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. Consider a discrete-time nonhomogeneous Markov chain
on a compact state space obtained by random iteration of functions
chosen independently in each iteration step from some countable fam-
ily of functions. In iteration step we choose map with
probability (depending on “time” ). Suppose for all

. We give some sufficient conditions in order for the nonhomo-
geneous chain to have similar limiting behavior as the corresponding
homogeneous Markov chain (with function chosen with probability

in each iteration step).
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Örjan Stenflo

In this paper, we will consider Markov chains on compact state spaces
obtained by random iteration of functions chosen independently in each
iteration step from some countable family of functions.

To be more formal, let ( ) be a compact metric space and
a family of measurable functions : . The set ;
is called an iterated function system (IFS). Let be a sequence
of independent random variables with values in . Specify a starting
point . The stochastic sequence then controls the stochastic
dynamical system ( ) , where

( ) := ( ) 1 ( ) =

The sequence ( ) forms a (in general nonhomogeneous) Markov
chain. This Markov chain may be characterized by the IFS ;

together with the probabilities where ( = ) = .
Therefore, naturally generalizing the terminology introduced by Barnsley
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2. Main Results
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and Demko (1985), we call this model iterated function systems with time
dependent probabilities.

Barnsley and Demko (1985) treat the model with time independent
probabilities. (The Markov chain ( ) is homogeneous i.e. the
transition probabilities do not depend on “time” iff the controlling se-
quence consists of independent and identically distributed (i.i.d.)
random variables.)

Other related papers concerning the model with i.i.d. controlling se-
quence are e.g. Kaijser (1978), Lasota and Mackey (1989), Elton and Pic-

cioni (1992),  Loskot and Rudnicki (1995) and Öberg (1997).
Markov chains represented in dynamical form is a natural model in

many applications and have been studied e.g. in connection with learning
processes by Iosifescu and Theodorescu (1969), and Norman (1972).

We are going to approach nonhomogeneous Markov chains using cou-
pling arguments and the method of reversing time as basic ingredients in
our proofs.

The main results are given in Theorems 2.1 and 2.2 below.

We shall here state the main results of this paper con-
cerning IFS with time dependent probabilities. First, however, we need
to introduce some definitions and concepts.

Let ( ) be a (time homogeneous) Markov chain arising from the
IFS ; with probabilities . Let ( ) be a (time
inhomogeneous) Markov chain arising from the same IFS but with “time”
dependent probabilities . That is,

( ) = 1 ( ) =

and

( ) = 1 ( ) =

with ( = ) = and ( = ) = , for each and , with and

being sequences of independent random variables.

Denote by ( ) = ( ), ( ) = ( ), and ( ) the probabil-
ity distribution of ( ).

Let, for each ,

=

2
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Suppose

: as
and

: as

Then there exists a probability measure such that

i.e. the distribution of converges weakly to uniformly with re-
spect to initial point .

Suppose

: There exists a constant such that

and

denote the total variation distance between and .
For Borel probability measures and , let denote the Kantorovich

distance defined by

( ) = sup ( )

where

= : ( ) ( ) ( )

Convergence in this metric (sometimes also referred to as the Hutchinson,
or Wasserstein, metric) is equivalent to weak convergence i.e.

( ) 0

( )

where ( ) denotes the set of real-valued continuous functions on .
(See e.g. Dudley (1989).)

We can now state our main results.

sup ( ( ) ( )) 0

0

sup ( ) 0

( )

Under the following stronger assumptions, we may sharpen our conclu-
sion and also obtain convergence rates and a law of large numbers.

1

( ( ) ( )) ( )
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: There exist positive constants and with such that

Then:
(i) There exists a probability measure and a positive constant such

that for any ,

(ii) For any , and any , we have that,

Remarks:

1

= 0 1

max( )

sup ( )

( )

( ( ))

1. An explicit expression for is given in (2.18) and (2.19) below.
2. If = we may choose = max( ).
3. If the rate of convergence in is slower than geometrical, then the rate
of convergence in ( ), is determined by the rate in (see (2.10) – (2.13)
below), and thus in particular we obtain the conclusion of Theorem 2.1
under conditions and .
4. A sufficient condition for (ii) is that holds and that

(See (2.20ff.) in the proof below.)
5. Condition implies that the functions need to be continuous.
6. Theorem 2.2 (ii) may be generalized under the same assumptions to
state: For any ( ), and any sequence of points in , we have
that,

( ( ))

We start with some preliminaries common for both the
proof of Theorem 2.1 and that of Theorem 2.2. Intuitively, we are go-
ing to consider the two sequences ( ) and ( ) as being defined
on the same probability space and realize a coupling type construction.

