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1 Termination and abstract reduction systems

The following material is mainly based on

W. Klop: Term Rewriting Systems. In: S. Abramsky et al. (eds.) Hand-
book of Logic in Computer Science, Vol 2. Oxford University Press 1992.

1.1 Well-founded relations

A binary relation (A, <) is well-founded if there is no infinite descending
sequence

a1 > a2 > a3 > · · ·

in A.

Example 1.1 The natural numbers (N, <) with the usual order is well-
founded, while this is not the case for the integers (Z, <):

0 > −1 > −2 > −3 > · · ·

Example 1.2 Let R ⊆ N×N be the successor relation defined by

R(x, y)⇐⇒ x + 1 = y.

Then (N, R) is well-founded. Note that R is not transitive.

Example 1.3 Consider (N × N, <′) with the lexicographic order (a, b) <′

(c, d) iff a < c or a = c and b < d. We have

(0, 0) <′ (0, 1) <′ · · · <′ (0, n) <′ · · · <′ (1, 0) <′ (1, 1) <′ · · · (2, 0) <′ · · · <′ (m, 0).

This relation is well-founded. For suppose (an+1, bn+1) <′ (an, bn) for all n.
Then the sequence (an) is eventually constant from, say N , and onwards.
Hence bk+1 < bk for all k ≥ N , which is impossible. 2

1



Example 1.4 Let Σ be a signature and let X be a nonempty set of variables.
Order the set Ter(Σ, X) of terms over Σ and X as follows

t < s⇐⇒ t 6= s and t is a subterm of s.

If t < s, we say that t is a strict subterm of s, or that it is structurally smaller
than s. We leave as an exercise to show that (Ter(Σ, X, <) is a well-founded
relation. Example: for Σ = {0, f(·), g(·, ·)}, X = {x, y, z, . . .} we have

x < f(x) y 6< f(x) f(y) < g(f(f(y)), f(0)) g(0, z) < f(g(g(0, z), z)) 2

This kind of order relation is useful when proving termination of functional
programs.

That a relation is well-founded is the same as saying that a certain in-
duction principle is valid, so called Noetherian1 induction, or well-founded
induction. Let (A, <) be a binary relation. A subset S ⊆ A is progressive iff

(∀a)[(∀b < a)b ∈ S ⇒ a ∈ S].

Thus in a progressive set, if all the elements that lie before a are in the set,
then also a is in the set. A binary relation (A, <) is called inductive iff S = A
whenever S ⊆ A is a progressive subset. What are the progressive subsets S
of (N, <)? Clearly, there are no elements before 0, and hence trivially 0 ∈ S.
Now suppose that {0, 1, . . . , n} ⊆ S. Then all elements before n + 1 are in
S. Hence also n + 1 ∈ S. By induction S = N. Above we just showed that
(N, <) is inductive. In fact, we have

Theorem 1.5 A binary relation is well-founded iff it is inductive.

Proof. Suppose that (A, <) is an inductive binary relation. Define the
following subset of A

S = {b ∈ A : there is no infinite sequence b > a1 > a2 > a3 · · · }.

It is easily checked that S is progressive set. Hence S = A, so (A, <) is
well-founded.

Now suppose that (A, <) is not inductive. Hence there is a progressive
set S ⊂ A. Let x0 ∈ A \ S. Since S is progressive, there must be some
x1 < x0 such that x1 /∈ S. But then again there must be some x2 < x1 such
that x2 /∈ S. Proceeding in this way one constructs a sequence

x0 > x1 > x2 > · · ·

1After Emmy Noether, a pioneer in abstract algebra.
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which shows that (A, <) is not well-founded. 2

Let (A, <) be a binary relation. The transitive closure (A, <+) of (A, <)
is defined by a <+ b iff there is a sequence a1 < · · · < an, n ≥ 1, with a = a1

and b = an. Thus, for example, (N, <) is the transitive closure of (N, R) from
Example 1.2. We leave the following as an easy exercise

Proposition 1.6 Let (A, <) be a binary relation. Then (A, <) is well-
founded iff (A, <+) is well-founded. 2

Reduction of one ordering to another. Suppose that (A, <) is well-
founded, (B, <′) a binary relation and f : B → A a function such that, for
all x and y

x <′ y ⇒ f(x) < f(y).

