ΣN , can be shown to have the Gibbs

property under these conditions, i.e. there exists a constant C ≥ 1 such that

C−1ĝ(i1...in−1inx) · · · ĝ(in−1inx)ĝ(inx)

≤ π̃([i1...in]) ≤ Cĝ(i1...in−1inx) · · · ĝ(in−1inx)ĝ(inx),

for any x ∈ ΣN , and cylinder set [i1...in] := {i1...iny; y ∈ ΣN}, where ĝ denotes the
normalized g-function defined in (11). (The measure π̃ is the unique invariant probability
measure for the IFS with place-dependent probabilities associated with ĝ). The Gibbs
property is of importance in e.g. the multifractal analysis of measures.

See e.g. [13], [58], [55], [8], [26] and [3] for more on this and for an overview of further
results in this field.

Note that the above result can be stated without introducing the concept of IFSs. We
have deliberately chosen to state it in this form since it gives a convenient notation in
later sections when the state space under consideration is no longer assumed to be ΣN .
The reader is encouraged to compare our formulations of the theorems with the original
works to get familiar with the notation.

Theorem 1 can be strengthen in the probabilistic case when (8) holds:

Theorem 2. Let g : ΣN → (0, 1) be a continuous strictly positive g-function, and let
{(ΣN , ρ); wj(i), pj(i), j ∈ {1, 2, ..., N}} be the associated IFS with
place-dependent probabilities. Suppose

∞
∑

m=l

m
∏

k=l

(

1 −
N(N − 1)

2
∆g(2

−k)
)

= ∞, for some integer l ≥ 1.(12)

Then there exists a uniformly attractive (and thus necessarily unique) invariant proba-
bility measure.

Remark 6. Observe that (12) holds if the Dini-condition (10) holds. Condition (12),
(see also the slightly weaker condition (15) below), was introduced by Harris [29]. A
condition for uniqueness of invariant probability measures closely related to (12) and
(15) can be found in Berbee [9].

Proof. The IFS {ΣN ; fs, s ∈ (0, 1)} with

fs(x) = wi(x), if
∑i−1

j=1 pj(x) ≤ s <
∑i

j=1 pj(x)(13)

together with the Lebesgue measure restricted to (0, 1) is an IFS with probabilities that
generates “the same” Markov chain i.e. a Markov chain with the same transfer operator
as the given place-dependent system. It is more well behaved in the sense that it has
place-independent probabilities but the loss is that it generally has a denumerable set
of discontinuous functions. Let {In} be a sequence of independent random variables



PLACE-DEPENDENT RANDOM ITERATIONS OF FUNCTIONS 9

uniformly distributed in (0, 1). Define Zn(x) and Ẑn(x) as in Section 2. By Proposition

2 it suffices to show that diam(Zn(ΣN ))
P

−→ 0.
For a closed set A ⊂ ΣN , and for k = 1, 2, ..., N − 1, define Ak := {s ∈ (0, 1) :

infx∈A

∑k

j=1 pj(x) ≤ s ≤ supx∈A

∑k

j=1 pj(x)}. Note that,

sup
x,y∈A

ρ(fs(x), fs(y)) = diam(A)/2 if s ∈ ΣN\ ∪
N−1
k=1 Ak

Let µLeb denote the Lebesgue measure. Clearly µLeb(Ak) ≤ k∆g(diam(A)/2), and thus

µLeb(∪
N−1
k=1 Ak) ≤

N(N−1)
2

∆g(diam(A)/2). (Trivially, we also have µLeb(∪
N−1
k=1 Ak) ≤ 1− ε0,

where ε0 := minx∈ΣN
p1(x).)

It follows that

P (diam(wI1(A)) =
1

2
diam(A)) ≥ 1 − min

(N(N − 1)

2
∆g(diam(A)/2), 1 − ε0

)

.

Thus there exists a homogeneous Markov chain {Yn} with

P (Yn+1 = 2−(j+1) | Yn = 2−j) = 1 − min
(N(N − 1)

2
∆g(2

−(j+1)), 1 − ε0

)

,

and

P (Yn+1 = 2−1 | Yn = 2−j) = min
(N(N − 1)

2
∆g(2

−(j+1)), 1 − ε0

)

, j ≥ 1,

such that

diam(Zn(ΣN )) ≤ Yn, n ≥ 0.

