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Abstract

Using coupling techniques, we prove uniqueness in G-measures under a weak
regularity condition and give estimates of the associated rates of convergence. We
also show how to generate a random variable distributed according to the unique
G-measure on cylinder sets for any fixed level of precision.

————— S

1. Introduction

Let {X, }n<o be a stochastic process on {1,..., N}. We may define random vari-
ables

Gi(y) =P(Xy =Y, 0202 ~k+ 1| Xy =yn, m < —k),
where y =yoy_1y_2---and k > 1. Also, a.s.,
Gi(y) = T :(0'y),
where 6 denotes the shift map, and
9i(y) = P(X_i = 9o | X_ism = Y, m < —1). (1-1)

This presents the measure defining {X,, },<o as a G-measure. If the set of functions
G ={4i }i>0, given by (1-1) uniquely specify this measure, then we say that there is a
unique G-measure.

The concept of G-measures originates from Brown and Dooley [2] and is a gen-
eralisation of the notion of g-measure introduced by Keane [8]. Keane’s work was
based on the consideration of a g-measure as a shift invariant measure on an infinite
product space, corresponding to the case when {X,, } is stationary. (Note that g =g;
is independent of 7 if {X,} is stationary.)

One of the key questions asked in Keane’s paper is whether continuity and positiv-
ity of g was a sufficient condition for uniqueness, but this was disproved by Bramson
and Kalikow [3], and by Quas [10] for circle continuous g-functions.
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The question of sufficient conditions for uniqueness in g-measures has a long history
within the theory of “chains with complete connections” in the case {X,, } is assumed
to be stationary, with Doeblin and Fortet [S| and Harris [7] containing some of the
most important early results.

The notion of g-measure corresponds to the idea of an equilibrium state in stat-
istical mechanics in the special case of a normalized potential. It is not known
whether the well known conditions of Hélder-continuity and “summable vari-
ations” for uniqueness in equilibrium-states for general potentials, see Bowen [1] and
Walters [13] respectively, can be relaxed to the corresponding best known conditions
for non-normalized potentials.

In recent work, Dooley and Hamachi [6] showed that every non-singular ergodic
dynamical system is orbit equivalent to a Markov odometer with a unique G-measure.
Therefore it is of heightened interest to give the best possible conditions for unique-
ness.

Keane proved uniqueness in g-measures for strictly positive differentiable g-
functions, unaware of the already existing weaker conditions for uniqueness by
Doeblin and Fortet [5] of summable variations and the even weaker condition by
Harris [7]. In Brown and Dooley [2], sufficient conditions were given for uniqueness
in G-measures, generalising those of Keane. As with Keane’s conditions, it is clear
that these conditions are not necessary.

In this paper, we shall generalise the coupling ideas of Harris [7] for proving
uniqueness in g-measures to the case of G-measures, showing how the coupling
method work in this more general case. In the next section, we give the definitions of
our basic notions, and a precise statement of the results. The basic theorem (Theorem
1) is proved in Section 3. As a consequence of our method of proving Theorem 1, we
are able to give a perfect sampling algorithm in Theorem 2.

2. Preliminaries and statements of the resulls
Let {N(j)}72, be a sequence of positive integers, and let X, :=T132, {1,2,..., N(j)}
be a sequence of spaces. For each n, introduce a topology on X,, by the metric

277, if z and y differ for the first time in the
plx,y) = jth digit (2-1)
0, if x =y.

The spaces (2,,, p) are compact metric spaces.
For j € {1,2,...,N(n)} and z=zz3--+ € Z,4{, let jx be the element in X,
defined by jz = jz;z; - - -. Consider a family {g,}°2,, g, : £, — (0, 00), of continuous
functions, and suppose that the g, ’s are normalised in the sense that
N(n)
> gu(jz) =1, forany x € 4. (2:2)
J=1

We call such a family G = {g, } a family of g-functions.

Let I',, denote the set of sequences Yy, - - -y, -1 such that v; € {1,2,...,N(j)}.
for any 0 < j < n—1. For y=v---y-1 € I, and x=xpx_;---in X, let
YE) =Y Yn AT Tt -
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Definition 1. Let p" denote the measure Zﬂf er, Ho. and let G, (z) = - g: (0 x),
where 6 denotes the shift map.
We say that a probability measure p on X is a G-measure if for any n > 1,

dp
du®

(z) = Gu(), (2-3)

for p-almost all z € %,.

In Brown and Dooley [2] it was shown that, provided the functions G; are con-
tinuous, the existence of a unique G-measure is equivalent to the convergence (every-
where, or uniformly) of the sequence of functions

Tim Y f(y(@)Ga (@) (2:4)
el
for all f € C(Z) and z € Z,.

If (2-4) holds, then the limit is equal to [ fdp for the unique G-measure. In Brown
and Dooley [2] it was further shown that a unique G-measure is necessarily ergodic
for the finite coordinate change action on X,.

