
Probability on Graphs

Robert Parviainen
Department of Mathematics, Uppsala University

P.O.Box 480, SE-75106 Uppsala, Sweden
robert.parviainen@math.uu.se

17 April 2002

Preface

This is my licentiate thesis, summarizing my first two years as a PhD-student.
In general terms, the thesis deals with problems concerning probability models
on combinatorial structures. The first paper considers the random assignment
problem, the second first-passage percolation. The third paper investigate sub-
graph relations of the Archimedean and Laves lattices, and has applications in
classical percolation, first-passage percolation, and self-avoiding walks.

I was introduced to these fields by my supervisor, Sven Erick Alm, when I
as an undergraduate was looking for a project for my master thesis. The title
of the master thesis became Lower and Upper Bounds for the Time Constant
of First-Passage Percolation, which is also the title of the second paper in the
present thesis (co-authored with Sven Erick Alm). I am most grateful to him
for introducing me to these fascinating subjects, and for his support and help.

Special thanks also to John C. Wierman, who is the co-author of the third
paper in this thesis, The Subgraph Partial Ordering of Archimedean and Laves
Lattices.

And finally, I would like to thank my colleagues at the department, friends,
and family.

1

Introduction

The thesis consists of this introduction and 3 papers.

I. Random Assignment with Integer Costs, Robert Parviainen, submitted to
Combinatorics, Probability and Computing.

II. Lower and Upper Bounds for the Time Constant of First-Passage Percola-
tion, Sven Erick Alm and Robert Parviainen, to appear in Combinatorics,
Probability and Computing.

III. The Subgraph Partial Ordering of Archimedean and Laves Lattices, Robert
Parviainen and John C Wierman, U.U.D.M Report 2002:13, Department
of Mathematics, Uppsala University.

Despite the lack of common nouns in the titles, there are several connections.
Paper I and II treat problems concerning graphs with random edge weights,
and in both papers we are interested in the minimum of sums of independent
random variables, where the sums are defined by subsets of edge sets of the
graphs. Although Paper III does not directly involve probability theory, the
primary applications are in percolation theory and related subjects, in which
the models can be stated as (randomly) weighted graphs.

Due to the graph theory connection, we find it convenient to start this in-
troduction by presenting some graph theory terms that will be of use later on.
Since the papers are written with a reader familiar with these terms in mind,
much of this is omitted in the papers themself.

Graph theory

Make some points on a paper and draw some lines connecting pairs of points.
This is a graph. Formally, a graph consists of a countable (finite or infinite)
set V of vertices, and a set E of edges connecting pairs of vertices. We only
consider undirected graphs, so each edge e ∈ E is an unordered pair of vertices
(u, v), u, v ∈ V . We denote the edge by e = uv. We will only consider simple
graphs, disallowing loops, i.e. edges joining one vertex with itself, and multiple
edges,i.e. and more than one edge between any pair of vertices.

If e = uv is an edge, u and v are said to be adjacent. We also say that u and
v are incident to e. Two edges sharing one vertex are also said to be adjacent.
(Thus two neighboring objects of the same kind are adjacent, of different kinds
are incident.) The degree of a vertex v is the number of adjacent vertices to v,
that is, the number of edges incident to v.

A walk between v0 and vn is a sequence of vertices {v0, v1, . . . , vn}, such
that vk is adjacent to vk+1, k = 0, . . . , n− 1. A graph is connected if there exist
walks between all pairs of vertices.

A self-avoiding walk on a graph is a walk v0, v2, . . . , vn such that no vertex
is used more than once.

Two graphs are isomorphic if they can be drawn in the same way. Mathe-
matically, G = (V,E) and G′ = (V ′, E′) are isomorphic if there exists a bijection
φ : V → V ′ such that uv ∈ E if and only if φ(u)φ(v) ∈ E ′.

A graph is transitive if all vertices play the same role, i.e., for every pair of
vertices, u and v, there is a graph isomorphism that maps u to v.

2

If the edge set of a graph G = (V,E) is a subset of the edge set of another
graphG′ = (V ′, E′), we say thatG is a subgraph ofG′. Intuitively, G is obtained
from G′ by deleting some edges.

A graph G is bipartite if we can divide the vertex set into two parts V1

and V2 such that all edges have one vertex in V1, and one in V2. If V1 has n1

vertices, and V2 has n2 vertices, we say that G is a n1 × n2-bipartite graph. If
every vertex in V1 is adjacent to every vertex in V2, we say that G is a complete
bipartite graph. A matching in a bipartite graph is a subset M of the edge set,
such that all edges in M are independent, meaning that no two edges in M are
adjacent. A matching is said to be a complete matching if M is such that every
vertex is incident to exactly one edge in M .

A common theme in the thesis is that we deal with weighted graphs. We
associate with each edge e a weight Xe. Furthermore, the weights are stochastic
variables. For example, Xe may represent the cost of including e in a matching
M , or if Xe are 0-1 variables, we may take the random subgraph with edge set
F = {e : Xe = 1}.

PSfrag replacements edgeface

vertex

Figure 1: A simple planar graph,
with 6 vertices, 7 edges, and 3 faces
(one unbounded).

PSfrag replacements

edge

face
vertex

Figure 2: A graph and its dual.

A graph G is planar if it is possible to draw it in R
2 so that no two edges

intersect. A planar graph divides the plane into regions, separated by the edges,
called faces. In the graph in Figure 1, we have three faces, one square, one
triangular, and one unbounded face. A precise definition is the following: the
faces of a planar graph are the connected regions in R

2 that remain after we
have removed the edges and vertices from (the planar embedding of G in) R

2.
The dual graph D(G) of a planar graph G is the graph in which every face

of G is a vertex, and in which two vertices are adjacent if and only if the
corresponding faces in G are adjacent, that is, share an edge. See Figure 2 for
an example of a graph and its dual graph. Note that in this case, the two graphs
are isomorphic.

Paper I. Random assignment.

Let us assume that we have n jobs that need to be done, and n workers available.
If we know that worker i needs xij hours to finish job j, how shall we assign the
jobs to the workers, such that the time until all jobs are finished is minimized?

If we impose the condition that each worker must do exactly one job, this
problem is known as the assignment problem. It can be rephrased in the lan-
guage of graph theory. Given a weighted complete n × n-bipartite graph G,

3

what is the minimal cost among all complete matchings?
This is a combinatorial optimization problem, which can be solved by sim-

ply checking all complete matchings. However, there are n! possible complete
matchings, so for all but small n this is intractable. Fortunately, there ex-
ist faster algorithms for solving this problem. Instances with n = 10000 can
be solved in about a minute on a standard personal computer, which is quite
remarkable comparing to the naive method of checking all complete matchings.

Now it is time to introduce randomness. Assume that we do not know the
costs exactly. We only know that they are independently distributed according
to some probability distribution F . If we denote the (random) minimal cost
by Z∗, we want to say something about the distribution of Z∗. This is the
random assignment problem, and few answers are known. For instance, the
expected value of Z∗ is only known for very small values of n (when F is the
exponential distribution, for n up to 7), and in the limit as n goes to infinity
when F is continuous and positive. Part of the attractiveness of this problem
are the conjectures. The best example is Parisi’s conjecture, which says that,
for exponential costs with mean 1, with Z∗(n) denoting the minimal cost with
n jobs,

EZ∗(n) =

n
∑

k=1

1

k2
.

As mentioned above, we now know that this is true for n up to 7, and in the
limit (which equals π2/6).

In Paper I we consider the random assignment problem for some discrete
distributions. First we let the workers rank every job, from 1 to n. Also, we
imagine that there is a supervisor, ranking each combination of worker/job from
1 to n2.

Formally, if the matrix of costs is denoted by C, we consider the following
cases.

• Each row in C is an independent random permutation of {1, 2, . . . , n},
chosen uniformly from the set of all permutations.

• Each element in C is an independent random number, chosen uniformly
from {1, 2, . . . , n}.

• C is a random permutation of {1, 2, . . . , n2} chosen uniformly.

• Each element in C is an independent random number, chosen uniformly
from {1, 2, . . . , n2}.

Note that in the first case, costs in the same row are dependent, and in the third
case, all costs are dependent.

By combining recent results by Aldous about the limit in the continuous
case with coupling arguments, we find that the limiting expected costs for the
third and fourth cases equal that for the continuous case.

For the first and second cases, we find bounds for the limiting expected costs,
indicating that we get a slightly higher limit than in the continuous case.

We also study the four cases by Monte Carlo simulations, confirming the
above conclusions. The simulations also give information about variances and
rank statistics.

4

The interest in random assignment with integer cost distributions originated
in computer science applications. Particularly, the case where the rows are
random permutations is related to so called hashing with linear probing.

Paper II. First-passage percolation

In the bond percolation process, we produce a random subgraph of a given
graph. More precisely, we let each edge remain in the subgraph with probability
p, independently of all other edges. The most interesting question is for what
values of p we get a large (infinite) connected component in the subgraph. For
infinite transitive planar graphs, it is well known that there exists a critical value
pc, depending on the graph G, such that, for p below pc, we almost surely get
no infinite connected components, and for p above pc, we get a unique infinite
connected component with probability 1.

In first-passage percolation, the edge weights are independently distributed
according to some distribution F , representing the time needed to walk along
the edge. We are then interested in the shortest possible time needed to go from
one vertex to another.

In Paper II, we study this problem on the square lattice. We consider the
time constant, which is defined as the limit of the time needed to go from the
origin to the vertex (n, 0), normalized by the distance n. The limit can be shown
to exist, but it is not known for any non-trivial distribution. We give improved
lower and upper bounds for the time constant for the exponential and uniform
distributions.

The lower bounds are found by improving a method of Janson, based on
enumerating self-avoiding walks of finite length. The key idea is that by con-
catenating the finite self-avoiding walks, we overestimate the number of infinite
walks. We introduce a transfer matrix, which makes it possible to substantially
reduce the overestimation, resulting in improved lower bounds. The method is
applicable for general distributions.

The upper bounds are found by doing exact calculations on very small sub-
graphs of the square lattice. Due to the high computational burden, it is im-
portant that the calculations are done in an efficient way.

For both the lower and upper bounds, computers were extensively used.
We also present a short simulation study, with the aim of estimating the

time constants.

Paper III. Archimedean and Laves lattices.

The Archimedean lattices are infinite transitive planar graphs, where each face is
a regular polygon. A regular polygon with n edges is a polygon where each edge
is of length 1, and the inner angle between any two adjacent edges is (n−2)π/n
radians. Kepler proved in 1619 that there are exactly 11 Archimedean lattices.
The Archimedean lattices include the square, triangular and hexagonal lattices.
The dual graphs of the Archimedean lattices are called the Laves lattices. Since
the square lattice is its own dual, and the triangular and hexagonal lattices are
each others duals, the union of the Archimedean and Laves lattices consists of
19 graphs.

In Paper III we determine which Archimedean and Laves lattices are sub-
graphs of each other. For each of the 19 · 18 = 342 ordered pairs of graphs

5

(G,H), we either show how to get G from H by deleting edges, or prove that it
is not possible.

The usefulness of this in percolation theory comes from the following easily
proved facts. If H is a subgraph of G, the critical probabilities and the time
constant are higher for H than for G.

Paper III is a first step towards finding the order of critical values (including
critical probabilities and time constants) on the Archimedean lattices, which
gives important clues on what properties of a graph these values depend on and
how. This can be used for example to evaluate so called universal formulas,
common in the physics literature on the subject, that try to predict the critical
probabilities, based on simple properties of the graphs.

6

Random assignment with integer costs

Robert Parviainen
Department of Mathematics, Uppsala University

P.O. Box 480, SE-75106 Uppsala, Sweden
robert.parviainen@math.uu.se

June 14, 2001

Abstract

The random assignment problem is to minimize the cost of an assign-
ment in a n×n matrix of random costs. In this paper we study this prob-
lem for some integer valued cost distributions. We consider both uniform
distributions on 1, 2, . . . , m, for m = n or n

2, and random permutations
of 1, 2, . . . , n for each row, or of 1, 2, . . . , n

2 for the whole matrix. We find
the limit of the expected cost for the n

2 cases, and prove bounds for the
n cases. This is done by simple coupling arguments together with Aldous
recent results for the continuous case. We also present a simulation study
of these cases.

1 Introduction

In the assignment problem we are to choose n elements from a n× n matrix C

of costs, one element from each row and each column, in such a way that the
total cost is minimized. In other words, we are looking for a permutation π,
that minimizes

Z =

n
∑

i=1

Ciπ(i).

If we let the elements of C be random variables, we have the random as-
signment problem. Traditionally, the random costs have been independent,
identically distributed, with the exponential or the uniform distribution.

When the costs are i.i.d. exponential (mean 1) there are strong conjec-
tures for the more general case of k-assignment from a m× n cost matrix. Let
Z∗(k,m, n) denote the minimal cost. Mézard and Parisi [8, 9], conjectured that

lim
n→∞

E(Z∗(n, n, n)) = π2/6.

This was proven by Aldous [1]. Parisi [11] has also conjectured that

E(Z∗(n, n, n)) =
n
∑

i=1

1

i2
,

1

which was improved by Coppersmith and Sorkin [3] to

E(Z∗(k,m, n)) =
∑

i+j<k

1

(m− i)(n− j)
.

The last conjecture was proven by Alm and Sorkin [2] for k ≤ 4, k = m =
5, and k = m = n = 6. Linusson and Wästlund [7] extended this to k ≤
6, and k = m = n = 7.

1.1 Discrete variants

We will study four discrete variants of the random assignment problem.

Case I Each row in C is an independent random permutation of {1, 2, . . . , n},
chosen uniformly from the set of all permutations.

Case II Each element in C is an independent random number, chosen uni-
formly from {1, 2, . . . , n}.

Case III C is a random permutation of {1, 2, . . . , n2} chosen uniformly.

Case IV Each element in C is an independent random number, chosen uni-
formly from {1, 2, . . . , n2}.

In the first two cases we normalize by n, and in cases III and IV by n2, thus
considering the problem of minimizing

Z =
1

n

∑

i

Ciπ(i) or Z =
1

n2

∑

i

Ciπ(i).

The (random) minimal costs will be denoted by Z∗i (n), for the four discrete
cases, and by Z∗c (n) in the case of continuous costs.

In [1], Aldous proves the following theorems, valid for any non-negative
continuous distribution, such that the density of the independent costs have
value 1 at 0. Let π denote the permutation giving an optimal assignment.

Theorem 1.1.

lim
n→∞

EZ∗c (n) =
π2

6
.

Theorem 1.2. nCiπ(i) converges in distribution. The limit distribution has
density

h(x) =
e−x(e−x − 1 + x)

(1− e−x)2
, 0 ≤ x <∞.

Theorem 1.3.

lim
n→∞

P (Ciπ(i) is the kth smallest element of the ith row in C) = 2−k.

Remark. In a simulation study in [10], Olin noted that, even for as small di-
mensions as n = 50, the row rank distribution is surprisingly close to the above.

2

2 Coupling arguments

In this section we will prove the following theorem.

Theorem 2.1. Let EZ∗i = limn→∞ EZ∗i (n). Then

π2

6
≤ EZ∗1 ≤ 2,

π2

6
+

12

24
≤ EZ∗2 ≤

π2

6
+

13

24
,

EZ∗3 =
π2

6
, EZ∗4 =

π2

6
.

The idea is to compare a discrete case of the problem with the case of
(continuous) uniform costs. We want to generate matrices for both cases simul-
taneously, such that an optimal assignment for one matrix is close to optimal
for the other.

When we say that π is optimal for the matrix C, we mean that π is a
permutation giving an optimal assignment for the random assignment problem,
with cost matrix C.

2.1 Case I

Let U be a n× n matrix of i.i.d. U(0, n) (uniform on (0, n)) random variables.

It will be convenient to denote the rows of U by U
(i). We want to use U to get

an independent random permutation for each row. To achieve this, we can use
the row ranks of the matrix U . If we let

Pi(j) = rank U
(i)
j ,

each Pi will be an independent random permutation, chosen uniformly from the
set of all permutations. By Theorem 1.3 we have,

lim
n→∞

P (rank U
(i)
j = k) = 2−k.

This gives, if π is the optimal assignment for U ,

lim
n→∞

EZ∗1 (n) ≤ lim
n→∞

E

(

1

n

n
∑

i=1

Pi(π(i))

)

= lim
n→∞

E(rank U
(i)
j) = 2.

For a lower bound, assume that, for 1 ≤ i ≤ n, Pi is a random permutation of
{1, 2, . . . , n}, and that V is a n× n matrix with i.i.d. U(0, n) random variables
as elements. We will now use the permutations Pi to rearrange the rows of V .
This will give us another matrix, U , also with i.i.d. U(0, n) elements, such that
Uij is close to Pi(j). To be precise, let

U
(i)
j = V

(i)
(Pi(j))

= the Pi(j)th smallest element in row i of V ,

3

and note that E(k − V
(i)
(k)) = k − nk/(n + 1) = k/(n + 1), since V

(i)
(k)/n is

Beta(k, n+ 1− k). We therefore have, for all permutations π,

E(Pi(π(i)) − U
(i)
π(i)) > 0.

