
Introduction

The present introduction contains:

• A non-technical introduction to the topic of this thesis.
• A general survey including related topics and literature.
• A summary of the main results obtained in the papers [A]-[E].

1. Introduction for non-mathematicians

The purpose of this initial section is to try to give a glimpse of the con-
tent of the thesis for nonspecialists. The present thesis concerns random
iteration of functions. In order to explain what this is, what questions we
are struggling with, and to explain why we are interested in these types
of questions, let us consider an example.

Example 1.1. Pick three points building the vertices in a triangle. Label
one of the vertices 1, the second 2, and the third 3.

Next, take a die and label two of the faces 1, two 2, and two 3. Now
choose a starting point, Z0, for instance the vertex labeled 1 in the triangle.
Then roll the die. Depending on what comes up, move Z0 half the distance
towards the appropriately labeled vertex and call the new point Z1. That
is, if “1” comes up, do not move Z0, if “2” comes up, move Z0 half the
distance towards the vertex labeled 2, etc. Now begin again, starting from
Z1. That is, roll the die again and move Z1 half the distance towards the
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appropriately labeled vertex, and call the resulting point Z2. Now continue
in this fashion. For an example see Figure 1.
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These traveling points can clearly not reach all points in the triangle.
The only “reachable” points lie on a set which mathematicians call the
Sierpinski triangle after a Polish mathematician who described some of its
properties in 1916.

Figure 2. The Sierpinski triangle

In fact, we may even prove that, with probability one, the sequence of
points Z0, Z1, . . . which we call a trajectory eventually visits any part of
the Sierpinski triangle. Thus we may draw a picture of it by plotting a
trajectory (see Figure 2). The words “with probability one” are important.
Obviously, if the die always shows the same face, the trajectory will simply
approach the corresponding vertex. For a fair die, however, this event will
occur with zero probability.

There is some terminology associated with this example which we are
going to use; The process of repeating the rolls is called iteration, and a
rule telling how points shall move e.g. “move half the distance towards
the vertex labeled 1” is called a function. Thus we saw an example of
random iteration of functions (where the randomness was due to the die).

Random iteration of functions is a natural model for many processes
proceeding in time. Applications are abundant in the literature. For
instance in biology, [population dynamics], physics [radioactive decay],
economy [exchange rates], psychology [learning processes], etc. A book
containing a variety of different applications of random iteration of func-
tions is Tong (1990).

In the example we saw how we could construct an image by random
iteration of functions. The associated image can be considered as a proba-
bility regime (distribution) which the iterates obey in the long run, where
the amount of probability mass determines the “shadowing” of the image.
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Here the limiting probability distribution was concentrated (and uniformly
distributed) on the Sierpinski triangle. That is, all parts of the Sierpinski
triangle were equally shadowed.

If we change the random rules determining the choice of function used
to iterate in each iteration step, we may obtain other images. For instance
the extremal case of “random” rule always (with probability one) choosing
a certain function gives an image (i.e. limiting probability distribution)
concentrated in just one point (the corresponding vertex).

We may also obtain other images if we use other functions with nice
properties. For instance there are well known examples creating trees,
clouds, landscapes etc. For a popular account on this topic, see the book
by Barnsley (1988). This indicates a beautiful connection between mathe-
matics and art that has been a source of inspiration for the present thesis.

If the limiting probability distribution is independent of which starting
point we choose, then all information about it can be expressed in terms of
the family of functions [which we call an Iterated Function System (IFS)]
and the probability rules creating it, giving an encoding of the image. An
interesting problem is the inverse problem: Suppose that we are given a
picture. Can the picture be encoded by random iteration of functions?
This problem, which has applications in image compression, is in general
hard to solve.

In the above example we have considered random iteration of functions
from an IFS where the function to iterate is determined by the same
probability rules in each iteration step independently of previous choices.
This model we call an IFS controlled by a sequence of independent and
identically distributed (i.i.d.) random variables.