In the case when N (j) is constant (say =N for all j), we may identify X, with
%y via the shift map. If g is shift invariant i.e. g o 8 = u then all the functions g; are
identical under this identification, to a single function g, and we say that we have a
g-measure. We are also interested in the case when there is a unique g-measure.

Notice that, in this setting, if there is a unique G-measure, there is necessarily a
unique g-measure, since by definition if p is a g-measure then p is also a G-measure
with g; = g for all i. However, the converse is not true. This is shown by the following.

Example 1. Let N(j) = 2 for all 7 and define
glz) =1, ifx =01% orax=10%

and g(x) =0 otherwise, where * denotes an arbitrary ending of the infinite sequence
x.

Let £y =010101.... and £y =10101.... It is not hard to see that the two Dirac
measures d,, and &, are both G-measures (associated with g), as is any convex
combination of them. Thus we do not have uniqueness in G-measures. However,
there is a unique g-measure (shift-invariant G-measure), viz. (1/2)(0,, + 0z,)-

In this paper we show that there is a unique G-measure provided that

ZHcffG 27" = (2:5)

n=1 m=1
where
N (n)
cffa(2™") = inf > inf gu(igi - o).

n 1<) <N ( n+l 1<l<m71
i=1

The condition corresponding to (2-5) for uniqueness in g-measures was first con-
sidered by Comets et al. [4]. This condition is slightly stronger than the weakest
known condition for uniqueness in g-measures of this type, see Stenflo [12], but has
the advantage that it also gives the “uniform” convergence needed in our case.
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THrEOREM 1. Let G be a family of g-functions satisfying condition (2-5).

Let P denote the product Lebesgue measure on ((0,1)N,C), where C is the product Borel
o-field on (0, 1)~

Then. for any © € Zy. we can construcl a sequence of random variables {Z, ()},
Z, (x): (0, DN — =g with P(Z,(x)=~(x))=G.(y(x)). such that Z,(x) — Z, P a.s.,
where Z: 0, )N — X, is a random variable (independent of z). We have

Esup p(Z,(x),Z) < E27Y
rE€X)

where the metric p is defined in (2-1) above, and {Y,} is a Markov chain with
state space N starting at Yy=1, with P(Yysy =k + 1 | Y, =k)=cffc(27%), and
PY,u=1]Y, =k)=1—cffa27"). forany k> 1.

An explicit definition of Zn(x) (= Z,(x,w)) is given in the proof below. The random
variables Z, (x,w) only depend on the first n coordinates of w € (0, 1)N.

Remark 1. Note that {Y,, }°2 is a non- elgodic Markov chain under condition (2-5),
see e.g. Prabhu [9, p. 80, example 18], so E27Y" — 0.

Define ()= P(Z € -). As a consequence of Theorem 1 and the well known fact
that almost sure convergence implies convergence in distribution, see e.g. Shiryaev
[11], we obtain.

JOROLLARY 1. Let G be a family of g-functions satisfying condition (2-5). Then there
exists a unique G-measure, (i, i.e.

Jim 3 fO)G (90 = [ i 246)

Jorall f € C(Z) and x € Z,.

Even though the definition of y is implicit, we can correctly simulate p-distributed
random variables up to any specified degree of accuracy. The following theorem
generalizes results from Comets et al. [4].

THEOREM 2 (Perfect sampling). Let G be a family of g-functions satisfying condition
(2-5).

For s € (0,1), and integers m = 1, let fy(m)=m+ 1, if s <cffc(27™), fs(m)=11f
s = cffa(27™).

Let N, be an arbitrary fixed integer.

Algorithm: generate independent, uniformly distributed random variables on the unit
interval, Uy, Us, . ..., Ur, where the stopping time T is the first integer such that fy, o

-0 fu, (1) > N.. )

Let p be the unique G-measure. Then the first N, (common) coordinates of Zy, (x)
(defined in the proof below) is a random variable taking value (i, . .., in, —1) with proba-
bility p([io, . .., in, —1]). for an arbitrary cylinder set [iy, ... iy, ]| ={x € Z: z; = ij,
0 < j < N, — 1}, of length N, in Z,.

3. Proofs

Fix an integer n > 0, and w € (0, I)N. We first define the function ZA,,, Xy x (0, )N —
2('.



A criterion for uniqueness in G-measures and perfect sampling 549

Intuitively, for y=yy_1y_2--- € 2, Z,L(y,w) will correspond to the “history
available” at time 0 of a realization w of a stochastic sequence with conditional
distributions prescribed by the family of g-functions G, if the “history available” at
time —n is fixed to be y_,y_p+( -+ -

To make this intuition precise, let for w =wowiws --- € (0, DN, and y € ;.
Zn(y7w> = X()L(Hnva)a (31)
where {X7 (z ,w) Y j=—n 18 a sequence of functions X" :2, X (0, Y — %, defined

recursively in the following way.

Let X*, (z,w) ==, for any x € %,. Suppose that for some ky, X" . (z,w) has
already been defined. We then proceed to define X", (x,w) as follows. Let M = M (w)
be the largest integer such that X", ., (x,w) belongs to the cylinder set {iiy - iy y :
Y € Zpyr14nm ), forsome i; € {1,...,N(ky+j)}.j=1,...,M,and any = € X,,.