It follows that for any ε > 0,

P (diam(Zn(ΣN)) ≥ ε) ≤ P (Yn ≥ ε),(14)

and since, by assumption Yn is a null-recurrent Markov chain, see e.g [56], p.80, ex.18, 18,
it follows that P (Yn ≥ ε) → 0 and therefore by (14) also

P (diam(Zn(ΣN )) ≥ ε) → 0 i.e. diam(Zn(ΣN ))
P
→ 0.

Remark 7. The method of finding an IFS with place-independent probabilities gener-
ating the same Markov chain as an IFS with place-dependent probabilities in order to
prove ergodic theorems was introduced in [63]. Note that there is in general not a unique
way of doing this. This technique can be thought of as a variant of the coupling method.
Coupling is the method of comparing random variables by defining them on the same
probability space. The art of coupling is to do this in the “best possible way” for the
purpose needed. The coupling method, as a tool for proving convergence theorems for
random iterations, is discussed in some detail in [43].

By making a more “efficient” IFS representation than (13), e.g. by in the (k + 1)
iteration step using the “optimal” IFS representation depending on Zk(ΣN ), it is possible



10 ÖRJAN STENFLO

to prove, see [65], that condition (12) can be relaxed to

∞
∑

m=l

m
∏

k=l

(1 − (N − 1)∆g(2
−k)) = ∞, for some integer l ≥ 1.(15)

Question: Can Theorem 1 be proved under (an analogue of) the Harris condition (15) ?

To merely assume that a strictly positive g-function is continuous is not sufficient for
a unique invariant probability measure. The following theorem is a reformulation of a
result proved by Bramson and Kalikow in [14]:

Theorem 3. (Bramson and Kalikow (1993)) Let 0 < ε < 1/4 be a fixed constant. Define

qk = 1
2

(

2
3

)k
, k ≥ 1. Then there exists a sequence {mk}

∞
k=1 of odd positive integers such

that {(Σ2, ρ), wi, pi, i ∈ {1, 2}} with

w1(i) = 1i and w2(i) = 2i,

p1(i) =

∞
∑

k=1

qkf(i, mk),(16)

and p2(i) = 1 − p1(i), where

f(i, k) =

{

1 − ε if
� k

n=1 in

k
< 3

2
ε otherwise

is an IFS with place-dependent probabilities that has more than one invariant probability
measure.

Remark 8. Note the particular form of p1. Kalikow [44] proved that in fact any contin-
uous g-function admits a representation of the form

g(i) =

∞
∑

k=1

qkf(i, k),

where i = i1i2 . . . , and for fixed k, f(i, k) is a function of (i1, . . . , ik), where 0 ≤ f(i, k) ≤
1, 0 ≤ qk ≤ 1 for any k, and

∑∞
k=1 qk = 1.

Such a representation is called a random Markov chain representation since the pro-
jection on the first coordinate of the g-generated Markov chain on ΣN forms a random
Markov chain on {1, . . . , N} i.e., heuristically, a ′′n′′-step Markov chain where n is ran-
dom with P (n = k) = qk+1.

In [44], Kalikow also gave arguments implying that if
∑∞

k=1 kqk < ∞ then a strictly
positive g-function has a unique g-measure. It is straightforward to check that g in fact
is Dini-continuous under that condition.
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Remark 9. In dynamical systems terminology, Bramson and Kalikow’s theorem can be
stated: There exists a sequence {mk}

∞
k=1 of odd positive integers such that the continuous

function g : Σ2 → (0, 1), defined by g(1i) := p1(i), and g(2i) = p2(i), for any i ∈ Σ2,
where p1 is defined as in (16), and p2 = 1−p1, is a continuous strictly positive g-function
with more than one g-measure.

Proof. (Reformulation of the proof in [14]) We shall first define the sequence {mk}. We
do this inductively; Given that m1, m2, .., mj−1 are already defined we define

p̃
(j)
1 (i) =

j−1
∑

k=1

qkf(i, mk) + εqj + (1 − ε)

∞
∑

k=j+1

qk,

and let {Z
(j)
n (i)} denote a Markov chain starting at i ∈ Σ2, with transfer operator

T(j)f(i) = p̃
(j)
1 (i)f(1i) + (1 − p̃

(j)
1 (i))f(2i).