We may enlarge the class of possible images by allowing the random
choice of function in each iteration step to depend on previous choices. An
example of this is obtained for instance by forbidding certain sequences
of iterates to occur. [See the model: IFS controlled by a regenerative
sequence (Paper [B])]. Figure 3, on the next page, is an example of this,
where both pictures are generated by the same functions with the differ-
ence that the right hand picture forbids long iteration sequences with the
same function. The left hand picture is a well known example, see Barns-
ley (1988). For details about these pictures, see the concluding example
of paper [A].

In practice there is no possibility to iterate for an infinite amount of
time and we are forced to stop iterating after a finite number of steps.
Therefore it is also of importance to quantify the rate of convergence to
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Figure 3

the limiting probability distribution.

In this thesis we mainly concentrate on questions like:

�What conditions do the family of functions and random rules for choos-
ing functions need to fulfill in order to ensure the existence of a limiting
probability regime which does not depend upon the starting point chosen,
and what is the rate of convergence?

2. General survey

2.1. Random Iteration. The purpose of this section is to give a brief
overview of the theory of random iteration of functions.

Consider a complete separable metric space (X, d), e.g. R2 with the
usual Euclidean distance, and let F = {ws, s ∈ S} be an indexed family
of functions of X into itself, where S is some “index space”. We call the
set {X,F} an iterated function system.

We will consider the discrete time stochastic processes on X that we
obtain by successive iteration of functions randomly chosen from F . That
is, given a sequence {In}∞n=0, of S-valued random variables, we consider
the random dynamical system {Zn(x)}∞n=0 defined recursively by

Zn+1(x) = wIn(Zn(x)), n ≥ 1 Z0(x) = x, x ∈ X.
We call {Zn(x)} an Iterated Function System (IFS) controlled by {In}.

We will concentrate on the long run, ergodic, behavior of such sequences.
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The analysis of such models will of course depend on the size and struc-
ture of X and F and the way of randomly choosing functions in F to
iterate (i.e. the structure of {In}).

Even the deterministic model with F consisting of one continuous func-
tion, dynamical systems, can create trajectories almost indistinguishable
from stochastic processes. This phenomenon is loosely described as chaos.
Fundamentally, randomness is generated because of sensitive dependence
on the initial condition. In other words, a small perturbation of the initial
condition can lead to completely different trajectories. (Compare with the
action of tossing a coin. Although the dynamics governing the trajectory
of a tossed coin can be described by a deterministic differential equation,
it turns out to be very sensitive to initial position and velocity.)

A classical example is iteration with w(x) = cx(1 − x) on the real
axis described e.g. in the book by Devaney (1989). There they study the
dynamics for this map for different fixed values of the constant c. For some
values of the constant c the dynamics is very unstable giving an almost
“random” appearance.

The study of dynamical systems has been growing explosively over the
past three decades.

Stochastic studies starting from dynamical systems often considers dy-
namics under small random perturbations of one fixed map, see e.g. the
book by Boyarsky and Góra (1997). In our terminology the family F will
in this case consist of a “large” number of “wild” maps in the sense that
the dynamics of the fixed map may depend sensitively on initial condi-
tions. The family is however “homogeneous” in the sense that all maps
are “almost” the same.

In the results on which we are going to concentrate our attention below,
F will typically be “inhomogeneous” but consist of, on the average, “well
behaved” maps in the sense that in the limit there is no dependence on
the initial conditions.

The terminology in this subject is not well defined in the case when F
is a larger family. In the case when F is finite, iterated function systems
(see e.g. Barnsley and Demko (1985)) is nowadays the most widely used
terminology. See also random systems with complete connections, used
e.g. in Iosifescu and Grigorescu (1990) and the somewhat older terminol-
ogy, learning models, used by e.g. Iosifescu and Theodorescu (1969) and
Norman (1972). The latter models have also been used in cases when F
is uncountable. The above models naturally contain generalizations to
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place-dependent iteration, but are mainly designed for settings with iter-
ation independent of previous choices. Compare also the terminologies,
stochastically recursive sequences, used by e.g. Borovkov and Foss (1992),
and solutions of stochastic difference equations, terminologies often used
when F is uncountable. We have chosen an intermediate terminology with
the purpose of stressing the random structure in our model.