Since condition and , respectively, implies the special cases of the
theorems obtained by replacing ( ) with ( ) , (an explanation of
this fact is given below), our proofs will be completed if we can do our
coupling construction in such a way, that ( ( ) ( )) converges to 0,
(in the “right” sense).
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In the construction below we are, for fixed , maximizing the conditional
probability that ( ) = ( ) given that ( ) = ( ).

Let be a sequence of i.i.d. random variables uniformly distributed
in [0 1).

Let denote the Lebesgue measure. We shall first construct func-
tions and : [0 1) , = 0 1 , such that ( : ( ) = ) = ,

( : ( ) = ) = for each , and such that ( : ( ) =
( )) is maximized.
Define : [0 1) by ( ) = if , where := ,

:= 0. Let = [0 1) : ( ) = + Let

= : . Denote by the :th smallest element of .

Define = 0 and for 1,

= inf : ([ ) ( ))

Finally we define

( ) =
( ) if

if [ ) ( ) = 1 2

From this construction, we see that and ( ) are identically distributed

for each as well as and ( ). Since we are only interested in
distributional questions, we may consider ( ) and ( ) as defined by

( ) := ( ) 1 ( ) =

and

( ) := ( ) 1 ( ) =

(Theorem 2.1)
Define the reversed iterates,

ˆ ( ) := ( ) 1 ˆ ( ) =

and
ˆ ( ) := 1 ˆ ( ) =

Note that it is only the i.i.d. sequence which is reversed, and

thus ( ) has the same probability distribution as ˆ ( ) for each .

The reason to introduce ˆ ( ) and ˆ ( ) is that these new random
sequences converge which in general does not hold for the original
sequences.
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In fact, we will (see below) prove that there exists a random variable ˆ

such that

sup ( ˆ ( ) ˆ) 0 (2.1)

from which the conclusion of the theorem will follow. To see this, note

that (2.1) implies that ˆ ( ) ˆ, for any sequence . Consequently,
since almost sure convergence implies weak convergence, ( ) 0,
which implies that sup ( ) 0.

In order to prove (2.1), the following lemma telling that (2.1) holds if
ˆ ( ) is replaced by ˆ ( ), will serve as a starting point.

sup ( ( ) ( )) 0

˜ ˆ

sup ( ˆ ( ) ˆ) 0

If all functions are continuous then ( ) = ( ˆ ) is
invariant and unique with this property. Condition was introduced by
Öberg (1997) and a similar condition as Condition ˜ by Letac (1986).

(Lemma 2.3) Since the random variables sup ( ( ) ( ))

and sup ( ˆ ( ) ˆ ( )) have the same distribution (for each fixed
), we have that

sup ( ( ) ( )) 0

sup ( ˆ ( ) ˆ ( )) 0

Since ˆ ( ) := ˆ ( ); is a nested nonincreasing sequence of
sets we see that

sup ( ˆ ( ) ˆ ( )) 0

sup ( ˆ ( ) ˆ ( )) 0

Thus

sup ( ( ) ( )) 0 sup ( ˆ ( ) ˆ ( )) 0 (2.2)
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To prove that ˜, let be an arbitrary point in . From the
construction of ˆ we observe, for , that

( ˆ ( ) ˆ ( )) = ( ˆ ( ) ˆ ( ( )))

sup ( ˆ ( ) ˆ ( ))

It follows from Condition and (2.2) that

sup ( ˆ ( ) ˆ ( )) 0 (2.3)

and thus ˆ ( ) is a Cauchy sequence which converges, to say ˆ,
since is complete. Thus since

sup ( ˆ ( ) ˆ) sup ( ˆ ( ) ˆ ( )) + ( ˆ ( ) ˆ)

it follows using (2.3), that sup ( ˆ ( ) ˆ) 0, and ˜ is proved.

The proof of ˜ follows immediately from (2.2) and the triangle
inequality.