Now assume that π is an optimal assignment for the discrete problem. The cost
can then be bounded below by the cost of the problem with cost matrix U :

EZ∗1 (n) = E

(

1

n

n
∑

i=1

Pi(π(i))

)

= E

(

1

n

n
∑

i=1

(

U
(i)
π(i) + Pi(π(i)) − U

(i)
π(i)

)

)

>

> E

(

1

n

n
∑

i=1

U
(i)
π(i)

)

≥ EZ∗c (n) → π2

6
.

2.2 Case II

Let Uij be i.i.d. U(0, n). To get i.i.d. random variables from the discrete
uniform distribution on {1, 2, . . . , n}, we can simply take the integer part of Uij
and add 1. Let

Yij = [Uij] + 1,

where [x] denotes the integer part of x. Then Yij are i.i.d. with the desired
distribution, and the differences Yij −Uij are uniform on (0, 1). Assume that π
is an optimal assignment for Y . Then we still have

Yiπ(i) − Uiπ(i) ∈ U(0, 1) and E(Yiπ(i) − Uiπ(i)) = 1/2,

and for the lower bound of EZ∗2 (n),

EZ∗2 (n) = E

(

1

n

n
∑

i=1

Yiπ(i)

)

= E

(

1

n

n
∑

i=1

Uiπ(i)

)

+
1

2
≥ EZ∗c (n) +

1

2
.

Now for the other direction. Assume that π is the optimal assignment for U .
Svante Janson [5] has calculated the expectation of the fractional part of one
element in the optimal assignment, {Uiπ(i)} = Uiπ(i) − [Uiπ(i)], with respect to
the limit distribution, given by Theorem 1.2.

lim
n→∞

E(Uiπ(i) − [Uiπ(i)]) =

∞
∫

0

{x}h(x)dx =
1

2
− 1

24
+

∞
∑

k=1

π2

sinh2(2π2k)
=

11

24
+ c,

where c ≈ 2.83 · 10−16. Let Zπ2 be the cost of Y given by the assignment π.

lim
n→∞

E(Z∗c − Zπ2) = lim
n→∞

E

(

1

n

n
∑

i=1

Uiπ(i) − Yiπ(i)

)

= lim
n→∞

E(U1π(1) − [U1π(1)])− 1 = −13

24
+ c.

Since Z∗2 ≤ Zπ2 , we get the upper bound

EZ∗2 ≤
π2

6
+

13

24
.

4

2.3 Case III

This is similar to the first case, but for ease of notation we consider a vector of
n2 elements instead of a n× n matrix.

Given a random permutation P of {1, 2, . . . , n2}, and a vector V of n2 i.i.d.
U(0, n2) random variables, let Ui be the P (i)th smallest element of V , that is,
Ui = V(P (i)).

Conversely, given random variables Ui, 1 ≤ i ≤ n2, i.i.d. U(0, n2), define the
random permutation by P (k) = rank Uk.

This gives our desired relations between U and P . By noting that, since
V(k)/n

2 is Beta(k, n2 + 1− k) distributed,

E(k − V(k)) =
k

n2 + 1
,

we also have for i in the optimal assignment for either case

1

n2 + 1
≤ E(P (i)− Ui) ≤

n2

n2 + 1
.

Now, if π is optimal for P ,

EZ∗3 (n) = E

(

1

n2

∑

i∈π
P (i)− Ui + Ui

)

≥ EZ∗c (n) +
1

n(n2 + 1)
,

and if π is optimal for U ,

EZ∗c (n) = E

(

1

n2

∑

i∈π
Ui − P (i) + P (i)

)

≥ EZ∗3 (n)− n

n2 + 1
.

And by letting n tend to infinity, we get the limit

EZ∗3 = lim
n→∞

EZ∗3 (n) =
π2

6
.

2.4 Case IV

As in the second case, given the i.i.d. uniform (0, n2) variables Uij , define Xij

and Yij by
Xij = [Uij], Yij = Xij + 1.

If π is optimal for Y ,

Z∗4 (n) =
1

n2
(Y1π(1) + · · ·+ Ynπ(n)) ≥

1

n2
(U1π(1) + · · ·+ Unπ(n)) ≥ Z∗c (n).

If π is optimal for U ,

Z∗c (n) =
1

n2
(U1π(1) + · · ·+ Unπ(n)) ≥

1

n2
(X1π(1) + · · ·+Xnπ(n)) ≥ Z∗4 (n)− 1

n
.

Combining this, we get by letting n tend to infinity

EZ∗4 = lim
n→∞

EZ∗4 (n) =
π2

6
.

5

3 Simulation

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
dimension

1.805

1.81

1.815

1.82

1.825

1.83

1.835

co
st

Figure 1: Simulation results, case I

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
dimension

2.135

2.14

2.145

2.15

2.155

2.16

2.165

2.17

co
st

Figure 2: Simulation results, case II

The primary purpose of the simulation study is of course to estimate the
expected minimal cost. Besides that, we look at the variance of the expected
minimal cost, as well as the row rank distribution.

To solve the realizations, we used an algorithm by Jonker and Volgenant [6].
In a recent survey [4], it came out as one of the fastest available algorithms for
problems like ours. Source code written by Jonker is available on the Internet1,
and a C++ version was used for these simulations. The algorithm has time
complexity O(n3). Beside the dimension, the time also depends on the size of

1http://www.magiclogic.com/assignment.html

6

the matrix elements, which makes the simulations of cases III and IV more time
consuming.

0 1000 2000 3000 4000 5000 6000
dimension

1.6

1.605

1.61

1.615

1.62

1.625

1.63

1.635

1.64

1.645

co
st

case III

case IV

Figure 3: Simulation results, cases III and IV

As an indication of how fast the implemented algorithm really is, we note
that in the permutation cases, the generation of the matrices takes about the
same time as solving the assignment problem. In the independent cases the pro-
portion of the time, spent generating the matrices, is about 0.25–0.4, depending
on the dimension. An instance of dimension 1000 is solved in less than a second
for all cases. For cases I and II it takes about 75–95 seconds to solve the problem
with dimension 10000, and 30 seconds to generate the matrix. Almost 400 MB
of RAM is needed for this dimension. The high dimension cases was run on a
computer with two 1000 MHz Pentium III processors and 2 GB of RAM.

3.1 Results

3.1.1 Mean

The results are summarized in Tables 1–4 and Figures 1–3. Note that n in the
tables is the number of realizations.

For case I and case II we simulated problems with dimensions up to 10000.
The number of realizations varies between 40000 and 4000. We see that the
estimated means stabilize quite fast. The difference between dimensions 2000
and 10000 is of order 10−4, the same order as the standard error.

The n2 cases III and IV behaves as expected. The mean increases nicely
towards π2/6, with case IV slightly ahead. Since these cases are more time
consuming, and the limit is known to be π2/6, we was content with simulations
up to dimension 6000.

7

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
dimension

0.6

0.8

1

1.2

1.4

1.6

1.8

di
m

en
si

on
⋅V

ar
ia

nc
e

case II
case III

case I

case IV

Figure 4: Estimated variance

1 2 3 4 5 6 7 8 9 10
k

10–4

10–3

10–2

10–1

1

p,
 lo

gs
ca

le

case II
case I

case III, case IV, and 0.5k

Figure 5: Estimated rank distribution, log-scale

8

Table 1: Simulation results, case I.

dimension n mean std. dev. s.e. mean
100 40000 1.80990 0.0797616 0.000398808
250 40000 1.82313 0.0512889 0.000256445
500 20000 1.82742 0.0364174 0.000257510
1000 20000 1.82924 0.0258506 0.000182791
2000 10000 1.83034 0.0183741 0.000183741
3000 10000 1.83062 0.0149616 0.000149616
4000 5000 1.83068 0.0128971 0.000182393
5000 5000 1.83058 0.0116841 0.000165238
6000 4000 1.83068 0.0105195 0.000166328
7000 4000 1.83087 0.0098804 0.000156223
8000 4000 1.83075 0.0092924 0.000146927
9000 4000 1.83064 0.0085737 0.000135563
10000 4000 1.83046 0.0082750 0.000130840

Table 2: Simulation results, case II.

dimension n mean std. dev. s.e. mean
100 40000 2.13618 0.1269710 0.000634857
250 40000 2.15438 0.0816278 0.000408139
500 20000 2.16071 0.0586444 0.000414678
1000 20000 2.16370 0.0411801 0.000291188
2000 10000 2.16539 0.0289196 0.000289196
3000 10000 2.16557 0.0239816 0.000239816
4000 5000 2.16520 0.0208703 0.000295150
5000 5000 2.16581 0.0190736 0.000269742
6000 4000 2.16601 0.0170615 0.000269765
7000 4000 2.16566 0.0156181 0.000246944
8000 4000 2.16600 0.0147405 0.000233067
9000 4000 2.16562 0.0138590 0.000219130
10000 4000 2.16547 0.0131255 0.000207532

9

Table 3: Simulation results, case III.

dimension n mean std. dev. s.e. mean
100 40000 1.60254 0.0905816 0.000452908
250 40000 1.62781 0.0587116 0.000293558
500 20000 1.63629 0.0416650 0.000294616
1000 20000 1.64064 0.0297464 0.000210339
2000 10000 1.64274 0.0208671 0.000208671
3000 10000 1.64366 0.0170409 0.000170409
4000 2000 1.64398 0.0147322 0.000329422
5000 2000 1.64464 0.0132429 0.000296119
6000 2000 1.64454 0.0122086 0.000272994

Table 4: Simulation results, case IV.

dimension n mean std. dev. s.e. mean
100 40000 1.61806 0.1296140 0.000648068
250 40000 1.63331 0.0830974 0.000415487
500 20000 1.63948 0.0591263 0.000418086
1000 20000 1.64231 0.0422843 0.000298995
2000 10000 1.64349 0.0297958 0.000297958
3000 10000 1.64406 0.0243364 0.000243364
4000 2000 1.64400 0.0210041 0.000469665
5000 2000 1.64410 0.0186728 0.000417537
6000 2000 1.64463 0.0165169 0.000369328

10

3.1.2 Variance

Alm and Sorkin [2] conjectures that the variance in the exponential case is
2/n + O(log n/n2). It is natural to suspect the same behavior in all our four
cases. Figure 4 shows n times the estimated variance plotted against n. It is
interesting to note is that the variance in the permutation cases is about half of
that in the independent cases.

3.1.3 The rank distribution

In the continuous cases, the limiting rank distribution is geometric, with pa-
rameter 1/2. For comparison, we generated 1000 matrices of dimension 2000
for each discrete case, and determined the rank of every element in the optimal
assignment given by the program. (Optimal assignments are not necessarily
unique.) In the case of ties, we gave the element the lowest rank.

As suspected, cases III and IV seems to have the same limiting distribution
as in the continuous case. Also in case II a geometric distribution, but with
extra weight on 1, fit the data very well. For case I the picture looks a bit
different. When plotted on a logarithmic scale, (Figure 5) we no longer get a
straight line, but a slightly concave curve. (In this scale, a polynomial in k of
degree 2 fit the data well.)

Acknowledgement

I would like to thank Svante Janson for suggesting both the problem and the
coupling approach.

References

[1] Aldous, D. J. The ζ(2) limit in the random assignment problem. To appear
in Random Structures and Algorithms.

[2] Alm, S. E. and Sorkin, G. B. Exact expectations and distributions in the
random assignment problem. To appear in Combinatorics, Probability and
Computing.

[3] Coppersmith, D. and Sorkin, G. B. (1999) Constructive bounds and exact
expectations for the random assignment problem. Random Structures and
Algorithms, 15 113–144.

[4] Dell’Amico, M. and Toth, P. (2000) Algorithms and codes for dense as-
signment problems: the state of the art. Discrete Appl. Math., 100 17–48.

[5] Janson, S. (2001). Personal communication.

[6] Jonker, R. and A. Volgenant, A. (1987). A shortest augmenting path al-
gorithm for dense and sparse linear assignment problems. Computing, 38
325–340.

11

[7] Linusson, S. and Wästlund, J. (2000) A generalization of the random as-
signment problem. Preprint.

[8] Mézard, M and Parisi, G. (1985) Replicas and optimization. Journal de
Physiques Lettres, 46 771–778.

[9] Mézard, M and Parisi, G. (1987) On the solution of the random link
matching problem. Journal de Physiques Lettres, 48 1451–1459.

[10] Olin, B. (1992) Asymptotic properties of random assignment problems. PhD
thesis, Kungliga Tekniska Högskolan, Stockholm, Sweden.

[11] Parisi, G. (1998) A conjecture on random bipartite matching. Preprint.

12

Lower and Upper Bounds for the Time

Constant of First-Passage Percolation

SVEN ERICK ALM1 and ROBERT PARVIAINEN2

Dept. of Mathematics, Uppsala University, PO Box 480, S-751 06 Uppsala, Sweden
1(e-mail: sea@math.uu.se)

2(e-mail: robert@math.uu.se)

We present improved lower and upper bounds for the time constant of first-passage
percolation on the square lattice. For the case of lower bounds, a new method, using
the idea of a transition matrix, has been used. Numerical results for the exponential
and uniform distributions are presented. A simulation study is included, which results
in new estimates and improved upper confidence limits of the time constants.

1. Introduction

1.1. Percolation

The percolation process was introduced as a mathematical model for the spread of a

fluid through a random medium by Broadbent and Hammersley [2]. The term fluid has

a broad interpretation and can for instance mean a liquid, an epidemic or a particle. The

medium is represented by a connected graph, with a (possible finite) countable set of

vertices (sites) and edges (bonds) joining the vertices.

Broadbent and Hammersley considered bond and site percolation, where each edge or

vertex is open or closed for the fluid, with given probability.

In first–passage percolation, introduced by Hammersley and Welsh [3], each edge is

open, and associated with a random variable, representing the time for the fluid to pass

the bond.

1.2. First-passage percolation

We will study the time constant for first-passage percolation on the graph given by the

square lattice. The vertices are the points (x, y) ∈ Z
2. The edges are the lines of length

1 joining adjacent points, and with each edge e we associate a random variable Xe. We

assume the variables Xe to be non-negative, independent and identically distributed with

finite mean. We will be interested in the first-passage time to the line x = n, starting from

the origin. (We will, with a slight abuse of notation, denote the line {(x, y) ∈ Z
2 : x = n}

by x = n.)

2 Sven Erick Alm and Robert Parviainen

A walk on the lattice is an alternating sequence v0, e1, v1, e2, . . . , en, vn of vertices and

edges. The walk is self-avoiding if all vertices are distinct. (x(γ), y(γ)) will be used to

denote vn, the endpoint for some walk γ, and |γ| its length. We will need some notation

for sets of walks. Γ is the set of all self-avoiding walks starting from the origin. There

are some subsets of Γ that will be of use; Γn is the subset consisting of all self-avoiding

walks of length n, Γ(n,m) consists of all self-avoiding walks that end in (n,m), or more

generally Γ(R) for walks that end in some non-empty subset R ⊂ Z
2. F (n) = |Γn| will

denote the number of self-avoiding walks of length n.

For a given walk γ we define the passage time Sγ =
∑

e∈γ Xe. We also define the

first-passage times T (R) = infγ∈Γ(R) Sγ , the first-passage time to the set R, starting

at the origin, and TG = infγ∈G Sγ , the first-passage time over the subset G ⊂ Γ. For

convenience, we write T (m,n) instead of T ((m,n)) for the first-passage time to the point

(m,n).

We will on occasion use the term infected for sets of edges and vertices that may be

reached from the origin in a given time, that is, the edge e (or vertex v) is infected at

time t if there exists a path γ containing e (or v) with v0 = (0, 0), and Sγ ≤ t.

1.3. The time constant

The time constant of first-passage percolation is defined as the limit of the normalized

first-passage time from the origin to the line x = n. However, one can show (see the

book by Smythe and Wierman [5]) that the same limit also arises if we only consider

cylinder restricted walks. This allows us to use subadditivity, which will be important

for the upper bounds.

Let C0n be the subset of Γ consisting of the walks with end-vertex on the line x = n,

and with all other vertices inside the cylinder 0 ≤ x < n.

Now, define s0n as the first-passage time from the origin to the line x = n over walks

in C0n. The time constant τ is defined as

τ = lim
n→∞

s0n
n
.

The function Es0n is subadditive (for a proof see [5]), which implies, for n ≥ 1,

τ = inf
k≥1

Es0k
k

≤ Es0n
n

,

a key fact for our upper bounds.

The time constant measures the speed with which the fluid spreads, and is unknown

for all non-trivial distributions. Previous lower and upper bounds are given by Janson

[4] and Smythe and Wierman [5].

2. Lower bounds

In [4], Janson derives a method for calculating lower bounds for the time constant. The

method is based on counting finite self-avoiding walks. The basic idea is to consider too

many infinite walks, which is done by joining short self-avoiding walks at their endpoints.

Time constants may be defined in general directions as well, and Janson’s method

Lower and Upper Bounds for the Time Constant of First-Passage Percolation 3

treats all directions simultaneously. Define the set

N∗ = {(a, b) ∈ R
2| lim

(m,n)→∞
P (T (m,n) ≤ am+ bn) = 0}.

The (horizontal) time constant τ may then be defined by

τ = sup
a∈R+

{(a, 0) ∈ N∗}.

In the following theorem from [4], we use the generating function

Fn(s, t) =
∑

γ∈Γn

sx(γ)ty(γ),

and the Laplace transform for Xe,

ψ(ν) = E(e−νXe),

to achieve criteria for (a, 0) to belong to N ∗, and thus lower bounds for the time constant

τ .

