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Abstract

Using coupling techniques, we prove uniqueness in G-measures under a weak
regularity condition and give estimates of the associated rates of convergence. We
also show how to generate a random variable distributed according to the unique
G-measure on cylinder sets for any fixed level of precision.

1. Introduction

Let {Xn}n�0 be a stochastic process on {1, . . . , N}. We may define random vari-
ables

Gk (y)� P (Xn = yn , 0 � n � −k + 1 | Xm = ym , m � −k),

where y = y0y−1y−2 · · · and k � 1. Also, a.s.,

Gk (y) = Πk−1
i=0 gi(θiy),

where θ denotes the shift map, and

gi(y) = P (X−i = y0 | X−i+m = ym , m � −1). (1·1)

This presents the measure defining {Xn}n�0 as a G-measure. If the set of functions
G= {gi}i�0, given by (1·1) uniquely specify this measure, then we say that there is a
unique G-measure.
The concept of G-measures originates from Brown and Dooley [2] and is a gen-

eralisation of the notion of g-measure introduced by Keane [8]. Keane’s work was
based on the consideration of a g-measure as a shift invariant measure on an infinite
product space, corresponding to the case when {Xn} is stationary. (Note that g = gi

is independent of i if {Xn} is stationary.)
One of the key questions asked in Keane’s paper is whether continuity and positiv-

ity of g was a sufficient condition for uniqueness, but this was disproved by Bramson
and Kalikow [3], and by Quas [10] for circle continuous g-functions.

† We gratefully acknowledge the support of the ARC.
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The question of sufficient conditions for uniqueness in g-measures has a long history
within the theory of “chains with complete connections” in the case {Xn} is assumed
to be stationary, with Doeblin and Fortet [5] and Harris [7] containing some of the
most important early results.
The notion of g-measure corresponds to the idea of an equilibrium state in stat-

istical mechanics in the special case of a normalized potential. It is not known
whether the well known conditions of Hölder-continuity and “summable vari-
ations” for uniqueness in equilibrium-states for general potentials, see Bowen [1] and
Walters [13] respectively, can be relaxed to the corresponding best known conditions
for non-normalized potentials.
In recent work, Dooley and Hamachi [6] showed that every non-singular ergodic

dynamical system is orbit equivalent to aMarkov odometer with a uniqueG-measure.
Therefore it is of heightened interest to give the best possible conditions for unique-
ness.
Keane proved uniqueness in g-measures for strictly positive differentiable g-

functions, unaware of the already existing weaker conditions for uniqueness by
Doeblin and Fortet [5] of summable variations and the even weaker condition by
Harris [7]. In Brown and Dooley [2], sufficient conditions were given for uniqueness
in G-measures, generalising those of Keane. As with Keane’s conditions, it is clear
that these conditions are not necessary.
In this paper, we shall generalise the coupling ideas of Harris [7] for proving

uniqueness in g-measures to the case of G-measures, showing how the coupling
method work in this more general case. In the next section, we give the definitions of
our basic notions, and a precise statement of the results. The basic theorem (Theorem
1) is proved in Section 3. As a consequence of our method of proving Theorem 1, we
are able to give a perfect sampling algorithm in Theorem 2.

2. Preliminaries and statements of the results

Let {N (j)}∞j=0 be a sequence of positive integers, and let Σn �Π∞
j=n{1, 2, . . . , N (j)}

be a sequence of spaces. For each n, introduce a topology on Σn by the metric

ρ(x, y)�



2−j , if x and y differ for the first time in the

jth digit
0, if x = y.

(2·1)

The spaces (Σn , ρ) are compact metric spaces.
For j ∈ {1, 2, . . . , N (n)} and x=x1x2 · · · ∈ Σn+1, let jx be the element in Σn

defined by jx= jx1x2 · · ·. Consider a family {gn}∞n=0, gn : Σn → (0,∞), of continuous
functions, and suppose that the gn ’s are normalised in the sense that

N (n )∑
j=1

gn (jx) = 1, for any x ∈ Σn+1. (2·2)

We call such a family G � {gn} a family of g-functions.
Let Γn denote the set of sequences γ0γ1 · · · γn−1 such that γj ∈ {1, 2, . . . , N (j)},

for any 0 � j � n − 1. For γ = γ0 · · · γn−1 ∈ Γn and x=x0x−1 · · · in Σ0, let
γ(x) = γ0 · · · γn−1x−nx−(n+1) · · ·.
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Definition 1. Let µn denote the measure
∑