For 1 < j < N(ky), let

j—1 j
Ag(j) = {s € (0,1): 3 inf gy, (iy) < s<2mfgko i)},
=1
N (ko) j—1

Aijin) ={s € (0,1) 1 D inf gy, (iy) + > _(inf gy, (idry) — inf g, (iy))

i=1 i=1
N (ko) J
<s < Z inf g, (iy) + > _(inf g, (i) — inf i, (i9))},
=1

i=1

and for m > 2,
N (ko)

Ay (Giy i) ={s € (0,1): inf gp, (44 - -+ - Gy —
(i im) ={s €(0,1): Y inf gy, (iiy )

i=1

j—1
D _(inf ge(idy - - iny) = inf gy, (i41 i 11))
-1 Yy

ko
<s < Z 1nf Greo (P01 -+~ T —1Y)

+ Z(infgk“m'l c i y) = inf ge, (# - i 1Y)}
i=1 Y Y

Define X", (z,w) = j X" ,(z,w), if wy, € UM Ay (jiy -+ - ig), or

N (ko)
wr, €{s€(0,1): ) inf g, (i1 -+ iary)
Jj—1 -
+ Z(gku(in(kl.H)(xv w)) — iI;fgk‘,(z'il i y))
i=1 i
<s< ; ir;fgko(iil S ipY)

J

D 90 (X ) (,) — inf g (G- i)}

i=1
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Let P be the product Lebesgue measure on (0, 1)N. By construction
PX% (@,w) = JYke1 Vo1 @ | X2 iy (@, W) =Vkgw 1 Y1) = Groy (FVkgr1”* Yn—12).

Thus X", (x,w) can be viewed as random variables, for each fixed z, with

P(X"(2,w) = 3 oo12) = [ [ (v 1)

(In the formula above we have calculated the probability on the left as a product of
a finite collection of conditional probabilities.)

Recall the definition of the metric p in (2-1). Define the random variables D7 (w) =
sup, , p(X} (z,w), X7 (y,w)). Then by construction, from (3-1),

sup  p(Zy (z,w), Zn (y,w)) < D (w) (3-2)
z,y €Ly
and
P(Dﬁk“ — 9—(M+2) | Di(k(ﬁrl) _ 2—(M+l))
N (n)
> . . id _ (M +1)
>inf __ inf Z inf g (ij -+ jary) = ef fo(27),
im
forany 0 < ky<n—1,n2>1.
Define
Y;I,(w):fw‘.o"'ofwn,|(1)7 n> 1 ffl)(w): 17

where for s € (0,1), and integers m > 1, fs(m)=m+1,if s < cffc(27™), fs(m ( )
if s > cf fa(27™). Then Y, (w) is nondecreasing in n, and since D", (w) <

.

for any 0 < k£ < n, we obtain in the particular case (when k£ =n) using (3-2) that

sup p(Zu(@,w), Z(y,w) <27 (3:3)
T,yE€Xy
for any w € (0, 1)N. In particular this means that if Y7 (w) > N, for some T =T (w).
then the first N, digits of Z,, (z,w) do not depend on z for any n > T'(w). Thus the
proof of Theorem 2 will be completed if we prove that Y,, — oo as n — 0o a.s.

Let {Y,}22,, be a stochastic sequence with ¥, : (0, )Y — N, n > 0, defined
inductively in the following way: let Y;(w) = 1, for all w € (0, 1)N. Suppose Y,, (w) =m.
Let Y, (w)y=m+1ifw,+ <cffe(27™) and Y, 1 (w) =1 otherwise.

It follows that {Y}, } is a homogeneous Markov chain with Y, =1,

P, =m+ 1Y, =m)=cffc(2™")
and
PY,ou=1|Y,=m)=1—cffc(2™™), m>1.
Note that Y, and Yn are identically distributed for any fixed n. Therefore, by (3-3),

E sup p(Zy(x), Zu(y)) < E277, n > 0. (3-4)
T,y EXy

Since Y, is a non-ergodic Markov chain by assumption, see e.g. Prabhu [9, p. 80,
example 18], and Y,, is monotone, it follows that Y,, — oo a.s. as n — oo, and thus
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using (3-3), we obtain
sup p(Zy (x), Zu(y) = 0, a.s. (3:5)

T,y E€EX)
as n — 0o.
Note that if for some M < n—ky, wi,+; € UQIZJ] Ag (441 - t4p) for all j=0,.. .,
M — 1, then X", € {ijis---iyy: y € Zp,onr } foralln > M.
From this property (in the case ky=0) in combination with (3-5) it follows that
there exists a Xj-valued random variable 7, such that ZAn (r,w) converges almost
surely to Z(w). uniformly in . From (3-4) it follows that

E sup p(Z,(x),2) < B2V,
TEX

This completes the proofs of the theorems.
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