Many papers studying the case with F being finite, are related to prop-
erties of the often very intricate sets, fractals, obtained as supports for the
limiting probability distribution. A profound paper in this field, fractal
geometry, is Hutchinson (1981). See also the essay by Mandelbrot (1982).

A natural matter of investigations are cases when F consist of maps of
a certain class.

If the family F consist of Möbius transformations or affine maps, each
map can be represented by a matrix, and the random dynamical system
may be represented as a product of random matrices. If {An}∞n=1 is a
stationary ergodic sequence of random d× d matrices (for a definition see
e.g. Shiryaev (1996)), with E log+ ‖A1‖ <∞, then

λ = lim
n→∞

1

n
log ‖An · · ·A1‖

exists a.s. and is constant, −∞ ≤ λ < ∞. This theorem was first proved
by Furstenberg and Kesten (1960) and may be obtained as a corollary
of the subadditive ergodic theorem by Kingman (1968). The theorem by
Furstenberg and Kesten (1960) may be further quantified, see Oseledec
(1968).

The constant λ, sometimes called the Lyapunov exponent, can be
thought of as the exponential growth rate of An · · ·A1. When {An}
is independent and identically distributed (i.i.d.), then ρ = eλ is some-
times called the spectral radius for the (common) distribution of the An:s.
This is because in the nonrandom case when A1 = A2 = · · · = A, then
limn→∞ ‖An‖1/n = ρ(A). The Lyapunov exponent is in general hard to
compute.

We will be concerned with the stable situations (nonpositive Lyapunov
exponents) or in general, cases when an analogue of

‖An · · ·A1‖ → 0, a.s. (2.1)

holds.
Since it can be verified that λ < 0 is equivalent to the condition that

E log ‖An · · ·A1‖ < 0 for some n,
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we see that this condition is sufficient for (2.1).
For further related works concerning products of random matrices, one

may consult the book by Högnäs and Mukherjea (1995) and references
cited therein. See also Vervaat (1979) and the book by Berger (1993).

In the case of Lipschitz continuous maps, Elton (1990) proved a multi-
plicative ergodic theorem of a similar kind as the theorem by Furstenberg
and Kesten using the Lipschitz norms

‖f‖ = sup
x,y∈X

d(f(x), f(y))

d(x, y)
.

In particular it was proved there that under the average contraction condi-
tion, E log ‖Zn‖ < 0, for some n, and a stochastic boundedness condition,
the Lyapunov exponent is negative, and {Zn(x)} converges in distribu-
tion to a limiting distribution which is independent of x ∈ X . By Jensen’s
inequality this average contraction condition is weaker than the condi-
tion that E‖Zn‖ < 1 for some n. Note that uniform contractivity of the
maps in F is sufficient but not necessary for these average contraction
conditions.

In our terminology, these results concern iterated function systems con-
trolled by stationary sequences. Other papers related to situations when
the choice of function to iterate in each iteration step may depend on pre-
vious choices (dependent controlling sequences), are Barnsley, Elton and
Hardin (1989), Borovkov and Foss (1992), Stenflo (1996) (paper [A]), Lu
and Mukherjea (1997) and Silvestrov and Stenflo (1998) (paper [B]). See
also the book by Brandt, Franken and Lisek (1990).

If the functions to iterate are chosen independently in each iteration
step, the resulting discrete time stochastic process will form a Markov
chain (see the next subsection). In fact, see e.g. Kifer (1986), each Markov
chain may be obtained by means of independent iteration of functions,
generally however, with F being a denumerable set of discontinuous func-
tions.