(Note that {Z
(j)
n (i)} has a unique stationary probability measure since Kalikow’s condi-

tion is fulfilled.)
We have,

p̃
(j)
1 (i) − (

j−1
∑

k=1

qkf(i, mk) +
1

2

∞
∑

k=j

qk) =
(1

2
− ε

)(

∞
∑

k=j+1

qk − qj

)

= qj

(1

2
− ε

)

>
qj

4
.

Thus, by the ergodic theorem and comparison with the “symmetric process” associated

with
∑j−1

k=1 qkf(i, mk) + 1
2

∑∞
k=j qk, it follows that the process {Z

(j)
n (i)} will have

lim
n→∞

P
(

Z(j)
n (i) ∈

{

i ∈ Σ2 :

∑n

k=1 ik
n

≤
3

2
−

qj

4

})

= 1.

Choose an odd positive integer mj with mj > 8mj−1/qj, such that

P (Z(j)
mj

(i) ∈ Aj) ≤ 3−(j+1), uniformly in i ∈ Σ2,

where

Aj :=
{

i ∈ Σ2 :

∑mj

n=1 in
mj

≥
3

2
−

qj

8

}

.

Let 1 ∈ Σ2 denote the infinite sequence 111..., and let W1 denote the class of proba-
bility measures µ on Σ2 that are weakly 1-concentrated in the sense that,

µ ∈ W1 ⇔ µ(Aj) ≤ 3−j, for all j ≥ 1.

Let {Zn(1)} be the Markov chain starting in 1 ∈ Σ2 generated by the given IFS with
place-dependent probabilities determined by (16), and define

µ1

n(·) := P (Zn(1) ∈ ·), n ≥ 0.

The idea is to show that µ1

n ∈ W1 for any n from which it follows that there exists an
invariant probability measure, π1 ∈ W1.
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This gives non-uniqueness in invariant probability measures by symmetry reasons
since, we can analogously introduce a class of weakly 2-concentrated probability mea-
sures and argue in the same way by starting a Markov chain in the sequence 2 = 222...,
to obtain a weakly 2-concentrated invariant probability measure, π2.

The proof that µ1

n ∈ W1 for any n is by induction. Suppose that µn ∈ W1, for n < n0

i.e. µn(Aj) ≤ 3−j for all n < n0, and j ≥ 1. Fix an arbitrary integer k ≥ 1. By
conditioning on the values of Zn0−mk

(1) (understanding Zn(1) = 1, for n ≤ 0), and
using the induction hypothesis, we obtain

µn0
(Ak) = P (Zn0

(1) ∈ Ak)

≤ P (Zn0
(1) ∈ Ak | Zn0−mk

(1) ∈ (Σ2\(∪
∞
j=k+1Aj)))

+P (Zn0−mk
(1) ∈ ∪∞

j=k+1Aj)

≤ P (Zn0
(1) ∈ Ak | Zn0−mk

(1) ∈ (Σ2\(∪
∞
j=k+1Aj))) +

∞
∑

j=k+1

3−j

≤ P (Zmk
(i) ∈ Ak | i ∈ (Σ2\(∪

∞
j=k+1Aj))) + 2 · 3−(k+1),(17)

where we in the last step used the Markov property. Since for i ∈ (Σ2\(∪
∞
j=k+1Aj)) we

have that p1(i) ≥ p̃
(k)
1 (i) or more generally

p1(a1a2...ani) ≥ p̃
(k)
1 (a1a2...ani), for any n ≤ mk, and aj ∈ {1, 2}, 1 ≤ j ≤ n, it follows

that
P (Zmk

(i) ∈ Ak | i ∈ (Σ2\(∪
∞
j=k+1Aj))) ≤ P (Z(k)

mk
(i) ∈ Ak) ≤ 3−(k+1),

and we thus obtain from (17) that µn0
(Ak) ≤ 3−k. Since k was arbitrary, the proof of

Theorem 3 now follows by using the induction principle.

