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ITERATED FUNCTION SYSTEMS
CONTROLLED BY A SEMI-MARKOV CHAIN

In this paper we consider a finite set of m maps {w1,wsy -, W }, win X — X, where
X is a complete metric space, together with a sequence {{n} of random variables
taking values in the finite set {1,2,...,m}. This sequence controls the dynamic
system Zn '= 1wy, _, o+ 0wy The case where {In} is a sequence of independent,
identically distributed random variables (or a homogeneous Markoy chain) is usually
referred to as an Iterated Function System IFS (or a recurrent IFS). In the present
paper, we consider the more general case when the controlling sequence is a semi-
Markov chain. Under “average contractivity” conditions, we obtain some ergodic
theorems. In applications, these results may broaden the class of images which can
be created using iterated function systems.

1. INTRODUCTION

Tterated function systems is a fast developing topic which has been studied extensively
during the last decade. One major reason for this recent activity was the introduction
of the fractal concept in the seventies, which led to questions on how to create new
fractals. An important method is to use iterated function systems (IFS) (see Barnsley
and Demko (1985)). Problems concerning more effective image building naturally led
to the introduction of iterated function systems with probabilities, i.e. iterated function
systems controlled by a sequence of independent, identically distributed random vari-
ables. Barnsley, Elton and Hardin (1989) generalized this model. They considered IFS
controlled by a Markov chain and called them recurrent IFS.

In the present paper, we will study a more general model; iterated function systems
controlled by a semi-Markov chain. Informally, we have the following dynamic structure:

Consider a set of m functions w;: X — X where & is some measurable space and the
index § = 1,2,...,m. Choose a starting point 7y € X and a starting index yo. Choose at
random an integer Ny,. The function wy, is then iterated IV, succesive times, starting
at o, to create the suborbit zo, T1,...,%N,, . Now choose a new index y; at random,
with probabilities depending on yo. Then choose at random an integer IV, and iterate
the wy, function Ny, times starting at zx, . Continue in this fashion to create the full
orbit {z,}. -

In the special case when all the Ni's (i = 1,...,m) follow a geometric distribution, ie.
N; is the number of “cointosses until head”, we have an IFS controlled by a Markov chain,
_ which has been investigated by Barnsley et al. (1989). This model in turn generalizes
iterated function systems with probabilities introduced by Barnsley and Demko (1985).

Qur way to attack the problem concerning a controlling semi-Markov chain, motivates
us to extend some ergodic theorems by Barnsley et al. (1989) concerning a controlling
finite state space Markov chain to the countable state space case. We shall do this in
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Section 1 (Theorem 1), and also improve one of their results (see Theorem 1(ii) below),
in that we allow arbitrary initial distributions for the controlling Markov chain. -
Results concerning a controlling semi-Markov chain are presented in Section 2 {The-
orem 2). g
We shall now give a more precise introduction to the models we consider: Let X be
a locally compact Polish space with metric d, and let w;: X — X be Lipschitz maps,
i € 8, where S is adiscrete (finite or countable) space. We define for such a map w, the

norm
ol = sup 2022106
TFEY (2’,‘, y)
Let {I,}32, be a stochastic sequence with phase space §. Specify a starting point
zg € X. The stochastic sequence {I,,} then controls the generalized dynamical system
{Zzo12e ), where

; : L
ZE = wy,_, owy, , 00wy (zo), ezl

What we want is to determine the behavior of the distribution of "Z7° as n tends to
infinity. In doing this, one problem is that 23" does not in general converge pointwise,
not even under strong contraction conditions. - Therefere, we instead study iteration in
reversed order :

ZR = wh 0wy o owr,, (To), n>1, Z5° =um,,

which under similar contraction conditions does converge pointwise with probability one
(almost surely, a.s.).

In the simplest case when the controlling sequence {I,,} consists of independent, iden-
tically distributed random variables, Z, and Z, {(we omit the index mp when it is not
specified) have the same distribution, so if Z, converges a.s., it will follow that Z,, con-
verges weakly.

- The case when the controlling sequence is & Markov chain is more intricate since
the distributions of Z, and Z, no longer coincide. However, this problem is solved by
considering the reversed chain (see Section 2 or Barnsley et al. (1989)).