Most related works in the literature concern i.i.d. iteration i.e. IFS con-
trolled by a sequence of i.i.d. random variables, where the functions in F
belong to a certain class of functions and F is finite. This restriction often
allows particular methods that are non-standard in the classical ergodic
theory of homogeneous Markov chains. (See e.g. Ambroladze (1997).)
To prove ergodic theorems for IFS controlled by more general stochastic
sequences one may sometimes mimic the i.i.d. controlling analogue.
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The situation with a finite set of contractions was first considered by
Doeblin and Fortet (1937).

Two papers related to the above situation studying i.i.d. iteration with
Möbius maps in situations when (2.1) holds and the conditions in
Furstenberg-Kesten type theorems are hard to check, are Barrlund, Wallin
and Karlsson (1997), and Ambroladze and Wallin (1997-b).

Another related contraction condition ensuring negative Lyapunov
exponent also relevant in cases with discontinuous maps is the condition
that Ed(Z1(x), Z1(y)) ≤ cd(x, y) for all x, y ∈ X , and some c < 1. A
generalization of this condition to place-dependent iteration was intro-
duced by Isaac (1962). This condition was also used in  Loskot and Rud-
nicki (1995) and Stenflo (1998) (paper [C]). See also Kaijser (1981-b) and
Barnsley and Elton (1988) for other related conditions. For a local average
contraction condition, see e.g. Kaijser (1978).

Papers related to stability ensuring unique ergodicity (see also the e-
chain bibliography given in the next section) are Gadde (1992), Elton and

Piccioni (1992), Karlsson and Wallin (1994), Öberg (1997) and Stenflo
(1997) (paper [D]).

2.2. Markov Chains. A sequence of random variables, {Zn} taking val-
ues in a metric space (X, d) is said to be a Markov chain if

P (Zn+1 ∈ A|Zn, . . . , Z0) = P (Zn+1 ∈ A|Zn), a.s.

for all n ∈ N and A ∈ B(X) (the Borel subsets of X). In words, given
the present, the rest of the past is irrelevant for predicting the location of
Zn+1.

This is the type of stochastic sequence that arises from independent it-
eration of functions. If P (Zn+1 ∈ A|Zn) does not depend on n we call the
Markov chain homogeneous. This corresponds to independent iteration,
choosing function to iterate in each step using one common probability
distribution (IFS controlled by a sequence of i.i.d. random variables). Ho-
mogeneous Markov chains may be characterized by its transition proba-
bility kernel P (x,A) giving the probability rule of transfer from the point
x ∈ X to the set A ∈ B(X).

We here concentrate on homogeneous Markov chains and sufficient con-
ditions in order for them to possess an attractive invariant probability
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measure i.e. a probability measure µ such that the probability distribu-
tion of Zn converges to µ with µ satisfying the invariance equation

µ(A) =

∫

X
µ(dx)P (x,A),

for all A ∈ B(X).
One reason for our interest in invariant probability measures is that a

Markov chain starting according to such a measure will form a stationary
sequence, (see e.g. Shiryaev (1996)), and for such sequences, we know from
a theorem by Birkhoff (1931) that the sample averages converge. The limit
is unique provided that the stationary sequence also is ergodic which is
the case when the invariant probability measure is unique. See e.g. Elton
(1987) for details. Such results are of importance for instance in the
theoretical justification of facts as in the example in the first section that
following a trajectory, we will eventually “draw a picture” of the invariant
measure which in this case was supported on the Sierpinski triangle.

The theory with X being finite or countable is well developed, see e.g.
Çinclar (1975). Most theorems here, involve conditions on recurrence i.e.
conditions on returns to the recurrent states. A natural extension of this
concept to general state spaces is Harris recurrence where returns to non-
negligible sets with respect to some measure is considered.

In the papers by Kovalenko (1977), Athreya and Ney (1978), and Num-
melin (1978) the method of artificial regeneration was developed for Har-
ris recurrent Markov chains. Using this method, the mechanisms of dis-
crete time renewal theory may be used to extend essentially all results for
Markov Chains with countable state space to the general state space case.