Theorem 2.1 (Janson). If Fn
(

eaν , ebν
)

1
n < 1

ψ(ν) for some ν > 0 and n ≥ 1, then

(a, b) ∈ N∗.

For a proof, see [4]. Since Fn(eaν , 1) can be computed for a given n, Theorem 2.1

allows us to compute lower bounds for τ , by finding a and ν such that the assumptions

are satisfied.

In a note in [4], Janson points out that Theorem 2.1 may be improved by noting that

when joining two walks, for the resulting walk to be self-avoiding there are at most three

possible directions for the first step of the second walk.

However, as we shall see, it is possible to join short self-avoiding walks in a more clever

may, to reduce the number of non-self-avoiding walks in the limit, thereby improving the

lower bounds.

2.1. An improved method

In [1], Alm uses a version of a method introduced by Wakefield [6] to find upper bounds

for the connective constant of self-avoiding walks. A modified version of this method can

be used to improve the bounds for the time constant as well.

Again, we count the number of self-avoiding walks of a given length n, but this time

we also remember the m first and last steps, as well as the m-th last x-coordinate. This

gives us a F (m)× F (m) matrix B, see below. Each element in the matrix is the sum of

two polynomials, one in s and one in s−1, both of degree at most n − m. The largest

eigenvalue of a matrix A will be denoted by λ1(A). A row vector (1, 1, . . . , 1) of suitable

length will be denoted by 1. We will use the norm ‖A‖ =
∑

i

∑

j aij = 1A1′.

Let m be fixed, let the walks of Γm be denoted γ1, γ2, . . . , γF (m), and let a
(n)
ij (k) be the

number of self-avoiding walks of length n that starts with γi and ends with a translation

of γj , |γi| = |γj | = m, and has m-th last x-coordinate k. Define the matrix A by

A(n)(k) =
(

a
(n)
ij (k)

)

, 1 ≤ i, j ≤ F (m),

4 Sven Erick Alm and Robert Parviainen

and the matrix B by

B(n)(s) =

n−m
∑

k=−n+m

A(n)(k)sk =
(

b
(n)
ij (s)

)

, 1 ≤ i, j ≤ F (m).

Now, every self-avoiding walk of length 2n −m that starts with γi and ends with a

translation of γj , having m-th last x-coordinate k may be constructed by joining two

self-avoiding walks of length n, the first starting with γi, and ending with a translation

of γl, with m-th last x-coordinate r, the second starting with γl, and ending with a

translation of γj , with m-th last x-coordinate k − r. Their composition γ1 ◦ γ2 will then

have m-th last x-coordinate k. Therefore

a
(2n−m)
ij (k) ≤

n−m
∑

r=−n+m

F (m)
∑

l=1

a
(n)
il (r)a

(n)
lj (k − r) =

n−m
∑

r=−n+m

(

A(n)(r)A(n)(k − r)
)

ij
,

and, for B,

b
(2n−m)
ij (s) =

2n−2m
∑

k=−2n+2m

a
(2n−m)
ij (k)sk

≤
2n−2m
∑

k=−2n+2m

sk
n−m
∑

r=−n+m

F (m)
∑

l=1

a
(n)
il (r)a

(n)
lj (k − r)

=
2n−2m
∑

k=−2n+2m

n−m
∑

r=−n+m

F (m)
∑

l=1

a
(n)
il (r)sra

(n)
lj (k − r)sk−r

=

F (m)
∑

l=1

n−m
∑

r=−n+m

a
(n)
il (r)sr

(

2n−2m
∑

k=−2n+2m

a
(n)
lj (k − r)sk−r

)

=

F (m)
∑

l=1

b
(n)
il (s)b

(n)
lj (s) =

(

B(n)(s)B(n)(s)
)

ij
.

In the same way we get

b
(k(n−m)+m)
ij (s) ≤

(

B(n)(s)
)k

ij
. (1)

Let the F (m)× 1 column vector R(m) be defined by the relation

F2n−m(s, 1) =
∑

γ∈Γ2n−m

sx(γ) = 1B(2n−m)(s)R(m).

R(m) is just a correction vector, depending only on m, with elements from the set

{s−m, s−(m−1), . . . , sm−1, sm}, due to the fact that we are using them-th last x-coordinate.

By (1), we then get, for all k ≥ 1,

Fk(n−m)+m(s, 1) = 1B(k(n−m)+m)(s)R(m) ≤ 1
(

B(n)(s)
)k

R(m). (2)

Lower and Upper Bounds for the Time Constant of First-Passage Percolation 5

For s > 1 (we will use s = eaν in Theorem 2.2), we have s−m ≤ Ri ≤ sm, for all i, and

1
(

B(n)(s)
)k

R(m) ≤ 1
(

B(n)(s)
)k

1′sm = ‖
(

B(n)(s)
)k

‖sm

1
(

B(n)(s)
)k

R(m) ≥ 1
(

B(n)(s)
)k

1′s−m = ‖
(

B(n)(s)
)k

‖s−m.

Now let k →∞. Since

lim
k→∞

(

s−m
)

1
k(n−m)+m = lim

k→∞
(sm)

1
k(n−m)+m = 1

we get, by the Power method,

lim
k→∞

(

1
(

B(n)(s)
)k

R(m)

)
1

k(n−m)+m

= lim
k→∞

(

‖
(

B(n)(s)
)k

‖
)

1
k(n−m)+m

=
(

λ1

(

B(n)(s)
))

1
n−m

.

And finally, by (2),

(

Fk(n−m)+m(s, 1)
)

1
k(n−m)+m ≤

(

λ1

(

B(n)(s)
))

1
n−m

.

With the help of Theorem 2.1 we have thus proved

Theorem 2.2. If
(

λ1

(

B(n)(eaν)
))

1
n−m < 1

ψ(ν) for some ν > 0, then (a, 0) ∈ N∗.

We thus have a criterion for lower bounds. If the largest eigenvalue of the matrix B at

the point (eaν , 1), to the power (n−m)−1, is less than 1
ψ(ν) then a is a lower bound for

the time constant.

2.1.1. Reducing B The matrix B is actually unnecessary large. We can use a reduced

K(m) × K(m) matrix B̃ = (b̃ij), where K(m) is the number of equivalence classes of

walks of length m. We consider two walks equivalent if one can be mapped on the other

by reflection in the x-axis. Every walk except those two that only uses horizontal steps (to

(m, 0) and (−m, 0)) has exactly one equivalent walk, so that K(m) = F (m)
2 + 1. Denote

the walks in the equivalence class γ̃1, γ̃2, . . . , γ̃K(m). Let γ̃1 and γ̃K(m) be the walks of

length m that goes straight along the x-axis to (m, 0) and (−m, 0). We define b̃ij = bij
for j = 1 and j = K(m), and b̃ij = bij + bij′ , where γj and γj′ are equivalent, otherwise.

The following theorem shows that we can use B̃ instead of B.

Theorem 2.3. λ1(B̃) = λ1(B)

Proof. Let λ̃1 = λ1(B̃), with corresponding right eigenvector h̃. Define hF (m)×1 by

hj = h̃s if γj is equal to or equivalent to γ̃s.

If γi is equivalent to γ̃r, then

λ1hi =

F (m)
∑

j=1

bijhj = bi1h̃1 +

K(m)−1
∑

s=2

(bis + bis′)h̃s + biK(m)h̃K(m) =

K(m)
∑

s=1

b̃rsh̃s = λ̃1h̃r,

6 Sven Erick Alm and Robert Parviainen

so λ̃1 is an eigenvalue for B. It remains to show that this is the largest eigenvalue, which

is easily done by the Power method. In the recursion v(n) = Bv
(n−1)

cn
, choose v(0) = h,

and we get cn = λ1(B̃) for all n ≥ 1. Therefore λ1(B) = limn→∞ cn = λ1(B̃).

Table 1 Lower bounds for the time constant, exponential distribution

m 0 1 2 3 4 5 6 7
n

2 0.286787
3 0.289423 0.298253
4 0.292680 0.299266 0.299631
5 0.293828 0.299473 0.299789
6 0.295207 0.299685 0.299968 0.300186
7 0.295900 0.299780 0.300025 0.300201
8 0.296518 0.299860 0.300077 0.300223 0.300245
9 0.296934 0.299913 0.300106 0.300233 0.300252

10 0.297292 0.299955 0.300130 0.300242 0.300258 0.300272
11 0.297561 0.299988 0.300147 0.300247 0.300261 0.300274
12 0.297794 0.300015 0.300161 0.300251 0.300264 0.300275 0.300279
13 0.297984 0.300037 0.300172 0.300254 0.300266 0.300276 0.300279
14 0.298150 0.300056 0.300181 0.300257 0.300267 0.300277 0.300280 0.300282
15 0.298291 0.300072 0.300189 0.300259 0.300268 0.300277 0.300280 0.300282
16 0.298416 0.300086 0.300196 0.300261 0.300269 0.300277 0.300281 0.300282
17 0.298524 0.300098 0.300202 0.300263 0.300270 0.300278 0.300281 0.300282
18 0.298621 0.300109 0.300205 0.300265 0.300271 0.300278 0.300281 0.300282
19 0.298708 0.300119 0.300207 0.300266 0.300272 0.300279 0.300281 0.300282
20 0.298786 0.300127 0.300214 0.300267 0.300273 0.300279 0.300281 0.300282
21 0.298851 0.300135 0.300217 0.300268 0.300274 0.300280 0.300281 0.300282
22 0.298921 0.300142 0.300222 0.300268 0.300275 0.300280 0.300281 0.300282

2.2. Numerical results

The results are summarized in Tables 1 and 2. In Table 1, the entries form = 0 correspond

to the improved version of Theorem 2.1. The previous lower bounds, given in [4], were

0.29842 for the exponential distribution, by the improved version of Theorem 2.1 with

n = 16, and 0.24294 for the uniform, by a result not included here, which only uses the

Laplace transform ψ(ν). We improve these bounds already with n = 4,m = 1. The best

lower bounds obtained here are 0.300282 and 0.243666, respectively.

The limitation in n is the time available. When going from n to n+1 the time needed

increases roughly by a factor 3. In m, it is the amount of available internal computer

memory that is the limiting factor, increasing by a factor 9 for each step in m. The time

needed also increases in m, due to the fact that we must find the largest eigenvalue for a

matrix that is roughly three times as wide. For m = 7 (the largest m we used), we need

around 180 MB of RAM, and the computations for the largest n took a couple of days

on a standard microcomputer. However, as can be seen in the Tables 1 and 2, there is

little gained by doing larger calculations, especially by increasing n.

Lower and Upper Bounds for the Time Constant of First-Passage Percolation 7

Table 2 Lower bounds for the time constant, uniform distribution

m 1 2 3 4 5 6 7
n

3 0.242941
4 0.243325 0.243479
5 0.243399 0.243518
6 0.243468 0.243572 0.243643
7 0.243500 0.243589 0.243647
8 0.243526 0.243604 0.243653 0.243658
9 0.243543 0.243613 0.243655 0.243660

10 0.243557 0.243620 0.243657 0.243661 0.243664
11 0.243568 0.243625 0.243658 0.243662 0.243665
12 0.243577 0.243629 0.243659 0.243662 0.243665 0.243666
13 0.243584 0.243633 0.243659 0.243663 0.243665 0.243666
14 0.243591 0.243635 0.243659 0.243663 0.243665 0.243666 0.243666
15 0.243596 0.243638 0.243659 0.243663 0.243665 0.243666 0.243666
16 0.243601 0.243640 0.243661 0.243663 0.243665 0.243666 0.243666
17 0.243605 0.243641 0.243661 0.243663 0.243665 0.243666 0.243666
18 0.243608 0.243643 0.243661 0.243664 0.243666 0.243666 0.243666
19 0.243614 0.243644 0.243662 0.243664 0.243666 0.243666 0.243666

20 0.243614 0.243646 0.243662 0.243664 0.243666 0.243666 0.243666
21 0.243619 0.243647 0.243662 0.243664 0.243666 0.243666 0.243666
22 0.243619 0.243648 0.243662 0.243664 0.243666 0.243666 0.243666

3. Upper bounds

3.1. The method

In principle, it is easy to find upper bounds. We only have to calculate the expected

first-passage time for some small subset of walks. We formalize this in the following

proposition. Let C0n, as before, be the subset of Γ consisting of walks with their endpoints

on the line x = n, and with all other vertices inside the cylinder 0 ≤ x < n.

Proposition 3.1. τ ≤ E(TG(x=n))
n

, where TG(x = n) is the first-passage time from the

origin to the line x = n over walks in G ⊂ C0n.

Proof. First, if G1 ⊂ G2, then

TG1 = inf
γ∈G1

Sγ ≥ inf
γ∈G2

Sγ = TG2 ,

so that,

τ ≤ E(s0n)

n
≤ E(TG(x = n))

n
.

Therefore, if we can compute t = E(TG(x=n))
n

for some set G, t will be an upper bound

for the time constant τ .

8 Sven Erick Alm and Robert Parviainen

3.2. The exponential distribution

The nice properties of the exponential distribution makes it easy to compute upper

bounds. We will consider rectangular subsets, with the origin on the left side. If the

rectangle has M lines in the y-direction, the origin is placed at (the integer part of)

M/2.

We start with only the origin infected. The expected first-passage time is then rewrit-

ten using the law of total probability, conditioning on the first step, giving an expression

in terms of expected first-passage times with two infected vertices. All uninfected edges,

adjacent to some infected vertex, still have, by the lack of memory property, the expo-

nential mean 1 distribution, and we can continue in this way, successively conditioning

on the next step, until we get explicit expressions for the expected first-passage times.

Let Tk1...kl
denote the first-passage time with l+ 1 infected vertices, with k1 as the first

edge used, k2 as the second, and so on. In the same way, let Nk1...kl
be the number of

uninfected edges, adjacent to some infected vertex. Finally, let X[1] denote the minimum

of {X1, . . . , XN}. Then,

E(T) =
N
∑

k1=1

E(T |Xk1 = X[1])P (Xk1 = X[1])

=

N
∑

k1=1

E(Xk1 + Tk1 |Xk1 = X[1])P (Xk1 = X[1])

= P (X1 = X[1])

[

N
∑

k1=1

E(Xk1 |Xk1 = X[1]) +E(Tk1 |Xk1 = X[1])

]

=
1

N
+

1

N

N
∑

k1=1

E(Tk1),

E(Tk1) =
1

Nk1
+

1

Nk1

Nk1
∑

k2=1

E(Tk1k2),

and so on, until all vertices but those on the right borderline are infected. Then the ex-

pected first-passage time is 1/M . By back substitution, we then find the wanted expected

first-passage time. Note that the expected first-passage time only depends on the set of

infected vertices. The order of infection, and the presence or not of edges between two

infected vertices does not matter. This can be used to significantly reduce the number of

cases by equating all configurations with the same set of infected vertices.

A PASCAL program was written with the purpose to automatically find these equa-

tions. Since the rational numbers involved soon have very large numerators and denom-

inators, they where rounded to double precision reals, but always upward, to assure us

that we really get an upper bound. The results are summarized in Table 3. The best

upper bound found here is 0.503425. Smythe and Wierman [5] calculated the expected

first-passage time to the line x = 1, which gives the upper bound 0.59726.

Lower and Upper Bounds for the Time Constant of First-Passage Percolation 9

Table 3 Upper bounds, exponential distribution.

To line x=2 x=3 x=4 x=5 x=6 x=7
M

2 0.722222 0.709684 0.703017 0.698968 0.696262 0.694328
3 0.606463 0.597846 0.594009 0.591976 0.590729 0.589879
4 0.582480 0.567714 0.559863 0.555199 0.552170 0.550056
5 0.562535 0.544247 0.534522 0.528867 0.525309 0.522908
6 0.558398 0.537586 0.525706 0.518352 0.513503 0.510129
7 0.554433 0.531414 0.517790 0.509168 0.503425
8 0.553678 0.529793 0.515191 0.505626
9 0.552931 0.528208 0.512692
10 0.552801 0.527828

3.3. The uniform distribution

Without the lack of memory property, things are now a bit more complicated. We must

keep track of the order of infection, and the time of each infection. However, the same

approach still works, but in smaller scale.

Assume that l edges have been infected, in the order k1, k2, . . . , kl, with associated edge

variables Xki
= xki

. Also assume that there are n uninfected edges incident to at least

one infected vertex. Only edges whose sole incident infected vertex is the last infected

will be U(0, 1) distributed. The distributions of the other edges will still be uniform,

but on (0, zi), where zi = 1 −∑j∈Si
xkj

, and Si is a subset of {1, . . . , l}. For a given

configuration, the subsets Si can be found by inspection, by considering the order of

infection.

Let fk1k2...kl
denote the joint density function for the n uninfected edges. The joint

conditional density, given that the next edge infected is kl+1, is denoted by fk1...kl|k1...kl+1
.

We can express this in terms of the unconditional densities as
fk1...kl

fk1...kl+1

.

Let Tk1k2...kl
denote the first-passage time if we start with these edges infected, and

Hk1k2...kl
the expected time until the next vertex gets infected. So, Hk1k2...kl

is the

expectation of the minimum of the m edges that are incident to exactly one infected

vertex,

Hk1...kl
= E(min{X1,X2, . . . ,Xm}),

where Xi ∈ U(0, zi).