When the controlling sequence, {I,}, is a semi-Markov chain (see Section 3 for a
definition}, there is no method of reversing the chain so the previous known methods
cannot directly be used. However, we shall proceed by embedding this semi-Markov chain
in a extended Markov chain ({In, ¢n} which we introduce later), use reversing results
concerning Markov chains, and then “try to forget” about ¢,. Since the embedding
chains generally will have countable state space, our method forces us to extend some
results concerning the model with a controlling finite state space Markov chain, to the
countable state space case.

2. IFS CONTROLLED BY A MARKOV CHAIN

Let {I5} be a homogeneous Markov chain with countable state space, and%h tran-
sition matrix P = (Fy;). This Markov chain contrels the dynamical system {Z.}, as well
as the random sequence {Z,} defined as above. ;

We will consider. the case when the Markov chain {I,,} is ergodic, i.e. irreducible and
with 2 unique stationary probability distribution = = {=()}%2,.

Define, using Kolmogorov's extension theorem, the measure Fy; on the space of tra-
jectories of {I,} given on finite dimensional sets by '

Fullo=do, i =41,..., Dy =in) = p(30) Prgsy -+~ Bo ...
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If the initial distribution p is concentrated at the point 4, we use the notation P
instead of P,. Furthermore, we use Pjor instead of P for reasons that will be clear
later.

Since all 7() > 0, we can define the dual transition probabilities of P,

Quj i=w(j} Py /n(3).
This transition matrix corresponds to a Markov chain {,} with the same stationary
distribution, , as {I,,}.

Define the measures P,, (Pya, := P, and P,) in analogy with Py, (Pf.r'and P), given
on finite dimensional sets by

ﬁ#(fl’l =ig, [y T =in) = plio)Qigty - Qinrin-
It then follows that
Pfor(ID =ig,...,In = iﬂ) =Pbac(fﬂ = i“""’fn = io).

This explains the names of the measures Frar correspending to the forward chain and
Byoe corresponding to the backward chain. Thus, we see that for all n"and all

Pror{i=(ig,i1...): Z5(5) € -} = Pre{i = (0,11 ... 2 ZZ() € )
where ZZ(i) :=w;,_, o+ 0wy (z) and ZE(i) == wiy 00w, _, (T).

Theorem 1. Suppose that
A: {1} is an ergodic, aperiodic, homogeneous Markov chain.
B: R(z) 1= sup,e 5 d(wi(z),2) < co for somez € X.
C: Epy,, logliwy,, o--- 0wyl <0 for some ny.
Then for all z € X -
(i} An dnversed ergodic theorem: For [Py.| a.a. i, wi, o+ --owy, (z) = Z(i), and the
limit is independent of z € X. . L
(ii) An ergodic theorem in average: P,{i: Z2(i) € -} 3 A(-), for all initial distribu-
tions p, where M-} = Py {i; Z(i) € -}. .
(i) An individual ergodic theorem: For all f € C(X), the bounded continuous func-
tions on X, and all initial distributions p, -

1 2 s )
s PCHOR [rar Buas

Remark 1. ,('_'jondition c can be expressed by,

n oo - ]
2 2 wlio)Pisy - Py s, log [lwi, 0 -+ 0wy f < 0.

Cr=0i.=1
Remark 2. (i) and (ii) hold if X is a complete metric space.

Remark 3. (iii) states informally that starting at any =z, and with any initial function,
the empirical distribution of a trajectory converges with probability one to A. .

The proof follows the scheme. in the proof by Barnsley et al. (1989) concerning a
controlling Markov chain with finite state space. The new part is to show that the. h_n_ut
in (if) does not depend on u. (Barnsley et al. considered the special case when the initial
distribution of the Markov chain, g, is the corresponding stationary measure.)
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Proof. (i) Since for all n, Pror{i:{ipf1...tn) € -} = Prac{l: (inin-1-..10) € -}, we also
have i
Ep,,, logllwy, o---owr, || <0, for some no.