γ∈Γn
µ ◦ γ, and let Gn (x) =Πn−1

i=0 gi(θix),
where θ denotes the shift map.
We say that a probability measure µ on Σ0 is a G-measure if for any n � 1,

dµ

dµn
(x) = Gn (x), (2·3)

for µ-almost all x ∈ Σ0.
In Brown and Dooley [2] it was shown that, provided the functions Gi are con-

tinuous, the existence of a uniqueG-measure is equivalent to the convergence (every-
where, or uniformly) of the sequence of functions

lim
n→∞

∑
γ∈Γn

f (γ(x))Gn (γ(x)) (2·4)

for all f ∈ C(Σ0) and x ∈ Σ0.
If (2·4) holds, then the limit is equal to

∫
fdµ for the unique G-measure. In Brown

and Dooley [2] it was further shown that a unique G-measure is necessarily ergodic
for the finite coordinate change action on Σ0.
In the case when N (j) is constant (say =N for all j), we may identify Σn with

Σ0 via the shift map. If µ is shift invariant i.e. µ ◦ θ=µ then all the functions gi are
identical under this identification, to a single function g, and we say that we have a
g-measure. We are also interested in the case when there is a unique g-measure.
Notice that, in this setting, if there is a unique G-measure, there is necessarily a

unique g-measure, since by definition if µ is a g-measure then µ is also a G-measure
with gi = g for all i. However, the converse is not true. This is shown by the following.

Example 1. Let N (j) = 2 for all j and define

g(x) = 1, if x = 01 � or x = 10�

and g(x) = 0 otherwise, where � denotes an arbitrary ending of the infinite sequence
x.
Let x0 = 010101 . . . . and x1 = 10101 . . . . It is not hard to see that the two Dirac

measures δx0 and δx1 are both G-measures (associated with g), as is any convex
combination of them. Thus we do not have uniqueness in G-measures. However,
there is a unique g-measure (shift-invariant G-measure), viz. (1/2)(δx0 + δx1 ).

In this paper we show that there is a unique G-measure provided that

∞∑
n=1

n∏
m=1

cffG (2−m ) =∞, (2·5)

where

cffG (2−m ) = inf
n

inf
1�jl �N (n+l),1�l�m−1

N (n )∑
i=1

inf
y

gn (ij1 · · · jm−1y).

The condition corresponding to (2·5) for uniqueness in g-measures was first con-
sidered by Comets et al. [4]. This condition is slightly stronger than the weakest
known condition for uniqueness in g-measures of this type, see Stenflo [12], but has
the advantage that it also gives the “uniform” convergence needed in our case.
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Theorem 1. Let G be a family of g-functions satisfying condition (2·5).
Let P denote the product Lebesgue measure on ((0, 1)N, C), where C is the product Borel

σ-field on (0, 1)N.
Then, for any x ∈ Σ0, we can construct a sequence of random variables {Ẑn (x)},

Ẑn (x): (0, 1)N → Σ0 with P (Ẑn (x) = γ(x)) =Gn (γ(x)), such that Ẑn (x) → Ẑ, P a.s.,
where Ẑ: (0, 1)N → Σ0, is a random variable (independent of x). We have

E sup
x∈Σ0

ρ(Ẑn (x), Ẑ) � E2−Yn ,

where the metric ρ is defined in (2·1) above, and {Yn} is a Markov chain with
state space N starting at Y0 = 1, with P (Yn+1 = k + 1 | Yn = k) = cffG (2−k ), and
P (Yn+1 = 1 | Yn = k) = 1− cffG (2−k ), for any k � 1.
An explicit definition of Ẑn (x) (= Ẑn (x, ω)) is given in the proof below. The random

variables Ẑn (x, ω) only depend on the first n coordinates of ω ∈ (0, 1)N.

Remark 1. Note that {Yn}∞n=0 is a non-ergodic Markov chain under condition (2·5),
see e.g. Prabhu [9, p. 80, example 18], so E2−Yn → 0.

Define µ(·) =P (Ẑ ∈ ·). As a consequence of Theorem 1 and the well known fact
that almost sure convergence implies convergence in distribution, see e.g. Shiryaev
[11], we obtain.

