- (1) Compute the Riemannian volume of S^2 with the round metric and T^2 with the flat metric.
- (2) Using the Lie derivative, find the Killing vector fields of the hyperbolic half plane. Then compute their flows.
- (3) Show that vertical lines as geodesics of the hyperbolic half plane, are defined on all of \mathbb{R} .
- (4) Show that for a differential form ω on a manifold M and a vector field X on M, we have

$$L_X\omega = d\iota_X\omega + \iota_X d\omega.$$

- (5) Show that geodesics of a compact linear Lie group with the bi-invariant metric are one parameter subgroups, i.e. of the form $\gamma(t) = g \exp(tX)$ for $g \in G$ and $X \in T_eG$. (So the Lie-group-theoretic exponential map agrees with the Riemannian exponential for the bi-invariant metric.)
- (6) If ∇ denotes the Levi-Civita connection for the bi-invariant metric on a compact Lie group G and X,Y,Z are left invariant vector fields on G then show that

$$\nabla_X Y = \frac{1}{2} [X, Y].$$

Compute the Riemannian curvature R(X,Y)Z.

(7) Show that in the normal coordinates (U, x_1, \ldots, x_n) around a point $p \in (M, g)$ the Riemannian curvature at p is given by

$$R_{ijkl} = -\frac{1}{2}(\partial_i \partial_k g_{jl} - \partial_i \partial_l g_{jk} - \partial_j \partial_k g_{il} + \partial_j \partial_l g_{ik}).$$

This is Riemann's original definition of curvature.