3.2. Lifting the symbolic space results to other compact spaces. In this section
we are going to consider cases when the limit in (5) exist also in a deterministic sense,
i.e. the limit

Ẑ(i) = lim
n→∞

wi1 ◦ wi2 ◦ · · · ◦ win(x),(18)

exists and is independent of x ∈ X, for any sequence i = i1i2... ∈ ΣN , and the map
Ẑ : ΣN → X is continuous, i.e. the limit in (18) is uniform in x ∈ X.

As an example, see e.g. [30] or [4], this is the case if {(K, d); wi(x), i ∈ S = {1, 2, ..., N}}
is a weakly contractive IFS, i.e. d(wi(x), wi(y)) < d(x, y) for all x, y ∈ K and i ∈ S, and
(K, d) is a compact metric space.

We shall assume in what follows, that (X, d) := (K, d) is a compact metric space

where K = Ẑ(ΣN). Since Ẑ(ΣN) is compact when Ẑ is continuous, this gives no further
restrictions.

We will demonstrate how it in this case is possible to “lift” the results from Section
3.1 on symbolic spaces to other compact spaces by establishing a (semi)-conjugacy. This
technique was first used in Fan and Lau [26] and was explored in further detail in [49]
and [64].
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Define
Diamn(K) = sup

i∈ΣN

diam(wi1 ◦ wi2 ◦ · · · ◦ win(K)),

and let
∆p(t) := max

i∈S
∆pi

(t).

(Note that since we have assumed that Ẑ is continuous, it follows that Diamn(K) → 0
by Dini’s theorem.)

As corollaries of Theorem 1 and the stronger form of Theorem 2 (as given in Remark
7), we obtain

Corollary 2. Let {(K, d); wi(x), pi(x), i ∈ {1, 2, ..., N}} be a weighted IFS, i.e. pi :

K → (0,∞) are continuous, and
∑N

j=1 pj(x) is not necessarily assumed to be 1. Suppose

∞
∑

n=0

∆p(Diamn(K)) < ∞.

Then there exists a constant λ > 0 (the spectral radius of T ), a unique λ-invariant
probability measure i.e. distribution, π, satisfying

∫

K

Tfdπ = λ

∫

K

fdπ,

for all f ∈ C(K), and a unique function h ∈ C(K) with h > 0 such that

Th = λh, and

∫

K

hdπ = 1.

The probability measure π is uniformly attractive in the sense that

sup
x∈K

|λ−nT nf(x) − h

∫

fdπ| → 0, as n → ∞,

for any f ∈ C(K).

Corollary 3. Suppose {(K, d); wi(x), pi(x), i ∈ {1, 2, ..., N}} is an IFS with place-
dependent strictly positive continuous probabilities and suppose

lim sup
n→∞

n∆p(Diamn(K)) < (N − 1)−1.

Then there exists a uniformly attractive (and thus necessarily unique) invariant proba-
bility measure.

Proof. Define g : ΣN → (0, 1) by

g(i) := pi1(Ẑ(θ(i)))

Then ∆g(2
−n) ≤ ∆p(Diamn−2(K)), n ≥ 2. We can now apply Theorem 1, and the

stronger form of Theorem 2 as given in Remark 7 respectively, to obtain a unique
(λ)-invariant probability measure, π̃ (and eigen-function h̃ ∈ C(ΣN )) for the IFS with
probabilities on the symbolic space discussed in Section 3.1. The probability measure
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π(·) = π̃(i : Ẑ(i) ∈ ·) is uniquely (λ)-invariant, and h(Ẑ(i)) := h̃(i) has the desired
properties. (We refer to [26] for further details.) This proves Corollary 2 and Corollary
3.

Remark 10. Similar results and extensions of Corollary 2 have been proved in [26] and
[49].

Remark 11. If the IFS with place-dependent probabilities satisfy certain monotonicity
conditions that makes the generated Markov chain stochastically monotone, then it is
possible to relax the regularity conditions on the pi’s and still prove that there is a unique
invariant probability measure. See e.g. [21], [41], [11] [31], [17] and [10].

