- (1) Show that the two charts on S^2 given by streographic projection, constitute a smooth atlas.
- (2) Which one of the complex line bundles L_n on S^2 is (isomorphic to) TS^2 ? Which one to T^*S^2 ? Prove.
- (3) Prove that for α, β differential forms on N and $\phi: M \to N$ a smooth map, $\phi^*(\alpha \wedge \beta) = \phi^*\alpha \wedge \phi^*\beta$.
- (4) The hyperboloid model for the hyperbolic n-space is given as follows. Consider the (non-definite) inner product on \mathbb{R}^{n+1} given by

$$\langle x, y \rangle = -x_0 y_0 + \sum_{i \ge 1} x_i y_i$$

(called the Minkowski metric) and let $H^n = \{x \in \mathbb{R}^{n+1} : x_0 > 0, < x, x > = -1\}$. Show that the restriction of <,> to H^n gives a Riemannian metric g on H^n .

(5) The disk model of the hyperbolic space is given by $B^n=\{y\in\mathbb{R}^n:||y||\leq 1\}$ and the metric

$$h = \frac{4}{(1 - ||y||^2)^2} (dy^1 \otimes dy^1 + \dots + dy^n \otimes dy^n).$$

Show that the map $\phi: H^n \to B^n$ given by

$$\phi(x) = \frac{1}{1+x_0}(x_1, \dots, x_n)$$

is an isometry between (H^n, g) and (B^n, h) .

(6) Show that an isometry of the Euclidean space which fixes the origin, has to be a linear map.