The expected first-passage time may be decomposed as

E(Tk1...kl
) = Hk1...kl

+
∑

kl+1

∫ a

0

E(Tk1...kl+1
)
fk1...kl

fk1...kl+1

dxkl+1
,

where the sum is over the m edges that are incident to exactly one infected vertex, and

a = min{z1, . . . , zm}. An important fact is that every integrand will be a polynomial

in the variable of integration. Otherwise the number of integrals necessary to compute,

even for very small areas, would make the calculations intractable. Still, we have so

far only been able to perform the calculations for the rectangle bounded by the lines

x = 0, x = 2, y = 2, y = −1. This gives the upper bound 0.403141. The best upper bound

in Smythe and Wierman [5] is 0.425 in this case.

10 Sven Erick Alm and Robert Parviainen

It is possible to implement the rules for these equations in a computer program,

which generates as output the equations as a Maple file, which is read and processed

(in Maple). The calculations have been cross-checked by simulations, and by other meth-

ods for smaller areas.

4. Simulation

A simulation study of the cylinder restricted process s0n has been performed. The pur-

pose of this study is to estimate the time constant, and to obtain upper confidence limits

for the time constant. We also use the simulation program to cross-check the computa-

tions for the upper bounds. The simulation program generates a number of independent

realizations of the process, and outputs means of first-passage times to each line from

x = 1 up to some predetermined line x = n, as well as the y-coordinate for the first

hit on the line x = n for each simulation. To avoid unnecessary and time consuming

programming the walks are restricted in y-direction as well. This is not a problem since

it is easy to choose the restriction such that the probability that a walk will be restricted

in the y-direction is virtually zero, which can in part be confirmed by the data of hitting

points on the line x = n.

4.1. Upper confidence limits

The first-passage times to the line x = n are used to compute upper confidence limits

for the time constant. Since

τ ≤ E
(s0n
n

)

,

an upper confidence limit for E
(

son

n

)

will also be an upper confidence limit for τ , with a

higher level of confidence. The confidence limits are constructed in the usual way, using

the Gaussian 95% quantile.

4.1.1. Numerical results For the exponential distribution, 5000 realizations of the

process s0,500 were generated. The estimated expected first-passage time to the line

x = 500 was 204.786, with standard deviation 2.99526, giving a 95% upper confidence

limit of 0.409711.

Since the simulations for the uniform distribution are less time consuming than for

the exponential distribution, a sample of 1000 realizations of the process s0,750 could be

generated. The estimated expected first-passage time to the line x = 750 was 236.629,

with standard deviation 2.23546, giving a 95% upper confidence limit of 0.315660.

4.2. Estimates

The same data used for the confidence limits was also used to estimate the time constant.

From the first-passage times we try to extrapolate towards infinity to get estimates. Here

we use a simple method. We plot the (by n) normalized first-passage times against 1√
n
,

and fit a regression line. The intercept will then estimate the time constant. The choice

of 1√
n

as the predictor is based only on data exploration, and not on theoretical ideas.

The removal of some data points corresponding to the lines closest to the origin results

in slightly higher estimates than using the whole data set. Further removal and fitting

Lower and Upper Bounds for the Time Constant of First-Passage Percolation 11

0.04 0.05 0.06 0.07 0.08 0.09 0.1
n–1/2

0.312

0.314

0.316

0.318

0.32

0.322

s 0
n/

n

Fitted regression line, y=0.3116+0.1048x. Lines x=101 to x=750.

Figure 1 Estimating τ , uniform distribution

0.05 0.06 0.07 0.08 0.09 0.1
n–1/2

0.41

0.412

0.414

0.416

0.418

s 0
n/

n

Fitted regression line, y=0.4018+0.1715x. Lines x=101 to x=500.

Figure 2 Estimating τ , exponential distribution

polynomials with higher degree had in most cases only minor or no influence on the

estimates. Examples are found in Figures 1 and 2. The chosen estimates are 0.402 for

the exponential distribution, and 0.312 for the uniform distribution.

5. Algorithms

5.1. Lower bounds

The general algorithm implemented consists of three steps.

1 Generate an enumeration of the K(m) self-avoiding walks of length m. This is done

12 Sven Erick Alm and Robert Parviainen

Table 4 Summary

Exponential Uniform

Upper bound 0.503425 0.403141
Upper confidence limit 0.409711 0.315660

Estimate 0.402 0.312
Lower bound 0.300282 0.243666

recursively, by starting with the walk that goes straight to (m, 0), and successively

altering more and more of the end of the walk, enumerating all walks as we pass

them, up to equivalence.
2 Generate the K(m)×K(m) matrix B̃. For each enumerated walk γi, we cycle through

all walks that start with γi. If a walk ends with a translation of γj with m-th last

x-coordinate z we increment the element (i, j, z) in the three dimensional array rep-

resenting B̃.

3 Look for a good lower bound. We start with values of a and ν that we know fulfills

the criteria. Then a good ν is found and held fixed. a is then increased to the best

possible value. This is repeated a few times (typically two or three times).

The program was written in C++. The time-consuming parts are step 2 (for large n)

and step 3 (for large m). Good start values of a and ν are critical for fast performance,

but this is easily accomplished by extrapolation from smaller n or m. Also, ν is quite

stable for varying n and m.

5.2. Simulations

We start with a list (implemented as a doubly linked list) of the vertices that can be

infected, that is, they are adjacent to some already infected vertex. In the first step

the list contains the points (1, 0), (0,−1) and (1, 0). The list is sorted with respect to

the times of the forthcoming infection. The first vertex in the list (the next vertex to

be infected) is then removed from the list, and the list is expanded with eventual new

vertices that are adjacent to the vertex being removed, but not yet infected. Of course

only vertices inside the cylinder may be in the list. We then continue removing vertices

until the infection has reached the line x = n, and we are done.

5.3. Upper bounds, exponential distribution

The calculations outlined in Section 3.2 were implemented in a recursive PASCAL pro-

gram, where all calculation were rounded upward to double precision. All calculated

expectations were saved. As the number of possible configurations in some of the cases

was very large (M = 7, x = 6 gives 242 configurations), memory was used dynamically.

The computing time was several days for the larger cases, with close to 1 GB of memory

used.

5.4. Upper bounds, uniform distribution

We see each configuration as a node in a rooted tree, with the case of only the origin

infected as the root, and where each (tree) node’s children are the configurations with

one more edge infected than the parent. The algorithm makes a postorder traversal

Lower and Upper Bounds for the Time Constant of First-Passage Percolation 13

of this tree, where in each step the equation for the expectation for this configuration

is determined. The processing of a given configuration is rather involved, due to the

somewhat complex rules for the set of edges that should be considered, and the difficulties

to implement these in an efficient way.

References

[1] Alm, S. E. (1993) Upper bounds for the connective constant of self–avoiding walks. Com-

binatorics, Probability and Computing, 2 115–136.
[2] Broadbent, S. R. and Hammersley, J. M. (1957) Percolation processes I. Crystals and

mazes. Proceedings of the Cambridge Philosophical Society, 53 629–641, 1957.
[3] Hammersley, J. M. and Welsh, J. D. (1965) First–passage percolation, subadditive pro-

cesses, stochastic networks, and generalized renewal theory. In Bernoulli-Bayes-Laplace

Anniversary Volume, pages 61–110. Springer-Verlag, 1965.
[4] Janson, S. (1981) An upper bound for the velocity of first–passage percolation. Journal of

Applied Probability, 18 256–262.
[5] Smythe R. T. and Wierman J. C. (1978) First-Passage Percolation on the Square Lattice.

Lecture notes in Mathematics 671. Springer-Verlag.
[6] Wakefield A. J. (1951) Statistics of the simple cubic lattice. II. Proceedings of the Cambridge

Philosophical Society, 47 799–810.

The Subgraph Partial Ordering of Archimedean

and Laves Lattices

Robert Parviainen
Department of Mathematics

Uppsala University
and

John C. Wierman
Mathematical Sciences Department

Johns Hopkins University

April 12, 2002

Abstract

The subgraph relation defines a partial order on graphs. In this paper,
we determine this partial order completely for the Archimedean and Laves
lattices.

1 Introduction

A regular tiling is a tiling of the plane which consists entirely of regular poly-
gons. An Archimedean lattice is the graph of vertices and edges of a regular
tiling which is vertex-transitive, i.e., for every pair of vertices, u and v, there
is a graph isomorphism that maps u to v. There are exactly 11 Archimedean
lattices. A proof that these are the only vertex-transitive regular tilings is given
in Grünbaum and Shephard [7, Ch. 2]. Archimedean lattices were studied and
named by Kepler [13], due to connections with the Archimedean solids.

A notation for Archimedean lattices, which can also serve as a prescription
for constructing them, is given in Grünbaum and Shephard. Around any ver-
tex (since all are equivalent, by vertex-transitivity), starting with the smallest
polygon touching the vertex, list the number of edges of the successive polygons
around the vertex. For convenience, an exponent is used to indicate that a
number of successive polygons have the same size.

Since the Archimedean lattices are planar graphs, each has a planar dual
graph. The square lattice, (44), is self-dual, and the triangular, (36), and hexag-
onal, (63), lattices are a dual pair of graphs. The other 8 Archimedean lattices
have dual graphs that are not Archimedean. We will denote the dual of an
Archimedean lattice G by D(G). The duals of the Archimedean lattices have

1

applications in crystallography, where they are called Laves lattices [16, 17].
There are a total of 19 different Archimedean and Laves lattices, which are
illustrated in Figure 1.

Let A ⊆ B denote that A is isomorphic to a subgraph of B. The relation ⊆
is reflexive, anti-symmetric, and transitive, and thus is a partial order on the set
of Archimedean and Laves lattices. In this paper, we determine this subgraph
partial order completely, showing all cases in which lattices are subgraphs of
others, and showing which pairs of lattices are incomparable. While at first
glance this task may seem trivial, creativity is required to find some unusual
inclusions, and subtleties and intricate reasoning (although with elementary
methods) are required to prove incomparability in many cases.

This paper is organized as follows: Section 2 provides an introduction to
our motivating applications in the theories of classical percolation, first-passage
percolation, and self-avoiding walks. A summary of the results are presented in
Section 3, in a Hasse diagram showing the subgraph partial ordering and in a
Table which also indicates the method of proof. All subgraph inclusion results
are demonstrated in Figures in Section 4. In Section 5, several techniques for
checking for non-inclusion are described. Non-inclusion proofs that are special
cases, not handled by the general techniques, are provided in Section 6.

2 Motivating Applications

This study is motivated by applications to models from probability, combi-
natorics, and mathematical physics – bond and site percolation, first-passage
percolation, and self-avoiding walks. We briefly describe each of these models in
the following subsections, the comment on similarities relevant to the subgraph
order problem.

2.1 Bond and Site Percolation Models

The two classical percolation models were introduced as a models for the spread
of fluid through a random medium. The medium is represented by an infinite
connected locally finite graph. In the bond percolation model, each edge of
the graph is open to the flow of fluid with probability p, 0 ≤ p ≤ 1. In the site
percolation model, each vertex is open with probability p, and fluid is permitted
to flow through the subgraph induced by the set of open vertices. The key
concept is the critical probability, or percolation threshold, denoted pc, such that
for p < pc there are almost surely no infinite connected components of open
edges or vertices, and for p > pc there exists an infinite connected component
with probability one. Considerable scientific interest focuses on percolation as a
simple mathematical model for a phase transition, which is represented by the
critical probability. See [21, 23] for descriptions of applications of percolation
in engineering and physics. See Grimmett [6] for the most complete discussion
of the mathematical theory.

2

PSfrag replacements

(3, 122) (4, 82) (4, 6, 12) (3, 6, 3, 6)

D(3, 122) D(4, 82) D(4, 6, 12) D(3, 6, 3, 6)

(3, 4, 6, 4) (34, 6) (33, 42) (32, 4, 3, 4)

D(3, 4, 6, 4) D(34, 6) D(33, 42) D(32, 4, 3, 4)

(44) (36) (63)

(36) ⊆ D(3, 122)
D(33, 42) ⊆ (36)
(3, 6, 3, 6) ⊆ (36)

(63) ⊆ (44)
(3, 4, 6, 4) ⊆ (34, 6)

(34, 6) ⊆ (36)
(32, 4, 3, 4) ⊆ (36)

(4, 82) ⊆ (44)
(33, 42) ⊆ (36)
(33, 42) ⊆ (44)

(44) ⊆ (32, 4, 3, 4)
(44) ⊆ D(4, 82)
(4, 6, 12) ⊆ (44)
D(34, 6) ⊆ (36)

(3, 122) ⊆ D(4, 6, 12)
D(32, 4, 3, 4) ⊆ D(4, 82)
(4, 6, 12) ⊆ D(3, 6, 3, 6)

(3, 122) ⊆ (32, 4, 3, 4)
(4, 82) ⊆ D(3, 6, 3, 6)

(63) ⊆ D(3, 4, 6, 4)
(3, 4, 6, 4) ⊆ D(4, 82)
(3, 6, 3, 6) ⊆ D(4, 82)
D(33, 42) ⊆ D(4, 82)

(63) ⊆ (34, 6)
D(3, 6, 3, 6) ⊆ D(4, 6, 12)

(3, 122) ⊆ (3, 6, 3, 6)
D(3, 6, 3, 6) ⊆ (36)

(4, 82) ⊆ (34, 6)
D(3, 4, 6, 4) ⊆ D(4, 6, 12)
D(32, 4, 3, 4) ⊆ (33, 42)

(3, 4, 6, 4) ⊆ (33, 42)
(63) ⊆ D(3, 6, 3, 6)

D(3, 4, 6, 4) ⊆ D(3, 122)
(3, 122 ⊆ (3, 4, 6, 4)

(4, 6, 12) ⊆ (3, 4, 6, 4)

Figure 1: The 11 Archimedean lattices and their dual Laves lattices.

3

2.2 First-passage Percolation

In first-passage percolation, introduced by Hammersley and Welsh [9], each edge
of a graph is open, and associated with a random variable representing the time
for the fluid to pass through the edge. Often the graph is taken to be the square
lattice Z

2 or some hypercubic lattice Z
d, where it is natural to measure the

speed of the spread of the fluid by a first-passage time, e.g., the time needed
for the fluid to pass from the origin to a point (n, 0) or to a line x = n. The
time constant is defined as the limit of the first-passage time, normalized by the
graph distance (number of edges in the shortest path), as the graph distance
tends to infinity. The time constant may be interpreted as the reciprocal of the
velocity of spread.

2.3 Self-avoiding Walks

A self-avoiding walk is a path of adjacent vertices such that no vertex occurs
more than once. For a regular graph, the connective constant is the limit of
the n-th root of the number of self-avoiding walks with n edges (starting at
a fixed vertex). Self-avoiding walks have been used as a lattice model for the
excluded volume problem in the theory of polymers. The first mathematically
rigorous analysis of the subject was by Hammersley and Morton [8] in 1954.
Upper bounds for the connective constant were provided by Alm [2]. Hughes
[10, Ch. 7] gives a nice review of the field, while a more substantial treatment
is given by Madras and Slade [18].

2.4 Similarities

In the study of percolation models, first-passage percolation, and self-avoiding
walks, considerable interest focuses on quantities which depend on the struc-
ture of an underlying graph in an extremely complicated fashion, so much so
that there are few (if any) exact values known, and only very crude bounds in
the many unsolved cases. Rigorous lower and upper bounds can be found for
these critical values for several lattice graphs, usually by methods that require
extensive computer calculations.

In classical percolation theory, the exact bond model critical probabilities or
site model critical probabilities are known for only a few graphs [14, 15, 25, 26],
thus making it important to determine rigorous bounds for unsolved graphs [4,
27, 28, 29, 30, 31] . Many simulation studies have estimated critical probabilities
of various graphs, in particular the Archimedean lattices [24].

In first-passage percolation, other than its counterpart for infinite trees, the
exact value of the time constant is not known for any non-trivial distribution on
any non-trivial lattice. Determining rigorous bounds has been very challenging,
with some progress by Janson [11] and Alm and Parviainen [3].

The connective constant is not known for any non-trivial lattice, although

Nienhuis [19] has, by non-rigorous methods, derived the value
√

2 +
√

2 for the
hexagonal lattice. (Jensen and Guttmann [12] uses this to conjecture that the

4

connective constant for the (3, 122) lattice is 1.71104.) See Alm and Parviainen
[3], Conway and Guttmann [5], and Pönitz and Tittmann [20] for bounds on
the connective constant.

However, for critical probabilities, time constants, and connective constants,
the values for two graphs are ordered if one is a subgraph of the other. If H is a
subgraph of G, the critical probabilities and the time constant are higher for H
than for G, and the connective constant is lower for H than for G. Thus, knowl-
edge of the subgraph order will allow the use of exact values or bounds for some
graphs to provide bounds for other graphs. Only a few subgraph relationships,
involving the triangular, hexagonal, and square lattices, have been observed and
used in these theories in the past. To our knowledge, there has been no system-
atic study to determine the complete set of of subgraph relationships for any
class of lattices.

The Archimedean and Laves lattices include the most common examples
of 2-dimensional graphs studied in the three applications above. Thus, they
are an appealing starting point when trying to obtain a deeper understanding
of dependence of the critical parameters on the properties of the underlying
graph.

3 Results

The results of this investigation can be best reported in the form of the Hasse
diagram of the subgraph ordering, shown in Figure 4.