As a consequence of Bramson and Kalikow’s result (Theorem 3 above), we obtain the
following theorem;

Theorem 4. (Stenflo (2001)) Let w1 and w2 be two maps from [0, 1] into itself defined
by

w1(x) = σx and w2(x) = α + (1 − α)x,

where both 0 < σ < α < 1 are constant parameter values. Then there exists a continuous
function p1 : [0, 1] → (0, 1) such that the IFS {[0, 1]; wi(x), i ∈ {1, 2}} with probabilities
p1(x) and p2(x) := 1 − p1(x) generates a Markov chain with more than one stationary
probability measure.

Proof. (Sketch) For a sequence i = i1i2... ∈ Σ2, define

Ẑ(i) = lim
n→∞

wi1 ◦ wi2 ◦ · · · ◦ win(0).

The map Ẑ : Σ2 → [0, 1] is continuous and 1− 1 and the image of Σ2 is a Cantor set, C.

Define, for x ∈ C, p1(x) := p̂1(Ẑ
−1(x)), where p̂1(i) is defined as in (16) and extend p1

for points x ∈ [0, 1]\C by linear interpolation. Then p1 will have the desired properties.
We refer to Stenflo [64], for further details.

Remark 12. Theorem 4 constitutes a counterexample to the conjecture that an IFS on
the unit interval with two contractive maps and place-dependent strictly positive contin-
uous probabilities necessarily has a unique invariant probability measure. See [42], [43]
and [64] for accounts on the history of that conjecture.

3.3. E-chains. Suppose that (X, d) is a locally compact separable metric space. Let
Cc(X) denote the set of continuous functions with compact support. We say (following
the notion of [51]) that a Markov chain is an e-chain if for any f ∈ Cc(X), {T nf} is
equi-continuous on compact sets. It follows from the Arzela-Ascoli theorem, see e.g. [25],
or [51], that Feller chains with an attractive invariant measure are in fact e-chains.

Conversely, we have
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Theorem 5. Let (K, d) is a compact metric space. Suppose
{(K, d); wi(x), pi(x), i ∈ S = {1, 2, ..., N}} is an IFS with place-dependent strictly

positive probabilities generating an e-chain and the map Ẑ : ΣN → K of (18) exists and
is continuous and onto. Then there exists a uniformly attractive (and thus necessarily
unique) invariant probability measure.

Proof. We will make a slight generalization of a proof by Keane [46]; Equip the set of
continuous functions on K, C(K), with the supremum norm, ‖ · ‖. Let f ∈ C(K).
Note that ‖T nf‖ ≤ ‖f‖ for any n ∈ N. Thus {T nf} is a bounded equi-continuous
sequence in C(K) and we obtain from the Arzela-Ascoli theorem, that there exists a
function f? ∈ C(K) and an increasing sequence {ni} of positive integers, such that
‖T nif − f?‖ → 0 as i → ∞.

Clearly
min
x∈K

f(x) ≤ min
x∈K

Tf(x) ≤ ... ≤ min
x∈K

f?(x).

Note that minx∈K f?(x) = minx∈K Tf?(x). Assume minx∈K f?(x) = Tf?(y1) =
∑

i∈S pi(y1)f?(wi(y1)) for some y1 ∈ K. Then it follows that f?(wi(y1)) = minx∈K f?(x)
for all i ∈ S and similarly for any finite sequence {ik}

m
k=1, m ≥ 1, of integers in S,

f?(wi1 ◦ · · · ◦ wim(ym)) = minx∈K f?(x), for some ym ∈ K. Since Ẑ is continuous, it
follows that f? is constant. Thus it follows that in fact ‖T nf − f?‖ → 0 as n → ∞, and
thus, by the Riesz representation theorem, there exists a probability measure, π, such
that ‖T nf −

∫

fdπ‖ → 0 as n → ∞ and therefore we see from Proposition 1 that π must
be uniquely invariant.

Remark 13. It is surprisingly difficult to construct Feller chains that are not e-chains,
see [51]. Note however that the system in Bramson and Kalikow’s theorem is an IFS with
strictly positive place-dependent probabilities that generates a Feller chain that is not an
e-chain. See [67] for further examples.

4. Iterated Function Systems with place-dependent probabilities
(stochastically stable cases)

In Section 3.2 above we treated the case when the limit in (5) exists in a deterministic
sense. This is the case when the maps {wi} are (weakly) contractive maps and (X, d)
is compact. In this section we are going to discuss cases when the limit in (5) does not
necessarily exist a priori, and cases when the state space (X, d) is no longer assumed to
be compact.

