UPPSALA UNIVERSITET LABORATORY EXERCISE 1

Matematiska institutionen Applied Logic, Fall 2010
Erik Palmgren Computer Assisted Theorem Proving
2010-09-02

Laboratory exercise 1

The first laboratory exercise aims to get you acquainted with the proof assistant Coq and to
make some simple proofs with its help. You may work in groups of up to three persons. Hand
in finished and annotated proofs at the latest September 23, 2010. Also print the proof term
and try to understand what it does if possible. (For this you need to study the lecture notes
Constructive logic and type theory.)

Coq is freely available for different computer platforms. See the links on the course web
page which points to the download pages for Coq and tutorials on Coq. The tutorial The
Coq Proof Assistant - a Tutorial (October 2008) by Gérard Huet, Gilles Kahn and Christine
Paulin-Mohring is highly recommended. Consult also the online reference manual.

The Coq system is started under Linux or Mac OS X by typing coqtop in a terminal
window. The graphical development environment CoqIDE can be used equally well, but then
the commands are entered in the left window and the proof states and answers appear in the
two windows on the right.

Below is an example where we prove =(3z € D)P(z) — (Yz € D)—=P(x) in intuitionistic
predicate calculus. First P is declared to be a predicate over D, or a propositional function
on D. Then the formula we want to prove is entered, the goal formula.

$ coqtop
Welcome to Coq 8.1pl2 (Oct. 2007)

Coq < Section Predicate_calculus.
Coq < Variable D:Set.
D is assumed

Coq < Variable P:D -> Prop.
P is assumed

Coq < Goal ~ (exists x:D, P(x)) -> (forall x:D, ~P(x)).
1 subgoal

D : Set
P : D -> Prop

~ (exists x : D, P x) -> forall x : D, " P x



One of the general tactics is intros which can apply several logical introduction rules in
succession. Below we do —-introduction, V-introduction and —-introduction in one sweep.
The variables H d H2 are requested names for the resulting assumptions.

Unnamed_thm < intros H d H2.
1 subgoal

: Set
: D -> Prop
(exists x : D, P x)

[T = =R v Bl W)

The goal is now to prove a contradiction, which can be done by applying the hypothesis
H. This in turn gives a goal which is an existential statement. The element of D which we
are looking for is probably d so we make an existential introduction: exists d. The new
goal can then be proved by referring to the assumption.

Unnamed_thm < apply H.

1 subgoal
D : Set
P : D -> Prop
H: ~ (exists x : D, P x)
d :D
H2 : P d

exists x : D, P x

Unnamed_thm < exists d.
1 subgoal

: Set
: D -> Prop
(exists x : D, P x)

jeTg==Rsv Il &

Unnamed_thm < assumption.
Proof completed.

The finished proof object can now be inspected:



Unnamed_thm < Show Proof.

LOC:
Subgoals
Proof: fun (H : ~ (exists x : D, Px)) (d : D) (H2 : P d) =>

H (ex_intro (fun x : D => P x) d H2)

The commands Abort, Restart, Undo etc. are useful when your proof goes on the wrong
track. It is very useful to have a text editor running on the side to record your commands.
There is also a special Emacs module dedicated to this, with lots of sophisticated support
and tools, called Proof General.

Problems 1

Prove the following propositions in predicate calculus.

(i) ANB—C) — (A— (B — ()). Here A, B,C are propositions. The goal formula is
written

(A/\NB->C) > (A -> (@B ->0))

(iil) (A=B)—= (B—=0C)— (A—0C)).

(iii) (wAV B) — (A — B) is written in Coq as
("JA\/ B) -> (A ->B)

Prove it using the command contradiction at some point.

(iv) (3z € D)P(x) vV (3z € D)Q(x) — (3= € D)(P(x) V Q(x)). Here P and @ are proposi-
tional functions on D. The goal formula is written

(exists x:D, P(x)) \/ (exists x:D, Q(x)) -> (exists x:D, P(x) \/ Q(x))

(v) (3 € D)P(x) — C) < (Yx € D)(P(x) — C). Here C is a proposition. Note that
A < B is defined as (A — B) A (B — A) so using split at some point is a good tactic.
Equivalence < is rendered <-> .

(vi) A predicate R of two variables on D — that is a binary relation on D — may conveniently
be regarded as a propositional function with the declaraion Variable R: D -> D ->
Prop. We may also consider relations between different sets. To prepare for a proof of
the theorem

(Jy € E)(Vx € D)R(z,y) — (Vx € D)(Fy € E)R(z,vy).

we execute the following commands



(vii)

Coq < Section Predicate_calculus.

Coq < Variables D E : Set.

Coq < Variable R : D -> E -> Prop.

Coq < Theorem EAAE : (exists y:E, forall x:D, R x y)

Coq < -> (forall x:D, exists y:E, R x y).

The command Theorem EAAE: works the same as Goal but gives the proposition to be
proved the name EAAE.

Complete the above proof! You need to use the tactics elim at some point.

Enter the following commands into Coq (the computer savvy cuts and paste from the
(electronic) text document).

Section Peano_Arithmetic.
Variable N:Set.
Variable zero:N.
Variable S:N -> N.
Hypothesis Peano3: (forall x y:N, S x =Sy -> x=y).
Hypothesis Peano4: (forall x:N, ~ (S x = zero)).
Hypothesis IND: (forall P:N ->Prop,
(P zero) -> (forall n:N, (P n) -> (P (S n))) -> (forall n:N, P n)).

With hypotheses as above prove in Coq the following
(Vn,m € N)(n=mV —-n=m).

That is, enter

Theorem EqDec: (forall n m:N, n=m \/ 7 (n = m)).

and start the deduction.

In the proof of this there is a decision procedure for equality on natural numbers hidden.
If the theorem is proved using Coq’s own version of numbers, one can directly extract
Haskell or ML program that makes such decisions.

However, if one use classical logic to prove the theorem (a direct application of the law
of excluded middle) then no such decision procedure can be guaranteed.

For reasoning about equality (=) there are several built-in tactics. A simple but useful
one is replace.