Corollary 1. Let G be a family of g-functions satisfying condition (2·5). Then there
exists a unique G-measure, µ, i.e.

lim
n→∞

∑
γ∈Γn

f (γ(x))Gn (γ(x)) =
∫

fdµ (2·6)

for all f ∈ C(Σ0) and x ∈ Σ0.

Even though the definition of µ is implicit, we can correctly simulate µ-distributed
random variables up to any specified degree of accuracy. The following theorem
generalizes results from Comets et al. [4].

Theorem 2 (Perfect sampling). LetG be a family of g-functions satisfying condition
(2·5).
For s ∈ (0, 1), and integers m � 1, let fs(m) =m + 1, if s < cffG (2−m ), fs(m) = 1 if

s � cffG (2−m ).
Let N� be an arbitrary fixed integer.
Algorithm: generate independent, uniformly distributed random variables on the unit

interval, U1, U2, . . . . , UT , where the stopping time T is the first integer such that fU1 ◦
· · · ◦ fUT

(1) > N� .
Let µ be the unique G-measure. Then the first N� (common) coordinates of ẐN�

(x)
(defined in the proof below) is a random variable taking value (i0, . . . , iN� −1) with proba-
bility µ([i0, . . . , iN� −1]), for an arbitrary cylinder set [i0, . . . , iN� −1] = {x ∈ Σ0: xj = ij ,
0 � j � N� − 1}, of length N� in Σ0.

3. Proofs

Fix an integer n � 0, and ω ∈ (0, 1)N. We first define the function Ẑn : Σ0×(0, 1)N →
Σ0.
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Intuitively, for y = y0y−1y−2 · · · ∈ Σ0, Ẑn (y, ω) will correspond to the “history
available” at time 0 of a realization ω of a stochastic sequence with conditional
distributions prescribed by the family of g-functions G, if the “history available” at
time −n is fixed to be y−ny−n+1 · · · .
To make this intuition precise, let for ω =ω0ω1ω2 · · · ∈ (0, 1)N, and y ∈ Σ0,

Ẑn (y, ω)� Xn
0 (θ

ny, ω), (3·1)
where {Xn

j (x, ω)}0j=−n is a sequence of functions Xn
−j : Σn × (0, 1)N → Σj defined

recursively in the following way.
Let Xn

−n (x, ω) =x, for any x ∈ Σn . Suppose that for some k0, Xn
−(k0+1)(x, ω) has

already been defined. We then proceed to defineXn
−k0
(x, ω) as follows. LetM =M (ω)

be the largest integer such thatXn
−(k0+1)(x, ω) belongs to the cylinder set {i1i2 · · · iM y :

y ∈ Σk0+1+M }, for some ij ∈ {1, . . . , N (k0 + j)}, j =1, . . . , M , and any x ∈ Σn .
For 1 � j � N (k0), let

A0(j)� {s ∈ (0, 1) :
j−1∑
i=1

inf
y

gk0 (iy) � s <

j∑
i=1

inf
y

gk0 (iy)},

A1(ji1) � {s ∈ (0, 1) :
N (k0)∑
i=1

inf
y

gk0 (iy) +
j−1∑
i=1

(inf
y

gk0 (ii1y)− inf
y

gk0 (iy))

�s <

N (k0)∑
i=1

inf
y

gk0 (iy) +
j∑

i=1

(inf
y

gk0 (ii1y)− inf
y

gk0 (iy))},

and for m � 2,

Am (ji1 · · · im ) � {s ∈ (0, 1) :
N (k0)∑
i=1

inf
y

gk0 (ii1 · · · · im−1y)

+
j−1∑
i=1

(inf
y

gk0 (ii1 · · · · imy)− inf
y

gk0 (ii1 · · · im−1y))

� s <

N (k0)∑
i=1

inf
y

gk0 (ii1 · · · · im−1y)

+
j∑

i=1

(inf
y

gk0 (ii1 · · · imy)− inf
y

gk0 (ii1 · · · im−1y))}.

Define Xn
−k0
(x, ω) = jXn

−(k0+1)(x, ω), if ωk0 ∈ �M
k=0Ak (ji1 · · · ik ), or

ωk0 ∈ {s ∈ (0, 1) :
N (k0)∑
i=1

inf
y

gk0 (ii1 · · · · iM y)

+
j−1∑
i=1

(gk0 (iX
n
−(k0+1)(x, ω))− inf

y
gk0 (ii1 · · · iM y))

� s <

N (k0)∑
i=1

inf
y

gk0 (ii1 · · · · iM y)

+
j∑

i=1

(gk0 (iX
n
−(k0+1)(x, ω))− inf

y
gk0 (ii1 · · · iM y))}.
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Let P be the product Lebesgue measure on (0, 1)N. By construction

P (Xn
−k0
(x, ω) = jγk0+1 · · · γn−1x | Xn

−(k0+1)(x, ω)=γk0+1· · ·γn−1x) = gk0 (jγk0+1· · ·γn−1x).

