
UPPSALA UNIVERSITET LABORATORY EXERCISE 2
Matematiska institutionen = ASSIGNMENT 3
Erik Palmgren Applied Logic, Fall 2010

Computer Assisted Theorem Proving
2010-09-23

Laboratory exercise 2 = Assignment 3

The second laboratory exercise is about using some built in tactics and li-
braries of Coq. You may work in groups of up to three persons. In the below
Coq scripts are five theorems to be proved in Coq (problem 1-5). Run the
scripts and fill in the missing proofs. You need to consult the documentation
for the standard library (see: coq.inria.fr)

Hand in finished and annotated proofs at the latest October 7, 2010.

Section Omega_tactics_lab.

Require Import ZArith.

Open Scope Z_scope.

(* Try to prove following with the help of the omega

tactic *)

Theorem problem1:

(exists u:Z,(forall x y:Z,

y+x <6 /\ y < x+3 /\ 2*x < 5*y -> x<u /\ y <u)).

(* proof ? *)

Definition P (u:Z) :=

(forall x y:Z,

y+x <6 /\ y < x+3 /\ 2*x < 5*y -> x<u /\ y <u).

Definition Q (x y u:Z) :=

y+x <6 /\ y < x+3 /\ 2*x < 5*y -> x<u /\ y <u.

Theorem problem2: (forall u v: Z, u <v /\ P u -> P v).

(* proof ? *)

1



(* Prove there is a least u satisfying P u. *)

Theorem problem3: (exists u:Z, P u /\

(forall v:Z, P v -> u <= v)).

(* proof ? *)

Here we introduce a new inductive data structure and some operations
on it.

Section Trees.

Require Import List.

Open Scope list_scope.

(* Binary trees with elements from A as leaves *)

Inductive bt (A:Set) : Set :=

leaf (a: A) | node (l: (bt A)) (r: (bt A)).

(* Prove an induction scheme using the induction

command *)

Theorem bt_IND (A:Set)(P:(bt A) -> Prop):

(forall a:A, P (leaf A a)) ->

(forall l:(bt A), (forall r:(bt A),

(P l) -> (P r) -> (P (node A l r)))) ->

(forall t: (bt A), P t).

intros A P.

intros Hbase Hstep.

induction t.

apply Hbase.

apply Hstep.

assumption.

assumption.

Qed.

2



Fixpoint twist (A:Set) (t : bt A) :=

match t with

|(leaf a) => (leaf A a)

|(node l r) => (node A (twist A r) (twist A l))

end.

Fixpoint flatten (A:Set) (t: bt A) : (list A) :=

match t with

|(leaf a) => a::nil

|(node l r) => (flatten A l) ++ (flatten A r)

end.

Variable U:Set.

Variables a b c d: U.

Definition tree1 : (bt U) := (node U (node U (leaf U a) (leaf U b))

(node U (leaf U c) (leaf U d))).

Eval compute in (twist U tree1).

Eval compute in (flatten U tree1).

(* rev = reverse list operation *)

Eval compute in (rev (a::b::c::nil)).

Eval compute in (flatten U (twist U tree1)).

Theorem problem4: (forall A:Set,

(forall t: (bt A), (twist A (twist A t)) = t)).

intro A.

induction t.

(* simplify using computation rules *)

simpl.

(* Finish the proof! *)

Theorem problem5: (forall A:Set,

(forall t: (bt A),

(flatten A (twist A t)) = (rev (flatten A t)))).

(* Proof ? *)

3