The ergodic theorems obtained under Harris recurrence conditions are
typically in the total variation distance, and by imposing additional con-
ditions on moments of return times, convergence rates can be given.

Many methods based on the concept of recurrence are purely probabilis-
tic methods and do not involve particular topological properties induced
by the metric d in X . Recurrence conditions may be viewed as contrac-
tion conditions with respect to the discrete metric. [See Stenflo (1998)
(paper [C]).] Thus there is a close connection between ergodic theorems
in the total variation distance based on recurrence conditions, and weak
convergence theorems based on contraction conditions.

The structure with a metric topology allows a more refined theory mak-
ing it possible to prove theorems ensuring weak convergence, under sta-
bility conditions, in situations when no recurrence condition is fulfilled.
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Most such approaches involves the operator T defined on the space of
bounded functions on X by

(Tf)(x) =

∫

X

f(y)P (x, dy).

If T maps bounded and continuous functions into itself, we say that the
Markov chain has the (weak) Feller property. If the sequence {Tnf} is
equicontinuous on compact sets for each fixed continuous function f with
compact support, we call the Markov chain an e-chain (following the ter-
minology by Meyn and Tweedie (1993)). Within the theory of e-chains,
many results related to necessity and sufficiency for the existence of an
invariant probability measure can be found. For instance, it is known that
a Markov chain with the Feller property and the property that there ex-
ists a probability measure µ, such that Pn(x, ·)→ µ(·) (weakly), for every
x ∈ X , is an e-chain, see e.g. the book by Meyn and Tweedie (1993),
(where Pn denotes the n:th-step transition kernel defined recursively by
Pn(x, ·) =

∫
X P

n−1(x, dy)P (y, ·)).
These types of Markov chains are obtained when iteration with non-

expansive maps are considered. Compare with e.g. Lasota and Mackey
(1989), Lasota and Yorke (1994), and Ambroladze and Wallin (1997-a).

Some main contributions to the theory of e-chains are Jamison (1964),
Rosenblatt (1964), Jamison (1965), Foguel (1969), Jamison and Sine
(1974), Sine (1974), Sine (1975), and Sine (1976). Additional informa-
tion and references can be found in the book by Krengel (1985). Compare
also with regular chains, see Feller (1971).

In most of the e-chain literature, however, the state space is assumed
compact.

Finally, some words about the history of Markov chains and some widely
used techniques which are to important to be omitted. A.A. Markov
laid the foundations of the theory in a series of papers starting in 1907.
The work was restricted to the finite state space case, and matrix theory
played an important role. The infinite state space case was introduced
by Kolmogorov in the 30th. The foundations of a theory of general state
space Markov chains are described in Doob (1953).

The books by Orey (1971), Nummelin (1984), Revuz (1984), and Meyn
and Tweedie (1993) covers what is mainly known today about Markov
chains with general state space. See also the book by Tong (1990) on
non-linear time series for a dynamical system approach.
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As described briefly above, different kinds of recurrence concepts play
an important role in the ergodic theory of Markov chains. The Foster-
Lyapunov drift criteria, which is a potential type method, is another
widely used method in order to prove distributional ergodic theorems by
proving that there is “drifts” towards certain sets. For further informa-
tion, see e.g. Meyn and Tweedie (1993). Other main techniques used in
the theory are coupling methods to compare probability measures. For
an account on this method, see the book by Lindvall (1992) and also the
survey paper by Silvestrov (1994).

The subject is huge and the present survey does not claim to be fully
balanced. Hopefully, however, it will put the results of this thesis in a
proper context.

3. Summary of the papers

Let X be a complete metric space with metric d, and let S be some
measurable space. We consider limit theorems for stochastically recursive
sequences of the form Zn+1 = w(Zn, In), where {In} is some specified
stochastic sequence, and where w : X × S → X is a measurable function.
For each s ∈ S, we write ws(x) := w(x, s). We call the set {X ; ws, s ∈ S}
an iterated function system (IFS) generalizing the terminology introduced
by Barnsley and Demko (1985) who used IFS to denote cases when S is
finite and the functions ws are continuous.