Assume that (X, d) is a locally compact separable metric space where sets of finite
diameter are relatively compact. We are going to consider systems that are contractive
on the average. (Convergence theorems for place-dependent random iterations with non-
expansive maps on general state spaces can be found in [48]).

The following theorem is a consequence of a theorem proved by Barnsley et al. [6].

Theorem 6. (Barnsley et al. (1988)) Let {(X, d); wi(x), pi(x), i ∈ S
= {1, 2, ..., N}} be an IFS with place-dependent probabilities with all wi, i ∈ S being
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Lipschitz-continuous and where all pi’s are Dini-continuous and bounded away from 0.
Suppose

sup
x6=y

N
∑

i=1

pi(x) log
d(wi(x), wi(y))

d(x, y)
< 0.(19)

Then the generated Markov chain has an attractive (and thus necessarily unique) sta-
tionary probability measure.

Remark 14. A local version of the log-average contraction condition, (19), was used in
Kaijser [42] and a proof of Theorem 6 in the case when (X, d) is a compact metric space
also follows from [42].

By Jensen’s inequality, condition (19) is more general than the average contraction
condition

sup
x6=y

N
∑

i=1

pi(x)
d(wi(x), wi(y))

d(x, y)
< 1,(20)

introduced by Isaac [38]. Isaac proved the special case of Theorem 6, when (X, d) is
assumed to be compact, condition (20) holds, and the pi’s are assumed to be Lipschitz-
continuous.

Question: Can Theorem 6 be proved if the pi’s satisfy Harris condition (15) ?
The following result was proved in [23].

Theorem 7. (Elton (1987)) Assume the conditions of Theorem 6. Let {Zn(x)} denote
the associated Feller chain and let π denote its unique stationary probability measure.
Then

lim
n→∞

∑n−1
k=0 f(Zk(x))

n
=

∫

X

fdπ, for all f ∈ C(X) a.s.,(21)

for any x ∈ X.

Remark 15. In the case when (X, d) is compact, Breiman [15] proved that

lim
n→∞

∑n−1
k=0 f(Zk(x))

n
=

∫

X

fdπ a.s.,(22)

for any fixed x ∈ X and f ∈ C(X), in fact holds for any Feller chain with a unique
stationary probability measure π.

Question: Does (21), or the (in general) slightly weaker assertion (22), hold for an
e-chain with a unique invariant measure ?
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5. The future

We have briefly mentioned the coupling method as an important tool to prove limit
theorems for IFSs with place-dependent probabilities. This method, in this context, is
described in [34], and [43]. We expect that this method, as a tool here, will be explored
in further detail. There are of course a variety of further questions related to the ergodic
behavior of stochastic sequences arising from place-dependent iterations that we have not
treated here. It is typically possible to give exponential rates of convergence and central
limit theorems in cases when the probabilities are Hölder continuous. An interesting work
investigating mixing properties and convergence rates as a function of the smoothness
of the probabilities (on symbolic spaces) is given in [16]. Coupling techniques is a basic
tool there. An analogue of their work for not necessarily contractive systems on other
state spaces would be interesting.

We have seen, that when the limit in (5) exists in a deterministic sense, then we can
apply the machinery on symbolic space by lifting methods.

We have also seen that uniqueness of invariant probabilities can be proved also in cases
when this limit does not necessarily exist in a deterministic sense.

A thorough investigation whether a probabilistic analogue of (5) still holds in these
known cases seems to be lacking in the literature.

It would be interesting to find a correct generalization of the “lifting” method in cases
when the limit in (5) only exist in a probabilistic sense. A result in this direction is given
in [39].

Acknowledgments: This paper was written during a postdoctoral visit at the Depart-
ment of Mathematics at the Chinese University of Hong Kong. I am grateful to Ka-Sing
Lau for making this research possible, for valuable discussions, and for creating a stim-
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and De-Jun Feng for helpful comments and discussions.
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[62] Ö. Stenflo. Ergodic theorems for iterated function systems controlled by stochastic sequences. Doc-
toral thesis No 14, Dept. of Mathematics, Ume̊a University, 1998.
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