Using & variant of Kingman’s subadditive ergodic theorem in finite measure spaces,
we can show that this implies (see Stenflo (1995) for details),

-1
&) limsup S log[lwr, -+ owpl| < —a, Pror a5
n—ce T
and
" 1
2 limsup = logllwy, @ -+ owy, || € —, Feac a8
n—oq N

where o is a constant in (0, ec).
Let z be a fixed point satisfying condition B. From the definition of the norm, for
Py almost all (a.a.) i, we have

Ay @+ - 0wy, (£), Wiy © - 0 Wiy, (&) < [lawig 0 0wy, [|1R(z).

For Pyos 2.a. i, we may choose my (depending on i) so that n 2 mg = [Jwigo- - 0wy, || <
e=/2 and thus 300 o d(ws, o -+ 0wy, (2),wig © -2 0 Winy, (7)) < 00
Therefore, Z2(31) 1= w;, o -~ o w;,_, [z} is a Cauchy sequence and converges to, say
Z(i), for Pyg. 8.a. 1. Furthermore for Fyee 4.8 i,
d{wiy © -+ 0w, (2), Wiy 0+ 0wy, (1)) < |lwig 0+ 0wy, ||d(z,y) = 0.

Accordingly, Z(i) does not depend on z. This f)roves (i) in Theorem 1.
(ii) We first note that for all », and all f € C{X),

[ (220 dPucti) = [ £(Z20) 2Prri)
Let us choose an arbitrary point zo € X and define the measure,
XZ0 () 1= Prop{i; Z20(i) € -} = Pooc {i: Z2°G) € -}
For every function f € (X)), the deminated convergence theorem and statement (i)
yield .
T
Jin [ s axe) = im [ FE0)dPucl) = [ lim £(Z300) aPiust
= [ #2®) dPct) = [ @) ar2)

That is, we have proved (ii) in the special case when the initial function index is chosen
according to the stationary distribution of the Markov chain L}

Tf Pror(+) = 1, then By(-) = 1, since by definition Pyor(-) = 3 m(i)Fi(-). Thus from
equation (1) in the proof of (i) we also have that

1 :
limsup — log flw;, o+ ow ]| € =, for Fyaa. i
n—+oo T

Using this limit result, and the definition of the norm, for any two points z,y € X
we have, d(Z5(i), Z¥(1)) < llwi._, o --- o wy||d(z,y) — 0, for B a.a. i,:and thus for a
function f € C(X): ‘

F(Z50) - f(25([) — 0, for Fiaa.i
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Lebesgue’s dominated convergence theorem now 1mpl1es
Jim /(f(Zi(i - f(Z3(1))) dP:(i) —f lim (f(Z7 (1)) — F(Z5(1))) dP:(1) = 0.

Let P()(j,-) denote P(I, € - | Iy = i) and define for a Borel set, in the space of infinite
sequences, the probability measure

Ppy() =3 PGP ()

j=1
Since we have
/f(zzﬂ,k(i))d&(i) ZP‘”’@ J)f ff(zm(g dP;()P(Z50 () € da | In = 4, Io = i),

it follows from equation {3) and the dominated convergence theorem that for any fixed n
(4)

lim sup
k—o0

< Z_g PG [ [ lim |72 6) - AT @) RGPES €dz|Tu=iJo=)

f £(279, (1)) dP:() f F(ZE () dPr, (1)

= 0.

Then, using A we obtain, the following inequalities (uniformly for all k),

\ [ 1@2@) P - [ 7Z52@) 4Brert

"

<SP, 5) - =) f £z @) dpyi )I

i=1

< {sup f(=z 1Z|P(“)zy}—-7r ()] — 0 asn\}—)oo

z€X

Given ¢ > 0, we may choose fixed p051t1ve mtegers N and K(N) sufficiently large so
that for all k > K(N),

] [ 15020 - [ 1250 dBrert
<|[ rzaoare - [ f'(z:‘*(mdﬁ,,l;(i)]

<e/2 due to (4)
| [ s ap® - [ 1220 Bt <o

<ef2 d:e to (5)

b

However, we have proved that

[ F(220 () dPyorti) — [ Fl@)dr(z)-
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Thus
tmup [ (25°0) dPs) = moup [ 7(738,,0) PG
< limsupff(Zf" (1)) dPyor (i)
k=00
+timeup) [ #(25, )aP6) - [ £ ) dPpnti)
< [ firse,
and

tgmint [ £Z320)aPG) = mint [ 7(258,,0) apG)
2 limint / FUZ2 () dPron (i)

/ 125, () dP,G) - / FZEo)) Py (i)

— limsup
k=00
b / fd\ —c.
Thus, since ¢ is arbitrary we have
dm [ fzem)anm = [ reae
k—oo

for all i. This completes the proof of (ii).