We now return to the proof of Theorem 2.1. From the assumptions
together with Lemma 2.3 it follows that there exists a random variable ˆ

such that

sup ( ˆ ( ) ˆ) 0 (2.4)

It remains to prove that (2.4) holds with ˆ replaced by ˆ . This we
will do by using a comparison method.

For any 0 there exists a random integer (finite with probability
one) such that

sup ( ˆ ( ) ˆ)

Define, for with 1 fixed,

ˆ ( ) := ( )

As a consequence of condition , with respect to the
Lebesgue measure in the discrete metric i.e.

( [0 1); ( ) = ( ) ) = 0

Thus there exists a random integer = (1) (finite with probability

one) such that ˆ = ˆ if , and by an inductive argument we can
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show that for all , there exists a random integer = ( ) (finite

with probability one) such that ˆ = ˆ if .

Let be a random integer ( ) such that ˆ = ˆ if .
(From the above we see that it is possible to choose to be finite with
probability one.)

For we then have that

sup ( ˆ ( ) ˆ) sup ( ˆ ( ( )) ˆ)

sup ( ˆ ( ( )) ˆ)

sup ( ˆ ( ) ˆ)

and thus the proof of Theorem 2.1 is completed.

(Theorem 2.2)
Let = sup ( ) denote the diameter of . Define

= (2.5)

We have the following inequality

sup ( ( ) ( )) : ( ) = ( )

(1 min( )) (max( ) min( ))

= (2.6)

Let be an arbitrary point in . By using (2.6) and condition in
the triangle inequality, we see that

( ( ) ( )) = ( ( ( )) ( ( )))

( ( ( )) ( ( )))

+ ( ( ( )) ( ( )))

+ ( ( ) ( )) (2.7)
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d µ , µ ρd .

x K

Ed S x ,Z x c δ δ
c

c

c
δ ,

B Ed S x ,Z x <

Thus for = we have that

( ) (max( )) (2.14)

Using (2.10) and (2.14) we see that

sup ( ) (max( )) +
1

+
1

1
(max( )) (2.15)

If = we obtain from (2.13) that

( ) (2.16)

and finally by inserting this in (2.10), we obtain that

sup ( ) (
1

+ ) (2.17)

All together if = , let

= +
1

1
(2.18)

and if = let

= sup((
(1 )

+ )( ) ) (2.19)

Then

sup ( )

This completes the proof of Theorem 2.2 (i).
To prove Theorem 2.2 (ii), let be an arbitrary point . From (2.8)

it follows that

( ( ) ( )) lim
1

1

1

1
(2.20)

and thus from (2.5) and condition , ( ( ) ( )) .
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References

399

31

91

45

138

50

a s

a s

1

1
=0

1
=0

1
=0

1
=0

→
∈

| − | →
{ }

∈ ∈

− →

∈
∈

− ≤ | − |

− →

n n
. .

n n
. .

n

n
k k a.s.

n
k k

n
k k k

n
k k a.s.

∣∣∣∣∣

∑ ∫ ∣∣∣∣∣

∣∣∣∣∣

∑ ∫ ∣∣∣∣∣

∑

∣∣∣∣∣

∑ ∫ ∣∣∣∣∣

d S x ,Z x
f C K

f S x f Z x .

A Z x
µ

f C K Ef Z C K

f Z x

n
fdµ ,

x K
x K

f S x

n
fdµ

f S x f Z x

n

f Z x

n
fdµ .
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Thus ( ( ) ( )) 0 by the Chebyshev inequality and the Borel–
Cantelli lemma, and consequently for any ( ), we have that

( ( )) ( ( )) 0 (2.21)

From condition it follows (see Stenflo (1998) for details) that ( )
has a unique invariant probability measure , and has the Feller property,
i.e. if ( ) then also ( ) ( ). Since we have a Markov chain
with a unique invariant probability measure on a compact metric space
having the Feller property, the conditions in a theorem by Breiman (1960)
are satisfied and we may use it to obtain

( ( ))
0

for any . Using (2.21) and the fact that convergence implies con-
vergence in the Cesaro sense, we see that, for any ,

( ( )) ( ( )) ( ( ))

+
( ( ))

0

This completes the proof of Theorem 2.2.
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