Then (B, <′) is well-founded, since if there was an infinite strictly decreasing
sequence in B, we could just apply f to each term an obtain such sequence in
A, which is impossible. This fact can sometimes provide an easy proof that
a relation is well-founded. For instance consider Example 1.4. We know that
(N, <) is well-founded. Let h : Ter(Σ, X) → N be the height function where
h(a) = 0 for variables and constants a, and for a function term of arity n ≥ 1

h(f(t1, . . . , tn)) = 1 + max(h(t1), . . . , h(tn)).

Clearly t < s implies h(t) < h(s). This shows that the strict subterm order
is well-founded.

Lexicographic orderings. Let (A, <A) and (B, <B) be two binary relation.
The lexicographic combination of these relations (A× B, <A,B) is defined as

(x, y) <A,B (u, v)⇐⇒ x <A u or x = u and y <B v.

Proposition 1.7 Let (A, <A) and (B, <B) be well-founded binary relations.
Then their lexicographic combination (A×B, <A,B) is well-founded.

Proof. Analogous to Example 1.3. 2

Well-quasi-orders. We introduce a notion related to that of a well-founded
set. A binary relation (A, R) is a quasi-order if it is reflexive and transi-
tive. A quasi-order (A, R) is a well-quasi-order if for every infinite sequence
a1, a2, a3, . . . in A there are some m < n such that R(am, an).
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Example 1.8 (N,≤) is a well-quasi-order. This is the case, since every
infinite sequence in N has a minimum.

More generally we have:

Proposition 1.9 Let (A, <) be a linear order. Define the relation

x ≤ y ⇐⇒ ¬y < x.

Then (A, <) is wellfounded iff (A,≤) is a well-quasi-order.

Proof. Suppose that (A, <) is wellfounded. Let a1, a2, a3, . . . be an infinite
sequence of elements of A. Then it is impossible that ai+1 < ai for all i.
Hence ¬(ai+1 < ai) for some i. That is ai ≤ ai+1.

Conversely, assume that (A,≤) is a well-quasi-order. Suppose that a1 >
a2 > a3 > · · · is an infinite, strictly decreasing sequence in A. Then since
≤ is a well-quasi-order, there are some m < n, such that am ≤ an. By
transtivity and linearity of < it follows that am = an — a contradiction. 2

Lemma 1.10 In any infinite sequence a1, a2, a3, . . . of natural numbers there
is an infinite subsequence such that b1 ≤ b2 ≤ b3 ≤ · · · .

Proof. Let b1 be the first minimum (say ai1) of the sequence a1, a2, a3, . . ..
Let b2 = ai2 be the first minimum of the remaining sequence ai1+1, ai1+2, ai1+3, . . ..
Let b3 = ai3 be the first minimum of the remaining sequence ai2+1, ai2+2, ai2+3, . . .
and so on. Clearly b1, b2, b3, . . . forms an increasing subsequence of the given
sequence. 2

Example 1.11 The relation P (x, y): x is a substring of a permutation of y is
a quasi-order on L = {0, 1}∗. We have P (1010, 010010) but ¬P (1011, 010010).

It is more difficult to see that P is actually a well-quasi-order. Let s(a, x)
denote the number of occurrences of a in x. Note that P (x, y) iff s(0, x) ≤
s(0, y) and s(1, x) ≤ s(1, y). The relation is then expressed in terms of
occurence count. Suppose now that u1, u2, u3, . . . is a given sequence strings
in L. Consider the sequence s(0, u1), s(0, u2), s(0, u3), . . . of natural numbers.
Then by Lemma 1.10 there is a subsequence v1, v2, v3, . . . of the given sequence
such that

s(0, v1) ≤ s(0, v2) ≤ s(0, v3) ≤ · · ·

Since (N,≤) is a well-quasi-order there is in this sequence some m < n such
that s(1, vm) ≤ s(1, vn). But then P (vm, vn) which was to be proven. 2

This result can be generalised to arbitrary finite alphabets (See Exercises).
Thus if you have an infinite row of books (which may arbitrary thick) there
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is always some book whose text may be obtained by cutting out letters from
another book and rearranging them. Even more amazingly, you do not have
to rearrange the letters:

Proposition 1.12 Let Σ be a finite alphabet. Define the relation on the set
Σ∗ of strings:

K(u, v)⇐⇒ u is obtained by removing zero or more symbols from v.

