UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler

Matematik och statistik NV1

Handledning till DERIVE

Mata in uttryck, funktion eller ekvation	<u>A</u> utor <u>E</u> xpression eller symbolen "penna" i Vertygsfältet Ex: $3x^2 - 7x + \sin x$ skrivs $3x^2 - 7x + \sin(x)$ (multiplikationstecken (*) kan alltså utelämnas)
Bestäma nollställen till funktionen eller lösa ekvation	So <u>l</u> ve <u>A</u> lgebraically <u>S</u> implify eller "förstorningsglas" i Verktygsfältet
Ersätta en variabel med ett värde	$\underline{\mathbf{S}}$ implify $\underline{\mathbf{S}}$ ubstitute for Variables eller "Sub" iVertygsfältet
Förenkla ett uttryck	$\underline{\mathbf{S}}$ implify $\underline{\mathbf{B}}$ asic eller symbolen "=" i Vertygsfältet
Beräkna närmevärde till ett uttryck	$\underline{\mathbf{S}}$ implify $\underline{\mathbf{A}}$ pproximate eller symbolen " \approx " i Vertygsfältet
Derivera ett uttryck	<u>C</u> alculus <u>D</u> ifferentiate <u>S</u> implify eller symbolen " ∂ " i Vertygsfältet
Integrera ett utryck	<u>C</u> alculus <u>I</u> ntegrate <u>S</u> implify eller symbolen " \int " i Vertygsfältet
Beräkna gränsvärde till ett uttryck	$\underline{\mathbf{C}}$ alculus $\underline{\mathbf{L}}$ imit $\underline{\mathbf{S}}$ implify eller symbolen "lim" i Vertygsfältet
Bestämma Taylorutvecklingen till ett uttryck	$\underline{\mathbf{C}}$ alculus $\underline{\mathbf{T}}$ aylor $\underline{\mathbf{S}}$ implify
Lösa linjärt ekvationssystem	Solve <u>System</u> Ange antalet ekvationer. Skriv ekvationerna eller hämta dem med editeringstangenterna ($\langle F3 \rangle$ eller $\langle F4 \rangle$) om de redan finns som uttryck på skärmen. Klicka i fältet Equation Variables och bekräfta med OK. Får man i lösningen symbolen @ innebär detta en parameter (tolkas t.ex. som t)

Utveckla ett uttryck (ta bort paranteser mm)

 $\underline{\mathbf{S}}$ implify $\underline{\mathbf{E}}$ xpand

Faktorisera uttryck

 $\underline{\mathbf{S}}$ implify $\underline{\mathbf{F}}$ aktor

Om nan begär faktorisering anmodas man välja faktoriseringsgrad. Innebörden av de olika alternativen är följande:

Trivial: endast utbrytning av gemensamma konstanter och variabler, t.ex. faktoriseras polynomet $3x^3 - 12x^2 + 12x$ till $3x(x^2 - 4x + 4)$.

Squarefree: även tillämpning av kvadreringsregeln, t.ex. faktoriseras $3x^3 - 12x^2 + 12x$ till $3x(x-2)^2$.

Rational: ger uppdelning i rationella faktorer, t.ex. faktoriseras $x^2 - 4$ till (x-2)(x+2)och $x^2 - 4x - 5$ till (x - 1)(x + 5). Däremot erhålls ingen faktorisering av $x^2 - 3$. **Radicals:** ger uppdelning även i irrationella faktorer, t.ex. faktoriseras x-3 till $(x-\sqrt{3})(x+\sqrt{3})$. Däremot faktoriseras inte x^2+3 .

Complex: ger uppdelning även i komplexa faktorer, t.ex. faktoriseras $x^2 + 3$ till $(x-i\sqrt{3})(x+i\sqrt{3})$.