Specify a starting point x ∈ X . Writing

Zn(x) := wIn−1 ◦ wIn−2 ◦ · · · ◦wI0(x), n ≥ 1, Z0(x) = x,

we may consider this stochastic dynamical system as obtained by random
iteration of functions where the function to iterate in the n:th iteration step
is chosen from the IFS according to the random element In. Therefore,
we call {Zn(x)}∞n=0 an IFS controlled by {In}.

Before turning into specific features of the papers, we start with some
main thread of results proved in this thesis.

Under different kinds of average contraction and stochastic bounded-
ness conditions, we prove theorems ensuring:

(a) Convergence in distribution for {Zn(x)}∞n=0, with limiting distribu-
tion independent of x ∈ X i.e.

dk(µ
x
n, µ)→ 0 as n→∞,

11



for some probability measure µ where dk denotes some weak convergence
metric and where µxn denotes the probability distribution of Zn(x).

(b) A law of large numbers for {Zn(x)}∞n=0 i.e.

∑n−1
k=0 f(Zk(x))

n

a.s.→
∫
fdµ as n→∞,

for any x ∈ X , where f : X → R, is as general continuous function as
possible with

∫
|f |dµ <∞.

Our results of type (a) are often uniform with respect to initial point
taken in bounded sets and also contain the (in this context) novel feature
of (exponential) rates of convergence i.e.

sup
x∈K

dk(µ
x
n, µ) ≤ c0c

n, n ≥ 0

for some positive constants c0 and c with c < 1, where K denotes a
bounded set.

One main feature is to give the law of large numbers, (b), for any initial
point x ∈ X . A theorem of this kind was first considered by Breiman
(1960) (on a compact state space). These theorems differ from classical
individual ergodic theorems usually covering initial points taken from a
set of measure one with respect to some probability measure. For these
kinds of results, however, we need to impose some additional topological
restrictions on X .

In paper [A] we consider the case when {In} is an ergodic semi-Markov
chain with finite state space, generalizing a theorem by Barnsley et al.
(1989) concerning IFS controlled by Markov chains. The main idea used
here is to embed the semi-Markov chain in a Markov chain with an addi-
tional component, use the techniques from Barnsley et al. (1989) concern-
ing IFS controlled by ergodic Markov chains and then interpret the result
without the additional component.

In paper [B] we consider the case when {In} is an ergodic regenerative
sequence with an arbitrary state space. One main idea used heavily in our
proofs here, which we call the method of reversing time, was introduced
by Letac (1986). The idea is to study the reversed iterates, Ẑn(x), defined
by

Ẑn(x) := wI0 ◦ wIn−2 ◦ · · · ◦ wIn−1(x), n ≥ 1, Z0(x) = x.
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If {In} is i.i.d. then the random variables Zn(x) and Ẑn(x) are identically
distributed for each n. Thus in order to prove convergence in distribution
for {Zn(x)} we can instead prove that the in general more stable sequence

{Ẑn(x)} converges almost surely, which usually is easier. This method
should not be confused with the method of running Markov chains back-
wards. We use this technique for regenerative controlling sequences by
first constructing i.i.d. “blocks” of composed maps. [This “blocking” idea
has been used in e.g. Silvestrov (1981).] Although a semi-Markov chain
of the kind considered in paper [A] is in fact a regenerative sequence, the
results in paper [B] do not immediately generalize the results in paper [A]
since the contraction conditions we use are of different types.