Then K is a well-quasi-order.

Proof. A sequence u1, u2, u3, . . . of strings in Σ∗ is called bad if ¬K(um, un)
for all m < n. Suppose that K is not a well-quasi-order. Thus there is at
least one bad sequence. In a bad sequence there are no empty strings, and
any subsequence is obviously still bad. Let v1 be a shortest string which is the
first term of a bad sequence. Then let v2 be a shortest string such that v1, v2

are the first two terms of a bad sequence. More generally, let vn be a shortest
string such that v1, v2, . . . , vn are the first n terms of a bad sequence. Each
vi is a non-empty string, so we may write vi = aiwi where ai ∈ Σ. Since Σ is
finite, some symbol occurs as initial symbol in infinitely many of the strings
vi. Let k1 be the least such that ak1

occurs infinitely often as initial symbol.
Suppose that k1 < k2 < k3 < . . . are the indices of strings that begin with
ak1

. Then
a1w1, a2w2, . . . , ak1−1wk1−1, wk1

, wk2
, wk3

, . . .

is a bad sequence, since all vki
begin with the same symbol ak1

which is
different from a1, . . . , ak1−1. But now wk1

is one symbol shorter than vk1
,

contradicting the construction of vk1
.

Hence there are no bad sequences. 2

Kruskal’s Theorem

This theorem is very useful proving termination of term rewriting systems.
We refer to Dershowitz and Jouannaud (1990).

Let S be a set. Let T (S) be the set of terms formed in the following way:

(a) m ∈ T (S) for any m ∈ S,

(b) If m ∈ S, and t1, . . . , tk ∈ T (S) then m(t1, . . . , tk) ∈ T (S).

For S = N, the expressions are thus 3, 0(1, 0(2)), 2(1, 3(2, 2, 1(0))) some
examples of such terms.

Suppose that ≤ is a quasi-order on S. Define the following quasi-order
on T (S): t � s if t can be obtained from s by zero or more of the following
operations
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(a) replace m(t1, . . . , tn) by ti where 1 ≤ i ≤ n

(b) replace m(t1, . . . , tn) by p(t1, . . . , tn) for p < m

(c) replace m(t1, . . . , ti, . . . , tn) by q(t1, . . . , ti−1, ti+1, . . . , tn) for 1 ≤ i ≤ n
and q ≤ m.

(d) replace m(t1, . . . , tn) by q(t1, . . . , tn) if m ≤ q and q ≤ m.

Example 1.13 Consider the standard order (N,≤). On T (N) we have
0(1, 0(2)) � 2(1, 0(2)) � 2(1, 3(2)) � 2(1, 3(2, 2)) � 2(1, 3(2, 2, 1)) � 2(1, 3(2, 2, 1(0))).
But 1(1, 1) 6� 1(1, 0).

Theorem 1.14 (Kruskal) � is a well-quasi-order on T (S,≤) whenever
(S,≤) is a well-quasi-order.

The proof is difficult and beyond the scope of this course. However,
as much can be said that it uses the technique of minimal bad sequences
illustrated in Lemma 1.10 and Proposition 1.12.

Exercises

1. Show that the following program f : N×N→ N terminates by using a
lexicographic combination

f(0, y) = y

f(S(x), 0) = S(x)

f(S(x), S(y)) = S(f(x, f(S(x), y))).

2. Prove Proposition 1.6.

3. Show that < is the transitive closure of the immediate subterm relation
on Ter(Σ, X).

4. Extend Example 1.11 to strings over any finite alphabet. (What does
Proposition 1.12 say here?)

5. Prove that the substring relation over {0, 1}∗ is not a well-quasi-order.

6. Find all t ∈ T such that t � 2(1, 1(2, 1(0))).
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1.2 Abstract reduction systems

An Abstract Reduction System (ARS) is a set A together with a binary rela-
tion →. Further on we will mostly be interested in the case where A is a set
of terms and → is a one-step computation, or reduction, relation. However
we treat the general case first, so (A,→) could be any directed graph, finite
or infinite.

An element a in A of an ARS (A,→) is said to be a normal form, if there
is no b ∈ A such that a→ b. (Intuitively a cannot be computed further, and
can be considered as the value of a computation.)