The Hasse diagram is accompanied by Table 1, which also provides a sum-
mary of the proof. Each entry indicates whether the lattice named at the left
margin includes the lattice named at the top margin as a subgraph. A “+” or
“T” indicates that inclusion holds, while any other symbol indicates that it does
not. Entries of “T” indicate that the inclusion holds by transitivity, in which
case the inclusions that imply it may be found by consulting the Hasse diagram
or the “+” entries in Table 1. Other symbols indicate the lemma or method in
Section 5 which is used to prove that inclusion does not hold.

Each subgraph inclusion result implies an inequality for the quantity of inter-
est in each of the motivating applications. For critical probabilities in classical
percolation theory, the inclusion results established in this paper all provide
strict inequalities for critical probabilities, by a result of Aizenman and Grim-
mett [1]. For each of these motivating applications, the results of this paper may
be combined with results from other techniques to make progress in determining
the ordering of the quantities of interest.

4 Inclusion Proofs

Figures 2 – 4 demonstrate the 35 subgraph inclusion relationships that are
denoted by + entries in Table 1. These are the covering relationships in the
Hasse diagram for the subgraph ordering. Since the graphs are periodic, in each

5

�

�
	D(3, 122)

�

�
	(36)

�

�
	D(4, 6, 12)

�

�
	D(3, 6, 3, 6)

�

�
	D(34, 6)

�

�
	D(33, 42)

�

�
	D(4, 82)

�

�
	(3, 6, 3, 6)

�

�
	(34, 6)

�

�
	(32, 4, 3, 4)

�

�
	D(3, 4, 6, 4)

�

�
	(33, 42)

�

�
	(44)

�

�
	D(33, 4, 3, 4)

�

�
	(3, 4, 6, 4)

�

�
	(3, 122)

�

�
	(63)

�

�
	(4, 82)

�

�
	(4, 6, 12)

.......

.......

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

......

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

.........

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

...........

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
....

................
................

................
................

.................
.................

................
.................

................
.................

.................
................

.................
...

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
........
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
........
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
........
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
....

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..

........................
........................

.........................
........................

.........................
........................

.........................
........................

.........................
............

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.....

...
..

............
.............

.............
............

.............
.............

............
.............

.............
............

.............
.............

............
.............

.............
............

.............
.............

............
.............

.............
............

.............
.............

............
.............

.............
............

.............
.............

............
.............

.............
............

.............
.............

............
.............

.............
............

.............
.............

............
........

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...
..

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.

.......

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
....

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.....

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.....

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.

...........
............

...........
...........

............
...........

............
...........

............
...........

............
...........

...........
...

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
..

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
....

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
......

...............
..............

...............
...............

...............
...............

...............
...............

...............
.....

...................
..................

...................
...................

..................
..................

...................
..................

...................
...................

..................
..................

...................
..................

...................
...................

..................
....

........................
.......................

........................
.......................

.......................
.............

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

....

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
....

............
...........

...........
............

...........
...........

............
...........

...........
...........

............
...........

...........
............

...........
...........

............
...........

...........
...........

............
...........

...........
............

...........
...........

............
...........

...........
............

...........
...........

...........
............

...........
...........

............
...........

...........
............

...........
...........

............
...........

...........
...........

............
...........

..

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

......

Figure 2: The Hasse diagram of the subgraph order of the Archimedean and
Laves lattices. Edges of the diagram indicate covering relationships, in which the
lattice higher in the diagram is a subgraph of the lattice lower in the diagram.
Additional subgraph relationships, valid by transitivity, are implied, but not
shown. 6

(3
,
1
2
2
)

(4
,
6
,
1
2
)

(4
,
8
2
)

(6
3
)

D
(3

2
,
4
,
3
,
4
)

D
(3

3
,
4
2
)

D
(3

4
,
6
)

(3
,
6
,
3
,
6
)

(3
,
4
,
6
,
4
)

(4
4
)

D
(3
,
4
,
6
,
4
)

D
(3
,
6
,
3
,
6
)

(3
4
,
6
)

(3
3
,
4
2
)

(3
2
,
4
,
3
,
4
)

(3
6
)

D
(4
,
8
2
)

D
(4
,
6
,
1
2
)

D
(3
,
1
2
2
)

(3, 122) K K K K K K K K K K K K K K K K K K

(4, 6, 12) K K K K K K K K K K K K K K K K K K

(4, 82) K K K K K K K K K K K K K K K K K K

(63) K K K K K K K K K K K K K K K K K K

D(32, 4, 3, 4) φ φ φ C L L φ φ φ φ φ φ φ φ ∆ ∆ φ ∆

D(33, 42) φ φ φ C L L φ φ φ φ φ φ φ φ ∆ ∆ φ ∆

D(34, 6) φ φ φ C L L φ φ φ φ φ φ φ φ φ φ φ ∆

(3, 6, 3, 6) + C C C Φ Φ Φ C Φ Φ Φ ∆ Φ Φ ∆ ∆ Φ ∆

(3, 4, 6, 4) + + S S Φ Φ Φ I Φ Φ Φ ∆ ∆ Φ ∆ ∆ Φ ∆

(44) φ + + + χ χ χ χ χ L L χ χ χ χ χ χ ∆

D(3, 4, 6, 4) φ S S + χ χ χ χ χ L L χ χ χ χ χ χ ∆

D(3, 6, 3, 6) φ + + + χ χ χ χ χ L L χ χ χ χ χ χ ∆

(34, 6) T T + + Φ Φ Φ S + Φ Φ Φ Φ Φ ∆ Φ Φ ∆

(33, 42) T T T T + S ∆ I + + ∆ ∆ I I ∆ Φ Φ ∆

(32, 4, 3, 4) + T T T S S ∆ S S + ∆ ∆ A A ∆ Φ Φ ∆

(36) T T T T T + + + T T S + + + + L L ∆

D(4, 82) T T T T + + S + + + S S S V V L L ∆

D(4, 6, 12) + T T T S S S V V V + + V V V L L S

D(3, 122) T T T T T T T T T T + T T T T + S S

+ inclusion

T transitivity

K 3-connectivity

φ minimum polygon size

Φ maximum polygon size

C combining polygons

∆ maximum degree

V variation in degree

L Laves lattice

I incident polygons

A adjacent polygons

χ chromatic number

S special case

Table 1: All inclusions and non-inclusions among the Archimedean and Laves
lattices. Each entry indicates if the lattice listed at the top is included in the
lattice listed at the left, and if not, indicates the reasoning that proves non-
inclusion. The key at the right provides an interpretation for each symbol used
in the table. A “+” indicates an inclusion which is demonstrated in the figures
in Section 4. A “T” indicates an inclusion which is valid by transitivity. An “S”
indicates that non-inclusion is proved in a special argument given in Section 6.
All other symbols refer to a lemma or method, named by the symbol, in Section
5 for proving non-inclusion.

7

case sufficiently large induced subgraphs of the graphs are shown to demonstrate
that the inclusion relationship can be extended throughout the infinite graphs.

Transitivity implies the remaining 37 inclusions, denoted by T entries in
Table 1. In each case, a sequence of covering relationships may be found in the
Hasse diagram to demonstrate the inclusion.

8

PSfrag replacements

(3, 122)
(4, 82)

(4, 6, 12)
(3, 6, 3, 6)
D(3, 122)
D(4, 82)

D(4, 6, 12)
D(3, 6, 3, 6)

(3, 4, 6, 4)
(34, 6)

(33, 42)
(32, 4, 3, 4)
D(3, 4, 6, 4)

D(34, 6)
D(33, 42)

D(32, 4, 3, 4)
(44)
(36)
(63)

(36) ⊆ D(3, 122)
D(33, 42) ⊆ (36)
(3, 6, 3, 6) ⊆ (36)

(63) ⊆ (44)
(3, 4, 6, 4) ⊆ (34, 6)

(34, 6) ⊆ (36)
(32, 4, 3, 4) ⊆ (36)

(4, 82) ⊆ (44)
(33, 42) ⊆ (36)
(33, 42) ⊆ (44)

(44) ⊆ (32, 4, 3, 4)
(44) ⊆ D(4, 82)
(4, 6, 12) ⊆ (44)
D(34, 6) ⊆ (36)

(3, 122) ⊆ D(4, 6, 12)
D(32, 4, 3, 4) ⊆ D(4, 82)
(4, 6, 12) ⊆ D(3, 6, 3, 6)

(3, 122) ⊆ (32, 4, 3, 4)
(4, 82) ⊆ D(3, 6, 3, 6)

(63) ⊆ D(3, 4, 6, 4) (3, 4, 6, 4) ⊆ D(4, 82) (3, 6, 3, 6) ⊆ D(4, 82) D(33, 42) ⊆ D(4, 82)

(63) ⊆ (34, 6) D(3, 6, 3, 6) ⊆ D(4, 6, 12) (3, 122) ⊆ (3, 6, 3, 6) D(3, 6, 3, 6) ⊆ (36)

(4, 82) ⊆ (34, 6) D(3, 4, 6, 4) ⊆ D(4, 6, 12) D(32, 4, 3, 4) ⊆ (33, 42) (3, 4, 6, 4) ⊆ (33, 42)

(63) ⊆ D(3, 6, 3, 6) D(3, 4, 6, 4) ⊆ D(3, 122) (3, 122 ⊆ (3, 4, 6, 4) (4, 6, 12) ⊆ (3, 4, 6, 4)

Figure 3: 16 Inclusions. Each drawing shows that one Archimedean or Laves
lattice is a subgraph of another. The edges of the subgraph are indicated by
thicker lines.

9

PSfrag replacements

(3, 122)
(4, 82)

(4, 6, 12)
(3, 6, 3, 6)
D(3, 122)
D(4, 82)

D(4, 6, 12)
D(3, 6, 3, 6)

(3, 4, 6, 4)
(34, 6)

(33, 42)
(32, 4, 3, 4)
D(3, 4, 6, 4)

D(34, 6)
D(33, 42)

D(32, 4, 3, 4)
(44)
(36)
(63)

(36) ⊆ D(3, 122) D(33, 42) ⊆ (36) (3, 6, 3, 6) ⊆ (36) (63) ⊆ (44)

(3, 4, 6, 4) ⊆ (34, 6) (34, 6) ⊆ (36) (32, 4, 3, 4) ⊆ (36) (4, 82) ⊆ (44)

(33, 42) ⊆ (36) (33, 42) ⊆ (44) (44) ⊆ (32, 4, 3, 4) (44) ⊆ D(4, 82)

(4, 6, 12) ⊆ (44)

D(34, 6) ⊆ (36)
(3, 122) ⊆ D(4, 6, 12)

D(32, 4, 3, 4) ⊆ D(4, 82)
(4, 6, 12) ⊆ D(3, 6, 3, 6)

(3, 122) ⊆ (32, 4, 3, 4)
(4, 82) ⊆ D(3, 6, 3, 6)

(63) ⊆ D(3, 4, 6, 4)
(3, 4, 6, 4) ⊆ D(4, 82)
(3, 6, 3, 6) ⊆ D(4, 82)
D(33, 42) ⊆ D(4, 82)

(63) ⊆ (34, 6)
D(3, 6, 3, 6) ⊆ D(4, 6, 12)

(3, 122) ⊆ (3, 6, 3, 6)
D(3, 6, 3, 6) ⊆ (36)

(4, 82) ⊆ (34, 6)
D(3, 4, 6, 4) ⊆ D(4, 6, 12)
D(32, 4, 3, 4) ⊆ (33, 42)

(3, 4, 6, 4) ⊆ (33, 42)
(63) ⊆ D(3, 6, 3, 6)

D(3, 4, 6, 4) ⊆ D(3, 122)
(3, 122 ⊆ (3, 4, 6, 4)

(4, 6, 12) ⊆ (3, 4, 6, 4)

Figure 4: 13 Inclusions. Each drawing shows that one Archimedean or Laves
lattice is a subgraph of another. The edges of the subgraph are indicated by
thicker lines.

10

PSfrag replacements

(3, 122)
(4, 82)

(4, 6, 12)
(3, 6, 3, 6)
D(3, 122)
D(4, 82)

D(4, 6, 12)
D(3, 6, 3, 6)

(3, 4, 6, 4)
(34, 6)

(33, 42)
(32, 4, 3, 4)
D(3, 4, 6, 4)

D(34, 6)
D(33, 42)

D(32, 4, 3, 4)
(44)
(36)
(63)

(36) ⊆ D(3, 122)
D(33, 42) ⊆ (36)
(3, 6, 3, 6) ⊆ (36)

(63) ⊆ (44)
(3, 4, 6, 4) ⊆ (34, 6)

(34, 6) ⊆ (36)
(32, 4, 3, 4) ⊆ (36)

(4, 82) ⊆ (44)
(33, 42) ⊆ (36)
(33, 42) ⊆ (44)

(44) ⊆ (32, 4, 3, 4)
(44) ⊆ D(4, 82)
(4, 6, 12) ⊆ (44)

D(34, 6) ⊆ (36) (3, 122) ⊆ D(4, 6, 12)

D(32, 4, 3, 4) ⊆ D(4, 82) (4, 6, 12) ⊆ D(3, 6, 3, 6)

(3, 122) ⊆ (32, 4, 3, 4) (4, 82) ⊆ D(3, 6, 3, 6)

(63) ⊆ D(3, 4, 6, 4)
(3, 4, 6, 4) ⊆ D(4, 82)
(3, 6, 3, 6) ⊆ D(4, 82)
D(33, 42) ⊆ D(4, 82)

(63) ⊆ (34, 6)
D(3, 6, 3, 6) ⊆ D(4, 6, 12)

(3, 122) ⊆ (3, 6, 3, 6)
D(3, 6, 3, 6) ⊆ (36)

(4, 82) ⊆ (34, 6)
D(3, 4, 6, 4) ⊆ D(4, 6, 12)
D(32, 4, 3, 4) ⊆ (33, 42)

(3, 4, 6, 4) ⊆ (33, 42)
(63) ⊆ D(3, 6, 3, 6)

D(3, 4, 6, 4) ⊆ D(3, 122)
(3, 122 ⊆ (3, 4, 6, 4)

(4, 6, 12) ⊆ (3, 4, 6, 4)

Figure 5: 6 Inclusions. Each drawing shows that one Archimedean or Laves
lattice is a subgraph of another. The edges of the subgraph are indicated by
thicker lines.

5 Non-inclusion Proofs

This section establishes several conditions under which one lattice cannot be a
subgraph of another. While these allow us to prove the majority of the non-
inclusion results for the Archimedean and Laves lattices, there are still a number
of special cases which require individualized reasoning, which are discussed in
Section 6.

Let A denote the set of Archimedean lattices and L denote the set of Laves
lattices. Note that A ∩ L = {(44), (36), (63)}.

We use the symbol ⊆ to denote the inclusion relationship, letting G ⊆ H
denote that G is isomorphic to a subgraph of H . In many cases we will write
as if H is a subgraph of G, rather than a separate graph on a different set
of vertices. To create subgraphs of a given graph, we will delete vertices and
edges. When we refer to deleting a vertex, we mean that the vertex and all
edges incident to it are deleted from the graph.

For any graph G, let V (G) and E(G) denote the sets of vertices and edges of
G, respectively. Let dG(v) denote the degree of vertex v in graph G. A vertex

11

with degree n will be called an n-vertex.
For a graph G, denote the maximum degree by ∆(G) = maxv∈G dG(v) and

the minimum degree by δ(G) = minv∈G dG(v).
Since G ∈ A ∪ L is a 3-connected planar graph, it has a unique dual graph

G∗ by Whitney’s 2-Isomorphism Theorem [32]. Consequently, any plane repre-
sentation of G determines a set of faces of G, denoted F (G), and each vertex
v ∈ V (G∗) corresponds to a unique face f ∈ F (G).

We will refer to a face as a polygon, to the number of sides of a polygon as
the size of the polygon, and to a polygon of size k as a k-gon. For a graph G,
we denote the maximum polygon size by Φ(G) and the minimum polygon size
by φ(G). Similarly, we will refer to cycle of length k as a k-cycle. The term
polygon is only used for cycles with empty interior.

Similarly to the notation for Archimedean lattices, we will say a vertex is of
type (a1, a2, . . .) if successive faces around the vertex are of size a1, a2, etc. A
polygon is said to be adjacent to each of its vertices. An edge of a polygon is
said to be adjacent to the polygon.

5.1 Degree

Lemma ∆: If ∆(H) > ∆(G), then H 6⊆ G.

Proof: If v ∈ H ⊆ G, then dH(v) ≤ dG(v). Thus, H ⊆ G implies that
∆(H) ≤ ∆(G).

This criterion is easy to check quickly, and is used in many cases to show
that an Archimedean lattice cannot contain a Laves lattice as a subgraph.

Approach V: For several pairs of lattices, there is a large disparity between the
maximum degrees, so that lowering the large degree in one lattice creates faces
of a larger size than exist in the other lattice. We give an individual argument
for each case in the following:

Examples: (44) 6⊆ D(4, 6, 12). To obtain (44) by deletions from D(4, 6, 12),
each 12-vertex in D(4, 6, 12) must either be deleted or have its degree lowered
to 4. Deleting the vertex creates an n-gon with n ≥ 12, which does not exist
in (44), so the degree must be lowered by deleting 8 incident edges. However,
since each edge-deletion increases an incident polygon by at least one size, only
4 edges can be deleted to create the 4 4-gons needed to create (44).