(iii) The proof by Barnsley et al. {1689) concerning a contrclling finite state space
Markov chain based on the result by Elton (1987), may be generalized whithout change
t0 this countable state space case. [

3. IFS CONTROLLED BY A SEMI-MARKOV CHAIN

In this section, we shall formalize the ideas that were informally presented in the
introduction. That is, we shall define a semi-Markov chain and show how we can embed
this chain in a Markov thain. Finally, we arriye at the main theorem of this paper
through this embedding idea. (For references concerning semi-Markov chains, see for
instance Cinlar (1975) or Medhi (1982).) _

Consider a (time-homogeneous) Markov renewal process {¥y, L, }52. with state space
{1,2,....m} x Z* je a homogeneous two.component Markov chain with transition
probabilities P{Yn41 = j,Lay1 = k[Yy = i, L, =1} = g;;(k). As is known, the first
component of the Markov renewal process {¥,,} is also a Markov chain with transition
probabilities p;; = 3, ¢;;(k). We. shall study the case when Y.y and L., are con-
ditionally independent given'Y,.- That is, q:;(k) = pij FO (k) where fO(k) is a shorter
notation for P{Lnt1 = k|Y, = 1}. Define the time for the nth renewal Ty=3%0, Ly,
n > 1, (Tp :=0). We can now define a semi-Markov chain as

_ In = K fﬂrnsﬂl<1}+1, l=0,1,2,....

This sequence controls the dynamical system {Z, = wy,_, 0+ 0 wy, } as well as the

random sequence {Z, = wy, 00 wr,_, }
Let Ny, := max{k: Ty < n} denote the number of renewals before time 7, and define
the time since the last renewal, $ni=n—Tn,.
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Then {In, $n )52, will form a Markev chain on {1,...,m} » N with transition prob-
abilities given by

{0 i
—4)”_; TRy P ifl=0,

= =)
Pems = | Brpnl L ifi=jandi=k+1
n=f
0, otherwise.

Tet the Markov chain {¥,} be irreducible. Then there exists a stationary probability
distribution ¥ = {#},;. '

Define M; := E(Lypi1|Ya = 1) = Yooy kP (k). If in addition to the irreducibility of
the Markov chain {¥,}, all M; < 00, i=1,...,m, then the Markov chain {I,, ¢a}32,
will be ergodic with stationary probability distribution

=] m =
m(i,k) = vy [@) (2 vaj) .
n=h 3

=1

Using Kolmogorov's extension theorem we define the measure Py on the space of trajec-
tories of {I,} determined on finite dimensional sets by

Pi(lo = to, [y = i1,. -1 In = in)

n o0
™ Z Z m(iﬂrkU)P(io,ko),(il,kz)P(il,kl):(iz,kz) o Pl 1) inka )
=0 kp=0 :
We are now going to describe how to “reverse time?, following the method of the
previous section. Consider the transition probability

_ m,])
Qi) = 70z, 7y LMY

which corresponds to a Markov-chain on {1,2,...,m} x N with the same stationary
distribution as the Markov chain governed by F, m(i, k), embedding the “backward
running” chain {fn}. Define P in analogy with the construction of Py {but now use Q °
instead of F) we then get:

Pf(I():iD:Il=i1:"‘11n:1:n) o

” (=]
=33 mlio, ko) Plio,kahirkn Plit ditiaka) -+ it bnms)ifinadin)

=0 kn=0

3 okl S g v
= 0, R0 m(‘iu,ku) (1,k1),(f0,ko) *

- Min, kn)

Tl ) Climsbelin-ka-)

]
1M
g

; min, En )@ (i i)t dino) - - - Qi o). o)
o]