Example 1.15 Let A = {0, 1, 2, 3} and →= {(1, 0), (1, 2), (2, 1), (2, 3)}.
(Draw the graph of this ARS!) It is easy to see that the elements of normal
form are exactly 0 and 3.

Example 1.16 The ARS given by A2 = {0, 1} and →= {(1, 0), (0, 1)} has
no elements of normal form.

Let (A,→) be an ARS. Denote by ։ the reflexive and transitive closure
of →, that is, a ։ b holds iff there is a sequence a = a1, . . . , an = b, n ≥ 1,
such that

a1 → a2 → · · · → an.

Write a →+ b if this holds for a sequence where n ≥ 2. An ARS (A,→) is
weakly normalizing (WN) if for every a ∈ A there is some normal form b ∈ B
with a ։ b. It is easily checked that the ARS of Example 1.15 is weakly
normalizing. Note however that 1 ։ 0 and 1 ։ 3 so that 1 has two distinct
normal forms.

Two elements a and b of an ARS (A,→) are said to be convergent (in
symbols: a ↓ b) if there is some c such that a ։ c and b ։ c. An ARS
(A,→) is confluent or Church-Rosser (CR) if b ↓ c for any a, b, c ∈ A such
that a ։ b and a ։ c The following simple result shows the importance of
this property.

Proposition 1.17 Let (A,→) be a confluent, weakly normalizing ARS. Then
every element of A has a unique normal form.

Proof. Suppose that b and c are normal forms and a ։ b and a ։ c. By
confluency, for some d ∈ A with b ։ d and c ։ d. Since b is normal, b = d
and likewise c = d. Hence b = c. 2

An ARS (A,→), where there are no infinite sequences a1 → a2 → a3 →
· · · is called strongly normalizing (SN), i.e. (A,←) is a wellfounded relation.
Clearly, in this case any strategy of performing the reductions will lead to a
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normal form. The ARS of Example 1.15 is does not have this property since
there is the sequence 1→ 2→ 1→ 2→ · · · .

Example 1.18 The ARS given by A = {0, 1, 2, 3} and→= {(1, 0), (1, 2), (2, 3)}
is strongly normalizing but not confluent.

The following theorem is often useful when proving confluency. An ARS
(A,→) is weakly confluent or Weakly Church-Rosser (WCR) if b ↓ c for any
a, b, c ∈ A such that a → b and a → c. (Note the one-step computation
relations from a.)

Theorem 1.19 (Newman’s lemma) A weakly confluent, strongly normaliz-
ing ARS is confluent.

Proof. Let (A,→) be an ARS. That it is confluent is equivalent to P (u) for
all u, where

P (u)⇔def (∀x, y)[u ։ x ∧ u ։ y ⇒ x ↓ y]

Since the ARS is strongly normalizing, we can prove (∀u) P (u) by Noethe-
rian induction. For this it suffices to show that S = {u ∈ A : P (u)} is a
progressive set, i.e.

(∀u)[(∀t) (u→ t⇒ P (t))⇒ P (u)].

So assume that u ∈ A is arbitrary, and as induction hypothesis (∀t) (u→ t⇒
P (t)). In case u is normal, we are done. Otherwise, suppose that u→ b ։ x
and u → c ։ y. By weak confluency there is some d such that b ։ d and
c ։ d. By the induction hypothesis P (b), so there is a z with x ։ z and
d ։ z. By transitivity, c ։ z. Using the induction hypothesis again, P (c)
holds, so there is some v with z ։ v and y ։ v. Thus by transitivity, x ։ v.
The induction step is finished. 2

The following result can sometimes be used to prove that an ARS is
strongly normalising.

Theorem 1.20 Let (A,→) be an ARS such that (A,→+) is irreflexive. Sup-
pose that there is a well-quasi-order (A,�) such that for all s 6= t ∈ A:

s � t =⇒ t→+ s.

Then (A,→) is strongly normalising.

Proof. Suppose to the contrary that the ARS is not strongly normalising.
Then there is an infinite sequence in A so that

s1 → s2 → s3 → · · ·

Hence since � is a well-quasi-order, there are m < n such that sm � sn, and
sm 6= sn. Hence sn →

+ sm by the assumption. By transtivitity it follows
that sn →

+ sn, contradicting the irreflexivity assumption. 2
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