UPPSALA UNIVERSITET

Matematiska institutionen Erik Palmgren

Assignment 5 APPLIED LOGIC, Fall-10 2010-10-12

Assignment 5

Term algebras, term rewriting and termination

The problems should be solved individually and are due by November 2.

- 1. Decide whether the following pairs of terms are unifiable and if so determine their mgus.
 - (a) h(x,y) and h(u,u)
 - (b) f(h(z,y),y) and f(h(x,q(u)),q(x))

(c)
$$f(h(z,y),y)$$
 and $f(z,h(z,y))$ (5 p)

2. The Dutch National Flag game. Red, blue and white marbles are placed in a row in no particular order. Adjacent marbles may exchanged according to the following rules

$$WR \rightarrow RW$$
 $BR \rightarrow RB$
 $BW \rightarrow WB$

This can be regarded as an example of an abstract rewriting system: let $\Sigma = \{B, R, W\}$ and $A = \Sigma^*$ and write $u \to v$ if and only if $u = u_1 r u_2$ and $v = u_1 s u_2$ where $r \to s$ is one of the three rules above. Thus for example

$$BRW\underline{WR} \rightarrow \underline{BR}WRW \rightarrow R\underline{BW}RW \rightarrow RWBRW.$$

Note that the rewriting possibilities may overlap

$$BWR \to WBR$$
 $BWR \to BRW$.

- (a) What are the normal forms of the ARS (A, \rightarrow) ?
- (b) Show that (A, \rightarrow) is weakly confluent.

(c) Prove that (A, \to) is strongly normalising. First define the following wellorder on the marbles R < W < B. For two rows of n marbles $a_1 \cdots a_n$ and $b_1 \cdots b_n$ define

$$a_1 \cdots a_n < b_1 \cdots b_n$$

iff $a_1 \cdots a_n$ comes before $b_1 \cdots b_n$ in the lexicographic order given by R < W < B. Clearly < is wellorder. Now show that

$$u \to v \Longrightarrow u > v$$
.

(Why does this prove strong normalisation?)

- (d) Conclude that (A, \rightarrow) has unique normal forms.
- (e) On the basis of (a) (d) devise an efficient decision procedure for when two strings u and v have a common normal form. (10 p)
- 3. Prove that the substring relation over $\{0,1\}^*$ is not a well-quasi-order. (3 p)
- 4. Let (A, \leq) and (B, \leq') be two quasi-orders, and let $f: A \to B$ be function such that for all $x, y \in A$:

$$f(x) \le' f(y) \Longrightarrow x \le y.$$

Show that if (B, \leq') is a well-quasi-order then so is (A, \leq) . (2 p)

5. Consider the following term rewriting system for simplifying boolean expressions (see Klop 1992, pp. 31-32)

$$\neg \neg x \rightarrow x
 \neg(x \lor y) \rightarrow \neg x \land \neg y
 \neg(x \land y) \rightarrow \neg x \lor \neg y
 x \land (y \lor z) \rightarrow (x \land y) \lor (x \land z)
 (y \lor z) \land x \rightarrow (y \land x) \lor (z \land x)$$

- (a) Prove that it is strongly normalising by completing the proof begun in Klop.
- (b) Compute the normal form of the following expression

$$\neg(x\vee(y\vee\wedge(z\vee(u\wedge v)))).$$

- (c) Implement the term rewriting system above in Coq using the rewrite tactics.
- (d) Can you describe all the normal forms in some general way?

(10 p)