[
™=

P

]
<
[

1

= Pb(IO = 1I'lrl)-'fl = én—l:‘--;fﬂ :1‘0)
Define on the space of trajectories of {I,.}, using Kolmogorov’s extension theorem, for
an arbitrary probability distribution, g, on {1,...,m} the measure Py, determined on
finite dimensional sets by

n oo
P(“)(Io = ig, pem ,In = ?'n) = p(zo) z Z P[io.U),(i1.k1) rea P(in-hkn-l),(i“.ku)'

r=1k.=0
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(This measure is the one generated through the procedure given informally in the intro-
duction.}

We have now introduced all necessary definitions and concepts, to be able to state our
theorem concerning a controlling semi-Markov chain:

Theorem 2. Suppose that
A: {Ya)} is irreducible.
B: M; <oco0,i=1,...,m.
C: The embedding double Markov chain, {I,,,$.},is aperiodic.
D: Ep, log|lws,, ¢ owp| < 0 for some ng.
Then for all z € X:
(i) An inversed ergodic theorem: For [Py] a.a, i,w;, -+ 0w, (z) = Z(i), and the
timit is independent of t € X
(i) An ergodic theorem in average: P,y {i: Z2(1) € -} 3 o(-), for all initial distribu-
tions p, where o) = P {i: Z(i) € -}.
{if) An individual ergodic theorem: For all f € C(X), the bounded continuous func-
tions on X, and all initiol distributions u, :

n

o Zf(szi))—}ffda' Py as.
=0

n+lk_

Remerk 4. Condition D can be written as

ny m o

SN mlios ko) Pri o). (i1.k1) = B 1 kg 1), (g shing ) 108 [[Wi, 0 - 0wy ]| < 0

r=0i~=1 k. =0
Proof. Since the conditions in Theorem 1 are satisfied for the embedding double Markov
chain, {I, ¢}, and since Py and Py are just the restrictions of the measures Psor and
Fyac, respectively, given in Theorem 1 to the space of trajectories of the first compenent
{I}, the present theorem is actually a corollary of Theorem 1. O

4. EXAMPLE

Consider the IFS X = R, together with the four functions:
we |Zl={0 0 9:+0 $_!0.850-04I+0
Yyl T 1o 016 |y o7 "|y| T|-004 085] |y 16|
i |2 _ 102 -026] =z + 0 z| _[-0.15 0.28] [= i 0
*ly] T o023 o022 ||y 167 "y|=| 026 o024y 0.44]"
Let mp = (0,0) be the starting point. We can generate an orbit using these four affine
maps and an independent, identically distributed controlling sequence (with P(I,=1)=
0.01, P(I, = 2) = 0.85, P(I, = 3} = 0.07 and P(I,, = 4) = 0.07 for all n; These functions
and probabilities are given in Barnsley's book “Fractals everywhere” (1988). If we plot
the points on the orbit (except the first, say 1000, points), we can “draw a picture” of
the invariant measure using Theorem 1{iii), or Theorem 2(iii). This procedure generates
the left hand picture (Barnsley’s fern).

Alternatively, if we use a controlling semi-Markov Cha.in; with “index controlling ma-

trix”
0 0.85/0.99 0.07/0.99 0.07/0.99

0.01/0.15 0 0.07/0.15 0.07/0.15
0.01/0.93 0.85/0.93 0 0.07/0.93 |
0.01/0.93 0.85/0.93 0.07/0.93 0

Pi=
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and geometric “timespending distributions”, {f'?(%)}, i = 1,...,4, with parameters
0.01, 0.85, 0.07, 0.07 respectively, we have exactly the above model in “semi-Markov
setting”. Thus, this more general procedure also generates the left hand picture.

If we choose “timespending distributions” other than geometrical, we can, by using the
same functions, create “new” pictures. For instance we can obtain the right hand “nordic
leaf” picture, with fV(1) = 1, (1) = 0.1, F2(2) =03, F9(3) = 0.3, fP(4) =03,
F(1) = 0.3, F32) = 0.3, FO@) = 04, O =0, 92 =01, fU(3) =01,
fO) =01, f95) =07
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