In paper [C] we consider the simplest model when {In} is an i.i.d. se-
quence (with an arbitrary state space) i.e. homogeneous Markov chains.
Using slightly different average contractivity and stochastic boundedness
conditions, we prove a (weak) distributional ergodic theorem including
exponential rate of convergence in some weak convergence metrics. The
method of reversing time is again a key tool in the proof. This result
is applied to estimate distances between IFS generated invariant proba-
bility measures and in particular give an upper bound for how sensitive
the invariant probability measure is with respect to small perturbations
in the characterizing parameters. (See e.g. Centore and Vrscay (1994)
containing a related result.) We also apply the distributional ergodic the-
orem to prove some ergodic results for Markov chains by first finding a
representation with an IFS controlled by an i.i.d. sequence. In particular
we prove a result illustrating how (non topological) recurrence conditions
can be considered as contraction conditions with respect to the discrete
metric. This gives a link between classical ergodic theorems in the to-
tal variation distance based on recurrence conditions and theorems en-
suring convergence in distribution based on contraction conditions. The
representing idea also gives a new approach towards Markov chains aris-
ing from iterated function systems with place-dependent probabilities by
making a place-independent representation. Many works considering the
place-independent, i.e. i.i.d. controlling, model also consider the place-
dependent generalization. For a survey of place-dependent results see e.g.
Kaijser (1981-a), Elton (1987), Barnsley et al. (1988), Iosifescu and Grig-
orescu (1990), Lasota and Yorke (1994) and their references.

In the papers [D], and [E] we consider the model when {In} is a sequence
of independent asymptotically identically distributed random variables
giving rise to non-homogeneous asymptotically homogeneous Markov
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chains. In paper [D] a (weak) distributional ergodic theorem is obtained
for iterated function systems with compact state space and a countable
number of functions satisfying a stability condition. The method of re-
versing time is again a key tool in the proof here, now in combination
with a coupling argument. In paper [E], the distributional ergodic theo-
rem obtained in paper [C] is generalized to this more general setting. Here
we also allow a time-dependent, asymptotically time independent family
of functions. The results in papers [D], and [E] can be interpreted as re-
sults on how small, in each iteration step decreasing, perturbations of the
characterizing parameters in the i.i.d. controlling situation, influence on
the convergence rates to the (non-perturbed) limiting probability distri-
bution. This should not be confused with the perturbation result of paper
[C], where we have the same perturbation in each iteration step.
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[29] Högnäs, G. and Mukherjea, A. (1995) Probability measures on semigroups: convo-

lution products, random walks, and random matrices, Plenum, New York.
[30] Hutchinson, J. E. (1981) Fractals and self-similarity, Indiana Univ. Math. J., 30,

713–747.
[31] Iosifescu, M. and Grigorescu, S. (1990) Dependence with complete connections and

its applications, Cambridge University Press, Cambridge.
[32] Iosifescu, M. and Theodorescu, R. (1969) Random processes and learning, Springer-

Verlag, New York.
[33] Isaac, R. (1962) Markov processes and unique stationary probability measures,

Pacific J. Math., 12, 273–286.
[34] Jamison, B. (1964) Asymptotic behavior of successive iterates of continuous func-

tions under a Markov operator, J. Math. Anal. Appl., 9, 203–214.
[35] Jamison, B. (1965) Ergodic decomposition induced by certain Markov operators,

Trans. Amer. Math. Soc., 117, 451–468.
[36] Jamison, B. and Sine, R. (1974) Sample path convergence of stable Markov pro-

cesses, Z. Wahrsch. Verw. Gebiete, 28, 173–177.
[37] Kaijser, T. (1978) A limit theorem for Markov chains in compact metric spaces

with applications to products of random matrices, Duke Math. J., 45, 311–349.

15



[38] Kaijser, T. (1981-a) On a new contraction condition for random systems with
complete connections, Rev. Roumaine Math. Pures Appl., 26, 1075–1117.

[39] Kaijser, T. (1981-b) On couplings, Markov chains and random systems with com-
plete connections, Proc. Sixth Conf. Probability Theory (Brasov, 1979), 139–159.

[40] Karlsson, J. and Wallin, H. (1994) Continued fractions and iterated function sys-
tems, in Proc. Conf. Loen 1992, Continued Frac. and Orthogonal Functions, Marcel
Dekker, New York, 191–210.

[41] Kifer, Y. (1986) Ergodic theory of random transformations, Birkhäuser, Boston.
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