Thus Xn
−k (x, ω) can be viewed as random variables, for each fixed x, with

P (Xn
−k (x, ω) = γk · · · γn−1x) =

n−1∏
i=k

gi(γi · · · γn−1x).

(In the formula above we have calculated the probability on the left as a product of
a finite collection of conditional probabilities.)
Recall the definition of the metric ρ in (2·1). Define the random variablesDn

j (ω)�
supx,y ρ(Xn

j (x, ω), Xn
j (y, ω)). Then by construction, from (3·1),

sup
x,y∈Σ0

ρ(Ẑn (x, ω), Ẑn (y, ω)) � Dn
0 (ω) (3·2)

and

P (Dn
−k0

= 2−(M +2) | Dn
−(k0+1) = 2

−(M +1))

� inf
n

inf
1�jl �N (n+l),1�l�M

N (n )∑
i=1

inf
y

gn (ij1 · · · jM y) = cffG (2−(M +1)),

for any 0 � k0 � n − 1, n � 1.
Define

Ŷn (ω) = fω0 ◦ · · · ◦ fωn −1 (1), n � 1 Ŷ0(ω) = 1,

where for s ∈ (0, 1), and integers m � 1, fs(m) =m + 1, if s < cffG (2−m ), fs(m) = 1
if s � cffG (2−m ). Then Ŷn (ω) is nondecreasing in n, and since Dn

−(n−k )(ω) � 2−Ŷk (ω ),
for any 0 � k � n, we obtain in the particular case (when k=n) using (3·2) that

sup
x,y∈Σ0

ρ(Ẑn (x, ω), Ẑn (y, ω)) � 2−Ŷn (ω ) (3·3)

for any ω ∈ (0, 1)N. In particular this means that if ŶT (ω) > N� , for some T =T (ω),
then the first N� digits of Ẑn (x, ω) do not depend on x for any n � T (ω). Thus the
proof of Theorem 2 will be completed if we prove that Ŷn → ∞ as n → ∞ a.s.
Let {Yn}∞n=0, be a stochastic sequence with Yn : (0, 1)N → N, n � 0, defined

inductively in the following way: let Y0(ω) = 1, for all ω ∈ (0, 1)N. Suppose Yn (ω) =m.
Let Yn+1(ω) =m + 1 if ωn+1 < cffG (2−m ) and Yn+1(ω) = 1 otherwise.
It follows that {Yn} is a homogeneous Markov chain with Y0 = 1,

P (Yn+1 = m + 1 | Yn = m) = cffG (2−m )

and

P (Yn+1 = 1 | Yn = m) = 1− cffG (2−m ), m � 1.

Note that Yn and Ŷn are identically distributed for any fixed n. Therefore, by (3·3),

E sup
x,y∈Σ0

ρ(Ẑn (x), Ẑn (y)) � E2−Yn , n � 0. (3·4)

Since Yn is a non-ergodic Markov chain by assumption, see e.g. Prabhu [9, p. 80,
example 18], and Ŷn is monotone, it follows that Ŷn → ∞ a.s. as n → ∞, and thus
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using (3·3), we obtain

sup
x,y∈Σ0

ρ(Ẑn (x), Ẑn (y))→ 0, a.s. (3·5)

as n → ∞.
Note that if for some M � n− k0, ωk0+j ∈ �M −j

k=0 Ak (ij+1 · · · ij+k ) for all j =0, . . .,
M − 1, then Xn

−k0
∈ {i1i2 · · · iM y : y ∈ Σk0+M } for all n � M .

From this property (in the case k0 = 0) in combination with (3·5) it follows that
there exists a Σ0-valued random variable Ẑ, such that Ẑn (x, ω) converges almost
surely to Ẑ(ω), uniformly in x. From (3·4) it follows that

E sup
x∈Σ0

ρ(Ẑn (x), Ẑ) � E2−Yn .

This completes the proofs of the theorems.
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