(3, 6, 3, 6) 6⊆ D(4, 6, 12). To create 2 3-gons and 2 6-gons around a 12-vertex
in D(4, 6, 12), at most 6 incident edges can be deleted. However, exactly 8 must
be deleted to reduce the degree to 4.

(34, 6) 6⊆ D(4, 6, 12). To create 4 3-gons and one 6-gon around a 12-vertex
in D(4, 6, 12), only 3 incident edges can be deleted, but exactly 7 must be to
reduce the degree to 5.

(3, 4, 6, 4) 6⊆ D(4, 6, 12). At a 12-vertex in D(4, 6, 12), at most 5, but exactly
8 incident edges must be deleted.

12

(33, 42) 6⊆ D(4, 6, 12) and (32, 4, 3, 4) 6⊆ D(4, 6, 12). At a 12-vertex inD(4, 6, 12),
at most 2, but exactly 7 incident edges must be deleted.

D(4, 82) 6⊆ D(4, 6, 12). D(4, 82) has 8-vertices surrounded by 3-gons. Dele-
tion of any edge from a 12-vertex in D(4, 6, 12) would create a larger polygon,
but 4 edges must be deleted to reduce the degree to 8.

(33, 42) 6⊆ D(4, 82) and (32, 4, 3, 4) 6⊆ D(4, 82). D(4, 82) has 8-vertices sur-
rounded by 3-gons. 3 incident edges must be deleted, but only 2 edges can be
without creating more or larger polygons than 3 3-gons and 2 4-gons.

5.2 Chromatic Number

A proper vertex coloring of G is a coloring of the vertices of G in which no
two adjacent vertices have the same color. The vertex-chromatic number of G,
denoted χ(G), is the minimum number of colors used in any proper coloring.

Lemma χ: If χ(H) > χ(G), then H 6⊆ G.

Proof: If C is a proper coloring of G, and H ⊂ G, then the restriction of C to
H is a proper coloring of H . Thus, H ⊂ G implies χ(H) ≤ χ(G).

Shrock and Tsai [22] give the vertex-chromatic numbers of all Archimedean
and Laves lattices. Among these, the only lattice with vertex-chromatic num-
ber 4 is D(3, 122). The lattices (44), (63), (4, 6, 12), (4, 82), D(3, 4, 6, 4), and
D(3, 6, 3, 6) have vertex-chromatic number 2, and the remaining lattices have
vertex-chromatic number 3. Letting Lk denote any lattice with vertex-chromatic
number k, we have the following non-inclusions:

D(3, 122) 6⊆ L3 6⊆ L2.

Remark: Similar reasoning is valid for the edge-chromatic number. However,
for all G ∈ A∪L, the edge-chromatic number is equal to the maximum degree,
so no additional information is gained from edge-chromatic number.

5.3 Edge-Connectivity

A disconnecting set of edges is a set F ⊆ E(G) such that the subgraph of G with
edge set E(G)−F has more than one component. A graph is k-edge connected
if every disconnecting set has at least k edges. The edge-connectivity of G,
denoted K(G), is the minimum size of a disconnecting set, or, equivalently, the
maximum k such that G is k-edge-connected.

Each G ∈ A ∪ L is 3-edge connected. In particular, each graph G ∈ A ∪ L
has minimum vertex degree greater than or equal to three. If a vertex or edge
is deleted, the remaining graph may have vertices of degree 2 or less. If so,
we may continue by repeatedly deleting all vertices of degree two or less (and
edges incident to these vertices) until the resulting graph has minimum degree
3 or larger. We call this process 3-deletion, and denote the graph obtained by
3-deletion of an edge e from G by (G− e)(3).

13

Lemma K: Let G,H ∈ A ∪ L. If (G− e)(3) = ∅ for every e ∈ G, then H 6⊆ G.

Proof: Suppose H ⊂ G is 3-edge connected. If an edge e ∈ G − H were
deleted, then H ⊂ (G− e)(3), since all vertices v ∈ H have dH(v) ≥ 3. Thus, if
(G− e)(3) = ∅ for every e ∈ G, then G 6⊇ H ∈ A ∪ L.

Since the hexagonal, (3, 122), (4, 82), (4, 6, 12) lattices are regular with degree
three, by Lemma K none can contain any of the other Archimedean or Laves
lattices.

5.4 Polygon Size

Polygon sizes in the Archimedean and Laves lattices satisfy a monotonicity
property: Let H be constructed from G ∈ A ∪ L by deleting a set of vertices
and edges. If FH denotes the face of H containing the face F in G, then the
size of FH is greater than or equal to the size of F . [Since the Archimedean
and Laves lattices are all periodic, one only needs to check a sufficiently large
bounded region to verify this property.] Note that deleting a set of edges which
includes an edge of a face need not strictly increase the size of the face: A
triangular face may be obtained by deleting edges in the (3, 122) lattice.

Lemma φ: Let G,H ∈ A ∪ L. If φ(H) < φ(G), then H 6⊆ G.

Proof: If H ⊆ G, then every face of G is entirely contained in some face of H .
Since G ∈ A ∪ L, deletion of vertices or edges does not decrease the polygon
size, and the face of H has a larger size. Taking the minimum over all faces of
G, φ(H) ≥ φ(G).

Lemma Φ: Let G,H ∈ A ∪ L. If Φ(H) < Φ(G), then H 6⊆ G.

Proof: If H ⊆ G, then every face of G is contained in a face of H . Since
G ∈ A∪L, deletion of vertices or edges does not decrease the polygon size, and
the face of H has an equal or larger size. Taking the maximum over all faces of
G, Φ(H) ≥ Φ(G).

We will say that two polygonal faces are incident if they share a common
vertex but have no common edge. Let I(G) denote the maximum number of
φ(G)-gons incident to any φ(G)-gon in G.

Lemma I: Let G,H ∈ A∪L, G 6= D(3, 122). If φ(H) = φ(G) and I(H) > I(G),
then H 6⊆ G.

Proof: Let F be a face of size φ(G) in G which has I(G) incident faces of size
φ(G). Deletion of vertices and edges cannot create any additional faces of size
φ(G). If H is obtained by deletion of vertices or edges of G, the face F may not
remain in H , or the face F may remain, in which case the number of faces of
size φ(H) = φ(G) is less than or equal to I(G). Taking the maximum over all

14

faces of size φ(H), noting that there may be more faces of size φ(G) in G than
in the subgraph H , we have I(H) ≤ I(G).

Remark: The reasoning above is not valid when G = (3, 122), since it contains
3-cycles which may become 3-gons in a subgraph. However, since I(G) = 18,
the hypothesis I(H) > I((3, 122)) is not satisfied for any H ∈ A ∪ L, so no
conclusion could be drawn anyway.

Examples: Each 3-gon in (33, 42) is incident to 2 others, but is incident to 3
in (3, 6, 3, 6), so

(3, 6, 3, 6) 6⊆ (33, 42).

Each 3-gon in (33, 42) is incident to 2 others, but is incident to 3 in (34, 6), so

(34, 6) 6⊆ (33, 42).

Each 3-gon in (3, 4, 6, 4) is incident to no others, but is incident to 3 in (3, 6, 3, 6),
so

(3, 6, 3, 6) 6⊆ (3, 4, 6, 4).

Each 3-gon in (33, 42) is incident to 2, but is incident to 4 in (32, 4, 3, 4), so

(32, 4, 3, 4) 6⊆ (33, 42).

We will say that two polygonal faces are adjacent if they share a common
edge. Let A(G) denote the maximum number of φ(G)-gons that are adjacent
to a φ(G)-gon in G.

Lemma A: Let G,H ∈ A ∪ L, G 6= D(3, 122). If φ(H) = φ(G) and A(H) >
A(G), then H 6⊆ G.

Proof: Let F be a face of size φ(G) in G which has A(G) adjacent faces of size
φ(G). Deletion of vertices and edges cannot create any additional faces of size
φ(G). If H is obtained by deletion of vertices or edges of G, the face F may not
remain in H , or the face F may remain, in which case the number of adjacent
faces of size φ(H) = φ(G) is less than or equal to A(G). Taking the maximum
over all faces of size φ(H), noting that there may be more faces of size φ(G) in
G than in the subgraph H , we have A(H) ≤ A(G).

Examples: Each 3-gon in (32, 4, 3, 4) is adjacent to one other, but is adjacent
to 2 in (33, 42), so

(33, 42) 6⊆ (32, 4, 3, 4).

Each 3-gon in (32, 4, 3, 4) is adjacent to one other, but is adjacent to 2 or more
in (34, 6), so

(34, 6) 6⊆ (32, 4, 3, 4).

Our next condition involves the possible sizes of unions of polygons.

15

Lemma C : Suppose H contains k-gons and G does not. If deleting edges from
any n-gons in G with n < k produces only n-gons with n > k, then H 6⊆ G.

Proof: Suppose H is a subgraph of G which contains a face F of size k. F is
not a face of G, so it must be a union of faces F1, F2, F3, . . . , Fl, where l ≥ 2.
However, by hypothesis, a polygon created by such a union has at least n > k
edges. Thus, no subgraph of G can have a face of size k.

Examples: The following examples illustrate the application of Lemma C:
Deleting edges of 3-gons in (3, 6, 3, 6) gives 7-gons or larger, not 4- or 6-gons, so

(4, 6, 12) 6⊆ (3, 6, 3, 6).

Deleting edges of 3-gons in (3, 6, 3, 6) gives 7-gons or larger, not 4-gons, so

(4, 82) 6⊆ (3, 6, 3, 6).

Deleting edges of 3-gons in (3, 6, 3, 6) gives 7-gons or larger, and not 6-gons, so

(63) 6⊆ (3, 6, 3, 6).

Deleting edges of 3-gons in (3, 6, 3, 6) gives 7-gons or larger, and not 4- or 6-gons,
so

(3, 4, 6, 4) 6⊆ (3, 6, 3, 6).

Deleting edges in (63) gives 10-gons or larger, not 5-gons, so

(63) 6⊆ D(32, 4, 3, 4),

(63) 6⊆ D(33, 42),

and
(63) 6⊆ D(34, 6).

Lemma L: Let G,H ∈ L, G,H 6= D(3, 122). If φ(G) = φ(H), then G 6⊆ H and
H 6⊆ G.

Proof: Since G and H are Laves lattices, all their faces are the same size, say k.
Deletion of vertices or edges produces only n-gons, for n > k. So neither lattice
can be obtained from the other by deletion. Thus, if they are not isomorphic,
G and H are incomparable. It is easily checked that all pairs of Laves lattices
with a common face size are non-isomorphic.

Remark: Note that D(3, 122) could not be included in the group of fully-
triangulated lattices in the previous paragraph, because vertices and edges can
be deleted to obtain different lattices which are still fully-triangulated. In fact,
D(3, 122) does contain (36) as a subgraph!

16

6 Non-Inclusion Proofs for Special Cases

In this section, we provide non-inclusion proofs for several cases which are not
covered by the methods in Section 5. These cases are indicated by an “S” in
Table 1.

The form of the typical reasoning for these proofs is as follows: First, we
identify a particular structure in the graph H , for instance a cycle with specified
degree sequence. (The degree sequence of a cycle or path is the degrees of the
vertices as the cycle or path is transversed.) We then show that this structure
does not exist in the graphG, nor can be created by deletions fromG. Therefore,
we conclude that H is not isomorphic to a subgraph of G.

6.1 D(4, 6, 12) 6⊆ D(3, 122)

In D(4, 6, 12), all 3-paths with degree sequence (6,4,6) are in the interior of
8-cycles. In D(3, 122), there are only 3-vertices and 12-vertices, so we must
delete edges from 12-vertices to obtain 4-vertices and 6-vertices. However, the
shortest cycle in D(3, 122) that surrounds any three 12-vertices has length 9, so
D(4, 6, 12) cannot be a subgraph of D(3, 122).

6.2 D(4, 82) 6⊆ D(3, 122)

InD(4, 82), each 4-vertex is adjacent to every vertex of a surrounding 4-cycle. In
D(3, 122), the only vertices in the interior of a 4-cycle are 3-vertices. Therefore,
D(4, 82) cannot be a subgraph of D(3, 122).

6.3 D(3, 4, 6, 4) 6⊆ (36)

In D(3, 4, 6, 4), there are 8-cycles which surround 3 vertices. The shortest cycle
in 36 which has 3 vertices in the interior has length 9, so D(3, 4, 6, 4) cannot be
included in (36).

6.4 (63) 6⊆ (3, 4, 6, 4)

We claim that we cannot create vertices of type 63 by deleting edges from
(3, 4, 6, 4). Edges of a 6-gon in (3, 4, 6, 4) cannot be deleted, since an n-gon of
larger size would be created. New 6-gons can only be created by deleting two
opposite edges of a 4-gon. A vertex of a new 6-gon can only be of type (62, 4),
(62, 5), (62, 7), or (62, k) where k > 7, but not of type 63. See Figure 6.

PSfrag replacements

(3, 122)
(4, 82)

(4, 6, 12)
(3, 6, 3, 6)
D(3, 122)
D(4, 82)

D(4, 6, 12)
D(3, 6, 3, 6)

(3, 4, 6, 4)
(34, 6)

(33, 42)
(32, 4, 3, 4)
D(3, 4, 6, 4)

D(34, 6)
D(33, 42)

D(32, 4, 3, 4)
(44)
(36)
(63)

(36) ⊆ D(3, 122)
D(33, 42) ⊆ (36)
(3, 6, 3, 6) ⊆ (36)

(63) ⊆ (44)
(3, 4, 6, 4) ⊆ (34, 6)

(34, 6) ⊆ (36)
(32, 4, 3, 4) ⊆ (36)

(4, 82) ⊆ (44)
(33, 42) ⊆ (36)
(33, 42) ⊆ (44)

(44) ⊆ (32, 4, 3, 4)
(44) ⊆ D(4, 82)
(4, 6, 12) ⊆ (44)
D(34, 6) ⊆ (36)

(3, 122) ⊆ D(4, 6, 12)
D(32, 4, 3, 4) ⊆ D(4, 82)
(4, 6, 12) ⊆ D(3, 6, 3, 6)

(3, 122) ⊆ (32, 4, 3, 4)
(4, 82) ⊆ D(3, 6, 3, 6)

(63) ⊆ D(3, 4, 6, 4)
(3, 4, 6, 4) ⊆ D(4, 82)
(3, 6, 3, 6) ⊆ D(4, 82)
D(33, 42) ⊆ D(4, 82)

(63) ⊆ (34, 6)
D(3, 6, 3, 6) ⊆ D(4, 6, 12)

(3, 122) ⊆ (3, 6, 3, 6)
D(3, 6, 3, 6) ⊆ (36)

(4, 82) ⊆ (34, 6)
D(3, 4, 6, 4) ⊆ D(4, 6, 12)
D(32, 4, 3, 4) ⊆ (33, 42)

(3, 4, 6, 4) ⊆ (33, 42)
(63) ⊆ D(3, 6, 3, 6)

D(3, 4, 6, 4) ⊆ D(3, 122)
(3, 122 ⊆ (3, 4, 6, 4)

(4, 6, 12) ⊆ (3, 4, 6, 4)

Figure 6: (63) 6⊆ (3, 4, 6, 4)

PSfrag replacements

(3, 122)
(4, 82)

(4, 6, 12)
(3, 6, 3, 6)
D(3, 122)
D(4, 82)

D(4, 6, 12)
D(3, 6, 3, 6)

(3, 4, 6, 4)
(34, 6)

(33, 42)
(32, 4, 3, 4)
D(3, 4, 6, 4)

D(34, 6)
D(33, 42)

D(32, 4, 3, 4)
(44)
(36)
(63)

(36) ⊆ D(3, 122)
D(33, 42) ⊆ (36)
(3, 6, 3, 6) ⊆ (36)

(63) ⊆ (44)
(3, 4, 6, 4) ⊆ (34, 6)

(34, 6) ⊆ (36)
(32, 4, 3, 4) ⊆ (36)

(4, 82) ⊆ (44)
(33, 42) ⊆ (36)
(33, 42) ⊆ (44)

(44) ⊆ (32, 4, 3, 4)
(44) ⊆ D(4, 82)
(4, 6, 12) ⊆ (44)
D(34, 6) ⊆ (36)

(3, 122) ⊆ D(4, 6, 12)
D(32, 4, 3, 4) ⊆ D(4, 82)
(4, 6, 12) ⊆ D(3, 6, 3, 6)

(3, 122) ⊆ (32, 4, 3, 4)
(4, 82) ⊆ D(3, 6, 3, 6)

(63) ⊆ D(3, 4, 6, 4)
(3, 4, 6, 4) ⊆ D(4, 82)
(3, 6, 3, 6) ⊆ D(4, 82)
D(33, 42) ⊆ D(4, 82)

(63) ⊆ (34, 6)
D(3, 6, 3, 6) ⊆ D(4, 6, 12)

(3, 122) ⊆ (3, 6, 3, 6)
D(3, 6, 3, 6) ⊆ (36)

(4, 82) ⊆ (34, 6)
D(3, 4, 6, 4) ⊆ D(4, 6, 12)
D(32, 4, 3, 4) ⊆ (33, 42)

(3, 4, 6, 4) ⊆ (33, 42)
(63) ⊆ D(3, 6, 3, 6)

D(3, 4, 6, 4) ⊆ D(3, 122)
(3, 122 ⊆ (3, 4, 6, 4)

(4, 6, 12) ⊆ (3, 4, 6, 4)

Figure 7: (4, 82) 6⊆ (3, 4, 6, 4)

17

6.5 (4, 82) 6⊆ (3, 4, 6, 4)

In (4, 82), every other edge of an 8-gon is adjacent to a 4-gon. New 4-gons
cannot be created in (3, 4, 6, 4) by deletion. There are only two ways to create
an 8-gon from (3, 4, 6, 4), either by deleting an edge in a 6-gon, or by combining
2 3-gons and 2 4-gons. See Figure 7. In neither case does the resulting 8-gon
have the property that every other edge is adjacent to a 4-gon.