Matriser

Skriva in en matris $ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix} $	Alt 1 <u>A</u> uthor <u>M</u> atrix eller symbolen "matris" i Vertygsfältet Ange antalet rader och kolonner Skriv in elementen. Alt 2 En matris uppfattas som en vektor av vektorer. Välj <u>A</u> uthor <u>E</u> xpression och skriv in uttrycket t.ex. [[1, 2, 3], [1, 1, 1]]
Addition och subtraktion av matriser	Om A och B är matriser av samma typ erhålls summan med $A + B$ och differensen med $A - B$.
Multiplikation av en matris med ett reellt tal	Produkten av ett reellt tal k och matrisen A erhålls med kA (eller $k * A$)
Matrismultiplikation	Om matrisen A är av typ $m \times n$ och matrisen B av typ $n \times k$ erhålls matrisprodukten med AB eller $A.B$
Transponering	Den transponerade matrisen till A erhålls med A
Invertering	Om A är en kvadratisk matris som är inverterbar erhålls den inverterade matrisen med $A^{}(-1)$
Enhetsmatris	Enhetsmatrisen av ordning n erhålls med identity_matrix (n)
	2

A'

Determinant

Reducera en matris till radkanonisk form

Vektorer

Skriva in en vektor [1, 2, 3]

Skalärprodukt $[1,2,3] \cdot [3,2,1]$

Vektorprodukt $[1, 2, 3] \times [3, 2, 1]$

Editering

Hämta ett tidigare uttryck för editering

Grafik

Öpna ett grafiskt fönster vid sidan av det algebraiska

Rita grafen till en funktion

Ta bort graf

Determinanten till en kvadratisk matris A erhålls med $\det(A)$

Matrisen A reduceras till radkanonisk form med **row_reduce**(A)

Alt 1 <u>A</u>uthor <u>V</u>ector eller symbolen "vektor" i Vertygsfältet Ange antalet koordinater och skriv in dem. Alt 2 Välj <u>A</u>uthor <u>E</u>xpression och skriv in uttrycket [1,2,3] Skriv som [1,2,3][3,2,1] eller $[1,2,3] \cdot [3,2,1]$ eller [1,2,3] * [3,2,1]skriv som cross([1,2,3],[3,2,1])

- 1) Markera uttrycket
- 2) Välj <u>**A**</u>uthor <u>**E**</u>xpression
- 3) Tryck $\langle F3 \rangle$ om uttrycket önskas oförändrat till inmatningsraden och $\langle F4 \rangle$ om uttrycket ska omges med parantes

Välj 2D-diagramsymbolen i Vertygsfältet

Markera den funktion som ska ritas. Klicka i det grafiska fönstret och välj $\underline{\mathbf{P}}$ lot

 $\underline{\mathbf{E}}$ dit $\underline{\mathbf{D}}$ elete $\underline{\mathbf{P}}$ lot Ange vilken eller vilka grafer som ska bort

Matematiska konstanter och funktioner

Hämta inte symbolen "upphöjt till" (\wedge) från inmatningsruta. Symbolen \wedge måste hämtas från tangentbordet. Det går bra med de övriga symbolerna.

Matematisk beteckning	<u>Uttryck i Derive</u>
π	$<\!\!\mathrm{CTRL}$ p $>$ eller π från inmatningsrutan
e	$<\!\mathrm{CTRL}$ e $>$ eller ê från inmatningsrutan
∞	$<\!\mathrm{CTRL}$ 0> eller ∞ från inmatningsrutan
i (imaginära enheten)	$<\!\!\mathrm{CTRL}\;i>$ eller î från inmatningsrutan

\checkmark	$<\!\mathrm{CTRL}$ q> eller \surd från inmatningsrutan
x^n	\hat{xn}
$\sin x$	$\sin(x)$ (x i radianer)
$\cos x$	$\cos(x)$ (x i radianer)
$\tan x$	$\tan(x)$ (x i radianer)
$\arctan x$	$\operatorname{atan}(x)$
$\ln x$	$\ln(x)$