LOGIKSEMINARIET STOCKHOLM-UPPSALA Anton Hedin ger ett seminarium med titeln Vitali's covering Theorem in constructive mathematics kl 10.30 - 12.15, onsdagen den 21 april i sal Å4271 (Ångströmlaboratoriet, Uppsala). Abstract: Vitali's covering Theorem states in its simplest form that if a closed interval I, in the real numbers, is (Vitali-) covered by a collection of open intervals V, then for every k>0 there is a finite subset F of V of pairwise disjoint intervals which cover all of I except a subset of measure less than k. We show that the Theorem fails in Bishop's constructive mathematics by giving a recursive counterexample. In fact it is equivalent to Weak Weak König's Lemma over BISH. Moreover we show that, under a reasonable interpretation of Vitali covering, the Theorem holds in the topology of reals in formal topology. The relation to the point-set result is explained via the concept of spatiality of formal topologies. The talk is based on joint work with Dr. Hannes Diener.