6.6 (3, 6, 3, 6) 6⊆ (34, 6)

In (3, 6, 3, 6) each edge in a 6-gon is adjacent to a 3-gon. If any edge in (34, 6) is
deleted, either this property is violated for an existing 6-gon or a polygon with
more than 6 edges is created.

6.7 (3, 6, 3, 6) 6⊆ (32, 4, 3, 4)

In (3, 6, 3, 6), each edge in a 6-gon is adjacent to a 3-gon. To obtain a 6-gon in
(32, 4, 3, 4), a 4-gon must be enlarged by deletion of 2 edges, or by deletion of
one edge and combination with two 3-gons adjacent to each other. However, the
resulting 6-gons have at least one edge which is adjacent to a 4-gon or larger.

6.8 (3, 4, 6, 4) 6⊆ (32, 4, 3, 4)

In (3, 4, 6, 4), each edge in a 6-gon is adjacent to a 4-gon, and each 6-gon is
incident to 6 3-gons. To obtain a 6-gon in (32, 4, 3, 4), a 4-gon must be enlarged
by deletion of 2 edges, or by deletion of one edge and combination with two
3-gons adjacent to each other. If 2 edges are deleted, the resulting hexagon
can be incident to at most 4 3-gons. If the 4-gon is combined with two 3-gons
adjacent to each other, and each edge of the resulting 6-gon is adjacent to a
4-gon, then there are no incident 3-gons.

6.9 D(33, 42) 6⊆ (32, 4, 3, 4) and D(32, 4, 3, 4) 6⊆ (32, 4, 3, 4)

In D(33, 42) there are vertices of type 54 and all faces are 5-gons. A vertex
of type 54 can be obtained from (32, 4, 3, 4) by deleting edges in only one way,
shown in Figure 8. However, this configuration can not be extended to a graph
in which all faces are 5-gons, because the 3-gon which is adjacent to 2 5-gons
can be enlarged only to a 4-gon, a 6-gon, or a k-gon with k > 6.

The same reasoning is valid forD(32, 4, 3, 4) 6⊆ (32, 4, 3, 4), sinceD(32, 4, 3, 4)
also has vertices of type 54 and all its faces are 5-gons.

6.10 D(33, 42) 6⊆ (33, 42)

Two types of 5-gons may be created in (33, 42), by combining three 3-gons, or
by combining a 3-gon and a 4-gon. Both types must occur in any subgraph of
only 5-gons. Checking all possible arrangements of adjacent 5-gons verifies that

18

PSfrag replacements

(3, 122)
(4, 82)

(4, 6, 12)
(3, 6, 3, 6)
D(3, 122)
D(4, 82)

D(4, 6, 12)
D(3, 6, 3, 6)

(3, 4, 6, 4)
(34, 6)

(33, 42)
(32, 4, 3, 4)
D(3, 4, 6, 4)

D(34, 6)
D(33, 42)

D(32, 4, 3, 4)
(44)
(36)
(63)

(36) ⊆ D(3, 122)
D(33, 42) ⊆ (36)
(3, 6, 3, 6) ⊆ (36)

(63) ⊆ (44)
(3, 4, 6, 4) ⊆ (34, 6)

(34, 6) ⊆ (36)
(32, 4, 3, 4) ⊆ (36)

(4, 82) ⊆ (44)
(33, 42) ⊆ (36)
(33, 42) ⊆ (44)

(44) ⊆ (32, 4, 3, 4)
(44) ⊆ D(4, 82)
(4, 6, 12) ⊆ (44)
D(34, 6) ⊆ (36)

(3, 122) ⊆ D(4, 6, 12)
D(32, 4, 3, 4) ⊆ D(4, 82)
(4, 6, 12) ⊆ D(3, 6, 3, 6)

(3, 122) ⊆ (32, 4, 3, 4)
(4, 82) ⊆ D(3, 6, 3, 6)

(63) ⊆ D(3, 4, 6, 4)
(3, 4, 6, 4) ⊆ D(4, 82)
(3, 6, 3, 6) ⊆ D(4, 82)
D(33, 42) ⊆ D(4, 82)

(63) ⊆ (34, 6)
D(3, 6, 3, 6) ⊆ D(4, 6, 12)

(3, 122) ⊆ (3, 6, 3, 6)
D(3, 6, 3, 6) ⊆ (36)

(4, 82) ⊆ (34, 6)
D(3, 4, 6, 4) ⊆ D(4, 6, 12)
D(32, 4, 3, 4) ⊆ (33, 42)

(3, 4, 6, 4) ⊆ (33, 42)
(63) ⊆ D(3, 6, 3, 6)

D(3, 4, 6, 4) ⊆ D(3, 122)
(3, 122 ⊆ (3, 4, 6, 4)

(4, 6, 12) ⊆ (3, 4, 6, 4)

Figure 8: D(33, 42) 6⊆ (32, 4, 3, 4)

PSfrag replacements

(3, 122)
(4, 82)

(4, 6, 12)
(3, 6, 3, 6)
D(3, 122)
D(4, 82)

D(4, 6, 12)
D(3, 6, 3, 6)

(3, 4, 6, 4)
(34, 6)

(33, 42)
(32, 4, 3, 4)
D(3, 4, 6, 4)

D(34, 6)
D(33, 42)

D(32, 4, 3, 4)
(44)
(36)
(63)

(36) ⊆ D(3, 122)
D(33, 42) ⊆ (36)
(3, 6, 3, 6) ⊆ (36)

(63) ⊆ (44)
(3, 4, 6, 4) ⊆ (34, 6)

(34, 6) ⊆ (36)
(32, 4, 3, 4) ⊆ (36)

(4, 82) ⊆ (44)
(33, 42) ⊆ (36)
(33, 42) ⊆ (44)

(44) ⊆ (32, 4, 3, 4)
(44) ⊆ D(4, 82)
(4, 6, 12) ⊆ (44)
D(34, 6) ⊆ (36)

(3, 122) ⊆ D(4, 6, 12)
D(32, 4, 3, 4) ⊆ D(4, 82)
(4, 6, 12) ⊆ D(3, 6, 3, 6)

(3, 122) ⊆ (32, 4, 3, 4)
(4, 82) ⊆ D(3, 6, 3, 6)

(63) ⊆ D(3, 4, 6, 4)
(3, 4, 6, 4) ⊆ D(4, 82)
(3, 6, 3, 6) ⊆ D(4, 82)
D(33, 42) ⊆ D(4, 82)

(63) ⊆ (34, 6)
D(3, 6, 3, 6) ⊆ D(4, 6, 12)

(3, 122) ⊆ (3, 6, 3, 6)
D(3, 6, 3, 6) ⊆ (36)

(4, 82) ⊆ (34, 6)
D(3, 4, 6, 4) ⊆ D(4, 6, 12)
D(32, 4, 3, 4) ⊆ (33, 42)

(3, 4, 6, 4) ⊆ (33, 42)
(63) ⊆ D(3, 6, 3, 6)

D(3, 4, 6, 4) ⊆ D(3, 122)
(3, 122 ⊆ (3, 4, 6, 4)

(4, 6, 12) ⊆ (3, 4, 6, 4)

Figure 9: D(33, 42) 6⊆ (33, 42)

a 5-gon of the first type cannot have degree sequence (3, 3, 3, 4, 4), as 5-gons in
D(33, 42) have. One arrangement is shown in Figure 9.

6.11 (4, 6, 12) 6⊆ D(3, 4, 6, 4)

In (4, 6, 12), each 12-gon has 12 adjacent 4- and 6-gons and no incident polygons,
and is connected by one edge to another 12-gon. Of all possible types of 12-
cycles in D(3, 4, 6, 4), only one can have 12 adjacent 4- and 6-gons and no
incident polygons, but two disjoint 12-gons of this type cannot be connected by
one edge. See Figure 10.

PSfrag replacements

(3, 122)
(4, 82)

(4, 6, 12)
(3, 6, 3, 6)
D(3, 122)
D(4, 82)

D(4, 6, 12)
D(3, 6, 3, 6)

(3, 4, 6, 4)
(34, 6)

(33, 42)
(32, 4, 3, 4)
D(3, 4, 6, 4)

D(34, 6)
D(33, 42)

D(32, 4, 3, 4)
(44)
(36)
(63)

(36) ⊆ D(3, 122)
D(33, 42) ⊆ (36)
(3, 6, 3, 6) ⊆ (36)

(63) ⊆ (44)
(3, 4, 6, 4) ⊆ (34, 6)

(34, 6) ⊆ (36)
(32, 4, 3, 4) ⊆ (36)

(4, 82) ⊆ (44)
(33, 42) ⊆ (36)
(33, 42) ⊆ (44)

(44) ⊆ (32, 4, 3, 4)
(44) ⊆ D(4, 82)
(4, 6, 12) ⊆ (44)
D(34, 6) ⊆ (36)

(3, 122) ⊆ D(4, 6, 12)
D(32, 4, 3, 4) ⊆ D(4, 82)
(4, 6, 12) ⊆ D(3, 6, 3, 6)

(3, 122) ⊆ (32, 4, 3, 4)
(4, 82) ⊆ D(3, 6, 3, 6)

(63) ⊆ D(3, 4, 6, 4)
(3, 4, 6, 4) ⊆ D(4, 82)
(3, 6, 3, 6) ⊆ D(4, 82)
D(33, 42) ⊆ D(4, 82)

(63) ⊆ (34, 6)
D(3, 6, 3, 6) ⊆ D(4, 6, 12)

(3, 122) ⊆ (3, 6, 3, 6)
D(3, 6, 3, 6) ⊆ (36)

(4, 82) ⊆ (34, 6)
D(3, 4, 6, 4) ⊆ D(4, 6, 12)
D(32, 4, 3, 4) ⊆ (33, 42)

(3, 4, 6, 4) ⊆ (33, 42)
(63) ⊆ D(3, 6, 3, 6)

D(3, 4, 6, 4) ⊆ D(3, 122)
(3, 122 ⊆ (3, 4, 6, 4)

(4, 6, 12) ⊆ (3, 4, 6, 4)

Figure 10: (4, 6, 12) 6⊆ D(3, 4, 6, 4)

6.12 (4, 82) 6⊆ D(3, 4, 6, 4)

In (4, 82), each 8-gon has all vertices of degree 3 and edges alternatingly adjacent
to 4-gons and 8-gons. There are only two types of 8-cycles in D(3, 4, 6, 4) which
can satisfy this property. From an 8-gon of either type, constructing the adjacent
polygons to satisfy the property necessarily produces the structure shown in
Figure 11 (which also illustrates the two types of 8-gons possible). However, the
construction cannot be extended in a way that satisfies the property, in areas
marked with dotted arrows in the Figure.

6.13 D(34, 6) 6⊆ D(4, 82)

In D(34, 6), there exist 6-vertices, and each pair of adjacent 5-gons share only
one edge. A 6-vertex can be obtained from D(4, 82) only by deleting 2 edges
incident to an 8-vertex. There are 6 different types of pairs of edges to delete,
but only one type results in each pair of adjacent 5-gons sharing only one edge:

19

PSfrag replacements

(3, 122)
(4, 82)

(4, 6, 12)
(3, 6, 3, 6)
D(3, 122)
D(4, 82)

D(4, 6, 12)
D(3, 6, 3, 6)

(3, 4, 6, 4)
(34, 6)

(33, 42)
(32, 4, 3, 4)
D(3, 4, 6, 4)

D(34, 6)
D(33, 42)

D(32, 4, 3, 4)
(44)
(36)
(63)

(36) ⊆ D(3, 122)
D(33, 42) ⊆ (36)
(3, 6, 3, 6) ⊆ (36)

(63) ⊆ (44)
(3, 4, 6, 4) ⊆ (34, 6)

(34, 6) ⊆ (36)
(32, 4, 3, 4) ⊆ (36)

(4, 82) ⊆ (44)
(33, 42) ⊆ (36)
(33, 42) ⊆ (44)

(44) ⊆ (32, 4, 3, 4)
(44) ⊆ D(4, 82)
(4, 6, 12) ⊆ (44)
D(34, 6) ⊆ (36)

(3, 122) ⊆ D(4, 6, 12)
D(32, 4, 3, 4) ⊆ D(4, 82)
(4, 6, 12) ⊆ D(3, 6, 3, 6)

(3, 122) ⊆ (32, 4, 3, 4)
(4, 82) ⊆ D(3, 6, 3, 6)

(63) ⊆ D(3, 4, 6, 4)
(3, 4, 6, 4) ⊆ D(4, 82)
(3, 6, 3, 6) ⊆ D(4, 82)
D(33, 42) ⊆ D(4, 82)

(63) ⊆ (34, 6)
D(3, 6, 3, 6) ⊆ D(4, 6, 12)

(3, 122) ⊆ (3, 6, 3, 6)
D(3, 6, 3, 6) ⊆ (36)

(4, 82) ⊆ (34, 6)
D(3, 4, 6, 4) ⊆ D(4, 6, 12)
D(32, 4, 3, 4) ⊆ (33, 42)

(3, 4, 6, 4) ⊆ (33, 42)
(63) ⊆ D(3, 6, 3, 6)

D(3, 4, 6, 4) ⊆ D(3, 122)
(3, 122 ⊆ (3, 4, 6, 4)

(4, 6, 12) ⊆ (3, 4, 6, 4)

Figure 11: (4, 82) 6⊆ D(3, 4, 6, 4)

PSfrag replacements

(3, 122)
(4, 82)

(4, 6, 12)
(3, 6, 3, 6)
D(3, 122)
D(4, 82)

D(4, 6, 12)
D(3, 6, 3, 6)

(3, 4, 6, 4)
(34, 6)

(33, 42)
(32, 4, 3, 4)
D(3, 4, 6, 4)

D(34, 6)
D(33, 42)

D(32, 4, 3, 4)
(44)
(36)
(63)

(36) ⊆ D(3, 122)
D(33, 42) ⊆ (36)
(3, 6, 3, 6) ⊆ (36)

(63) ⊆ (44)
(3, 4, 6, 4) ⊆ (34, 6)

(34, 6) ⊆ (36)
(32, 4, 3, 4) ⊆ (36)

(4, 82) ⊆ (44)
(33, 42) ⊆ (36)
(33, 42) ⊆ (44)

(44) ⊆ (32, 4, 3, 4)
(44) ⊆ D(4, 82)
(4, 6, 12) ⊆ (44)
D(34, 6) ⊆ (36)

(3, 122) ⊆ D(4, 6, 12)
D(32, 4, 3, 4) ⊆ D(4, 82)
(4, 6, 12) ⊆ D(3, 6, 3, 6)

(3, 122) ⊆ (32, 4, 3, 4)
(4, 82) ⊆ D(3, 6, 3, 6)

(63) ⊆ D(3, 4, 6, 4)
(3, 4, 6, 4) ⊆ D(4, 82)
(3, 6, 3, 6) ⊆ D(4, 82)
D(33, 42) ⊆ D(4, 82)

(63) ⊆ (34, 6)
D(3, 6, 3, 6) ⊆ D(4, 6, 12)

(3, 122) ⊆ (3, 6, 3, 6)
D(3, 6, 3, 6) ⊆ (36)

(4, 82) ⊆ (34, 6)
D(3, 4, 6, 4) ⊆ D(4, 6, 12)
D(32, 4, 3, 4) ⊆ (33, 42)

(3, 4, 6, 4) ⊆ (33, 42)
(63) ⊆ D(3, 6, 3, 6)

D(3, 4, 6, 4) ⊆ D(3, 122)
(3, 122 ⊆ (3, 4, 6, 4)

(4, 6, 12) ⊆ (3, 4, 6, 4)

Figure 12: D(34, 6) 6⊆ D(4, 82)

delete opposite edges which are incident to 8-vertices. However, since the other
6 edges must be retained, 4-gons will remain in the graph. See Figure 12.

6.14 D(3, 4, 6, 4) 6⊆ D(4, 82)

In D(3, 4, 6, 4), there are 6-vertices which are adjacent to only 4-vertices. A
6-vertex can be obtained from D(4, 82) only by deleting 2 edges incident to an
8-vertex, while retaining the other 6 incident edges. Thus, at least two edges
from the 8-vertex to 4-vertices must be retained. Since 4 additional edges must
be retained, the resulting graph must contain 3-gons (See Figure 13), which do
not exist in D(3, 4, 6, 4).

PSfrag replacements

(3, 122)
(4, 82)

(4, 6, 12)
(3, 6, 3, 6)
D(3, 122)
D(4, 82)

D(4, 6, 12)
D(3, 6, 3, 6)

(3, 4, 6, 4)
(34, 6)

(33, 42)
(32, 4, 3, 4)
D(3, 4, 6, 4)

D(34, 6)
D(33, 42)

D(32, 4, 3, 4)
(44)
(36)
(63)

(36) ⊆ D(3, 122)
D(33, 42) ⊆ (36)
(3, 6, 3, 6) ⊆ (36)

(63) ⊆ (44)
(3, 4, 6, 4) ⊆ (34, 6)

(34, 6) ⊆ (36)
(32, 4, 3, 4) ⊆ (36)

(4, 82) ⊆ (44)
(33, 42) ⊆ (36)
(33, 42) ⊆ (44)

(44) ⊆ (32, 4, 3, 4)
(44) ⊆ D(4, 82)
(4, 6, 12) ⊆ (44)
D(34, 6) ⊆ (36)

(3, 122) ⊆ D(4, 6, 12)
D(32, 4, 3, 4) ⊆ D(4, 82)
(4, 6, 12) ⊆ D(3, 6, 3, 6)

(3, 122) ⊆ (32, 4, 3, 4)
(4, 82) ⊆ D(3, 6, 3, 6)

(63) ⊆ D(3, 4, 6, 4)
(3, 4, 6, 4) ⊆ D(4, 82)
(3, 6, 3, 6) ⊆ D(4, 82)
D(33, 42) ⊆ D(4, 82)

(63) ⊆ (34, 6)
D(3, 6, 3, 6) ⊆ D(4, 6, 12)

(3, 122) ⊆ (3, 6, 3, 6)
D(3, 6, 3, 6) ⊆ (36)

(4, 82) ⊆ (34, 6)
D(3, 4, 6, 4) ⊆ D(4, 6, 12)
D(32, 4, 3, 4) ⊆ (33, 42)

(3, 4, 6, 4) ⊆ (33, 42)
(63) ⊆ D(3, 6, 3, 6)

D(3, 4, 6, 4) ⊆ D(3, 122)
(3, 122 ⊆ (3, 4, 6, 4)

(4, 6, 12) ⊆ (3, 4, 6, 4)

Figure 13: D(3, 4, 6, 4) 6⊆ D(4, 82)

6.15 (34, 6) 6⊆ D(4, 82)

In (34, 6), all 3-gons contain only 5-vertices, but in D(4, 82), the 3-gons have
degree sequence (4, 8, 8). Since deletions cannot create new triangles, or raise
the degree of the 4-vertices in D(4, 82), (34, 6) cannot be a subgraph of D(4, 82).

6.16 D(3, 6, 3, 6) 6⊆ D(4, 82)

In D(3, 6, 3, 6), each 3-vertex is in the interior of a 6-cycle with degree sequence
(3,6,3,6,3,6). In D(4, 82), no 8-vertex is in the interior of any 6-cycle. Thus,

20

to obtain D(3, 6, 3, 6) from D(4, 82) by deletion, the 3-vertices in D(3, 6, 3, 6)
must be obtained from 4-vertices in D(4, 82), which is possible only if D(4, 82)
contains 6-cycles around 4-vertices with 4-vertices at every other vertex. There
are two different types of 6-cycles around 4-vertices in D(4, 82), but each type
includes four 8-vertices, so D(3, 6, 3, 6) is not a subgraph of D(4, 82).

6.17 D(3, 122) 6⊆ D(4, 6, 12)

D(3, 122) contains a 3-gon consisting of 12-vertices. D(4, 6, 12) does not contain
such a 3-gon, and since ∆((4, 6, 12)) = 12, none can be created by deletions.

6.18 D(34, 6) 6⊆ D(4, 6, 12)

In D(34, 6), around any 6-vertex there is an 18-cycle which separates it from all
other 6-vertices.

To obtain D(34, 6) from D(4, 6, 12) by deletions, first observe that the 6-
vertices in D(4, 6, 12) cannot become 6-vertices in D(34, 6): Since all vertices
adjacent to the original 6-vertex must become 3-vertices, 3-gons would be re-
tained. Thus, 6-vertices in D(34, 6) must be obtained by deleting edges incident
to 12-vertices in D(4, 6, 12).

Next, note that a 6-vertex in D(34, 6) is connected to 6 other 6-vertices by
paths of length 3. These 6-vertices in D(34, 6) must be obtained from a 12-
vertex and the nearest 6 12-vertices in D(4, 6, 12). However, as shown in Figure
14, the only cycle separating the 6-vertex from the other 6-vertices in D(34, 6)
is a 12-cycle, not an 18-cycle.

PSfrag replacements

(3, 122)
(4, 82)

(4, 6, 12)
(3, 6, 3, 6)
D(3, 122)
D(4, 82)

D(4, 6, 12)
D(3, 6, 3, 6)

(3, 4, 6, 4)
(34, 6)

(33, 42)
(32, 4, 3, 4)
D(3, 4, 6, 4)

D(34, 6)
D(33, 42)

D(32, 4, 3, 4)
(44)
(36)
(63)

(36) ⊆ D(3, 122)
D(33, 42) ⊆ (36)
(3, 6, 3, 6) ⊆ (36)

(63) ⊆ (44)
(3, 4, 6, 4) ⊆ (34, 6)

(34, 6) ⊆ (36)
(32, 4, 3, 4) ⊆ (36)

(4, 82) ⊆ (44)
(33, 42) ⊆ (36)
(33, 42) ⊆ (44)

(44) ⊆ (32, 4, 3, 4)
(44) ⊆ D(4, 82)
(4, 6, 12) ⊆ (44)
D(34, 6) ⊆ (36)

(3, 122) ⊆ D(4, 6, 12)
D(32, 4, 3, 4) ⊆ D(4, 82)
(4, 6, 12) ⊆ D(3, 6, 3, 6)

(3, 122) ⊆ (32, 4, 3, 4)
(4, 82) ⊆ D(3, 6, 3, 6)

(63) ⊆ D(3, 4, 6, 4)
(3, 4, 6, 4) ⊆ D(4, 82)
(3, 6, 3, 6) ⊆ D(4, 82)
D(33, 42) ⊆ D(4, 82)

(63) ⊆ (34, 6)
D(3, 6, 3, 6) ⊆ D(4, 6, 12)

(3, 122) ⊆ (3, 6, 3, 6)
D(3, 6, 3, 6) ⊆ (36)

(4, 82) ⊆ (34, 6)
D(3, 4, 6, 4) ⊆ D(4, 6, 12)
D(32, 4, 3, 4) ⊆ (33, 42)

(3, 4, 6, 4) ⊆ (33, 42)
(63) ⊆ D(3, 6, 3, 6)

D(3, 4, 6, 4) ⊆ D(3, 122)
(3, 122 ⊆ (3, 4, 6, 4)

(4, 6, 12) ⊆ (3, 4, 6, 4)

Figure 14: D(34, 6) 6⊆ D(4, 6, 12)

6.19 D(33, 42) 6⊆ D(4, 6, 12)

D(33, 42) contains doubly-infinite paths of 4-vertices. To obtain D(33, 42) from
D(4, 6, 12) by deletion, first note that 4-vertices in D(4, 6, 12) cannot become
4-vertices in D(33, 42), since this would create either triangles or 4-gons, as

21

shown in Figure 15. Thus, a doubly-infinite path of 4-vertices must correspond
to a path with degree sequence (. . . , 12, 6, 12, 6, . . .) in D(4, 6, 12). However, this
implies that the resulting graph contains 3-gons. See Figure 15 again, in which
the vertices marked with circles are required have degree 3 in D(33, 42).

PSfrag replacements

(3, 122)
(4, 82)

(4, 6, 12)
(3, 6, 3, 6)
D(3, 122)
D(4, 82)

D(4, 6, 12)
D(3, 6, 3, 6)

(3, 4, 6, 4)
(34, 6)

(33, 42)
(32, 4, 3, 4)
D(3, 4, 6, 4)

D(34, 6)
D(33, 42)

D(32, 4, 3, 4)
(44)
(36)
(63)

(36) ⊆ D(3, 122)
D(33, 42) ⊆ (36)
(3, 6, 3, 6) ⊆ (36)

(63) ⊆ (44)
(3, 4, 6, 4) ⊆ (34, 6)

(34, 6) ⊆ (36)
(32, 4, 3, 4) ⊆ (36)

(4, 82) ⊆ (44)
(33, 42) ⊆ (36)
(33, 42) ⊆ (44)

(44) ⊆ (32, 4, 3, 4)
(44) ⊆ D(4, 82)
(4, 6, 12) ⊆ (44)
D(34, 6) ⊆ (36)

(3, 122) ⊆ D(4, 6, 12)
D(32, 4, 3, 4) ⊆ D(4, 82)
(4, 6, 12) ⊆ D(3, 6, 3, 6)

(3, 122) ⊆ (32, 4, 3, 4)
(4, 82) ⊆ D(3, 6, 3, 6)

(63) ⊆ D(3, 4, 6, 4)
(3, 4, 6, 4) ⊆ D(4, 82)
(3, 6, 3, 6) ⊆ D(4, 82)
D(33, 42) ⊆ D(4, 82)

(63) ⊆ (34, 6)
D(3, 6, 3, 6) ⊆ D(4, 6, 12)

(3, 122) ⊆ (3, 6, 3, 6)
D(3, 6, 3, 6) ⊆ (36)

(4, 82) ⊆ (34, 6)
D(3, 4, 6, 4) ⊆ D(4, 6, 12)
D(32, 4, 3, 4) ⊆ (33, 42)

(3, 4, 6, 4) ⊆ (33, 42)
(63) ⊆ D(3, 6, 3, 6)

D(3, 4, 6, 4) ⊆ D(3, 122)
(3, 122 ⊆ (3, 4, 6, 4)

(4, 6, 12) ⊆ (3, 4, 6, 4)

Figure 15: D(33, 42) 6⊆ D(4, 6, 12)

6.20 D(32, 4, 3, 4) 6⊆ D(4, 6, 12)

In D(32, 4, 3, 4), each edge that connects two 3-vertices is in the interior of a
10-cycle. In D(4, 6, 12), there are 3 classes of edges; those connecting vertices of
degree 12 and 4, 12 and 6, and 6 and 4. Of these, only the last are in the interior
of a 10-cycle. Consider the possible configurations of edges adjacent to such an
edge, as shown in Figure 16, to see that all require the retention of 3-gons or
4-gons if the construction is extended.

PSfrag replacements

(3, 122)
(4, 82)

(4, 6, 12)
(3, 6, 3, 6)
D(3, 122)
D(4, 82)

D(4, 6, 12)
D(3, 6, 3, 6)

(3, 4, 6, 4)
(34, 6)

(33, 42)
(32, 4, 3, 4)
D(3, 4, 6, 4)

D(34, 6)
D(33, 42)

D(32, 4, 3, 4)
(44)
(36)
(63)

(36) ⊆ D(3, 122)
D(33, 42) ⊆ (36)
(3, 6, 3, 6) ⊆ (36)

(63) ⊆ (44)
(3, 4, 6, 4) ⊆ (34, 6)

(34, 6) ⊆ (36)
(32, 4, 3, 4) ⊆ (36)

(4, 82) ⊆ (44)
(33, 42) ⊆ (36)
(33, 42) ⊆ (44)

(44) ⊆ (32, 4, 3, 4)
(44) ⊆ D(4, 82)
(4, 6, 12) ⊆ (44)
D(34, 6) ⊆ (36)

(3, 122) ⊆ D(4, 6, 12)
D(32, 4, 3, 4) ⊆ D(4, 82)
(4, 6, 12) ⊆ D(3, 6, 3, 6)

(3, 122) ⊆ (32, 4, 3, 4)
(4, 82) ⊆ D(3, 6, 3, 6)

(63) ⊆ D(3, 4, 6, 4)
(3, 4, 6, 4) ⊆ D(4, 82)
(3, 6, 3, 6) ⊆ D(4, 82)
D(33, 42) ⊆ D(4, 82)

(63) ⊆ (34, 6)
D(3, 6, 3, 6) ⊆ D(4, 6, 12)

(3, 122) ⊆ (3, 6, 3, 6)
D(3, 6, 3, 6) ⊆ (36)

(4, 82) ⊆ (34, 6)
D(3, 4, 6, 4) ⊆ D(4, 6, 12)
D(32, 4, 3, 4) ⊆ (33, 42)

(3, 4, 6, 4) ⊆ (33, 42)
(63) ⊆ D(3, 6, 3, 6)

D(3, 4, 6, 4) ⊆ D(3, 122)
(3, 122 ⊆ (3, 4, 6, 4)

(4, 6, 12) ⊆ (3, 4, 6, 4)

Figure 16: D(32, 4, 3, 4) 6⊆ D(4, 6, 12)

References

[1] M. Aizenman and G. Grimmett (1991) Strict monotonicity for critical
points in percolation and ferromagnetic models. Journal of Statistical
Physics 63, 817-835.

[2] S. E. Alm (1993) Upper bounds for the connective constant of self-avoiding
walks. Combin. Probab. Comput. 2, 115-136.

[3] S. E. Alm and R. Parviainen (2001) Lower and upper bounds for the time
constant of first-passage percolation. Combin. Probab. Comput., to appear.

22

[4] J. van den Berg and A. Ermakov (1996) A new lower bound for the critical
probability of site percolation on the square lattice. Random Structures &
Algorithms 8, 199-214.

[5] A. R. Conway and A. J. Guttmann (1996) Square lattice self-avoiding walks
and corrections to scaling Physical Review Letters 77, 5284-5287.

[6] G. Grimmett (1999) Percolation, Springer.

[7] Branko Grünbaum and G. C. Shephard (1987) Patterns and Tilings, W.
H. Freeman.

[8] J. M. Hammersley and K. W. Morton (1954) Poor man’s Monte Carlo. J.
Roy. Stat. Soc. B 16, 23-38.

[9] J. M. Hammersley and D. J. A. Welsh (1965) First-passage percolation,
subadditive processes, stochastic networks, and generalized renewal theory.
Bernoulli-Bayes-Laplace Anniversary Volume, Springer-Verlag, 61-110.

[10] B. D. Hughes (1995) Random Walks and Random Environments, Volume
1: Random Walks, Oxford Science Publications.

[11] S. Janson (1981) An upper bound for the velocity of first-passage percola-
tion. Jour. Appl. Probab. 18, 256-262.

[12] I. Jensen and A. J. Guttmann (1998) Self-avoiding walks, neighbour-
avoiding walsk and trails on semiregular lattices. J. Phys. A: Math. Gen.
31, 8137-8145.

[13] J. Kepler (1619) Harmonices Mundi. Lincii.

[14] Harry Kesten (1980) The critical probability of bond percolation on the
square lattice equals 1/2. Commun. Math. Phys. 74, 41-59.

[15] Harry Kesten (1982) Percolation Theory for Mathematicians, Birkhäuser.

[16] Fritz Laves (1930) Die bau-zusammenhänge innerhalb der kristallstruk-
turen. Zeitschrift für Kristallographie, Kristallgeometrie, Kristallphysik,
Kristallchemie 78, I. 202-265, II. 275-324.

[17] F. Laves (1931) Ebenenteilung und koordinationszahl. Zeitschrift für
Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie 78, 208-
241.

[18] N. Madras and G. Slade (1993) The Self-Avoiding Walk, Birkhäuser.

[19] B. Nienhuis (1982) Exact critical point and critical exponents of o(n) mod-
els in two dimensions. Phys. Rev. Lett. 49, 1062-1065.

[20] A. Pönitz and P. Tittmann (2000) Improved upper bounds for self-avoiding
walks in Z

d. Electronic J. Comb. 7.

23

[21] Muhammad Sahimi (1994) Applications of Percolation Theory, Taylor &
Francis.

[22] R. Shrock and S. Tsai (1997) Lower bounds for the ground state entropy of
the Pott’s antiferromagnet on archimedean lattices and their duals. Phys.
Rev. E 56, 4111-4124.

[23] Dietrich Stauffer and Amnon Aharony (1991) Introduction to Percolation
Theory, Taylor & Francis.

[24] Paul N. Suding and Robert M. Ziff (1999) Site percolation thresholds for
Archimedean lattices. Physical Review E 60, 275-283.

[25] John C. Wierman (1981) Bond percolation on the honeycomb and trian-
gular lattices. Advances in Applied Probability 13, 298-313.

[26] John C. Wierman (1984) A bond percolation critical probability determi-
nation based on the star-triangle transformation. Journal of Physics A:
Mathematical and General 17, 1525-1530.

[27] John C. Wierman (1995) Substitution method critical probability bounds
for the square lattice site percolation model. Combinatorics, Probability,
and Computing 4, 181-188.

[28] John C. Wierman (2001) An improved upper bound for the hexagonal
lattice site percolation critical probability. Combinatorics, Probability and
Computing, accepted.

[29] John C. Wierman (2001) Upper and lower bounds for the Kagomé lat-
tice bond percolation critical probability. Combinatorics, Probability and
Computing, submitted.

[30] John C. Wierman (2001) Site percolation critical probability bounds for
the (4, 82) and (4, 6, 12) lattices, Congressus Numerantium 150, 117-128.

[31] John C. Wierman (2001) Bond percolation critical probability bounds for
three Archimedean lattices, Random Structures and Algorithms, accepted.

[32] Hassler Whitney (1933) 2-isomorphic graphs. American Journal of Mathe-
matics 55, 245-254.

24

