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Networks

A network (graph) is a set of nodes (or vertices) together with
edges (or links), where each edge connects two nodes.
Sometimes edges are directed from one node to the other, and
sometimes there is additional structure, such as various attributes
of nodes or edges (e.g. length, capacity, cost, . . . of an edge; size,
age, sex, . . . of a node).
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Some examples:



A macroscopic snapshot of Internet connectivity, with selected backbone ISPs (Internet Service Provider) colored separately. By K. C.

Claffy (www.caida.org)



Wiring the brain, University of Cambridge



(a) placebo, (b) psilocybin. Homological scaffolds of brain functional networks, Petri et al., J. Royal Society 2014



ReTweets on Twitter. twiterhero.blogspot.se



The protein interaction network of Treponema pallidum. Peter Uetz



Random networks

A random network is a network where nodes or edges or both are
created by some random procedure.
First example: (classical random networks studied by Erdős and
Rényi and many others from 1959 and until today – often called
Erdős–Rényi graphs)

Fix two (large) numbers n (number of nodes) and m (number of
edges). Number the nodes 1, . . . , n. Draw a pair of nodes at
random and join them by an edge. Repeat m times (without
replacement). Denoted G (n,m).

A variant: Fix n (number of nodes) and a probability p. For each
pair of nodes, make a random choice and connect the nodes by an
edge with probability p. (Toss the same biased coin for each pair
of nodes.) Denoted G (n, p).
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Rényi and many others from 1959 and until today – often called
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Why?

Some reasons why a statistician or applied mathematician might
want to study random networks:

I Networks are used to describe a lot of things; besides the
examples shown above, e.g.: interactions between people (in
different ways, for example collaborations beteen scientists),
animals (e.g. food webs), microbes, proteins, . . . Typically, the
network is not known exactly (and even if it is, it may be
different tomorrow). A suitable random network may be used
as a model.

I For example, networks are used to describe possible infection
routes for an infectious disease.
A suitable random model may be useful. We can study
mathematically how an infection spreads on the random
network. If we believe in our model, we can use it to predict
e.g. the spread of a real epidemic.
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Random models may be useful because:

I We may study a random network in order to compare its
properties with known data from a real network.
Perhaps in order to adapt the parameters.

I If a simple random model reproduces some interesting
properties of a network, that is a strong warning that we
should not give too much significance to those features and
waste time inventing complicated explanations for them.

I Conversely, if a random network model fails to reproduce some
properties, this shows that there are other reasons behind
these properties, and it is meaningful to study them further.
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Why?

Some reasons why a pure mathematician (like me) might want to
study random networks:

I Random networks provide many interesting problems in
probabilistic combinatorics.
There are many nice theorems with results that are easy to
state, and sometimes surprising. Some of them are easy to
prove, while others are quite difficult. Many different methods
from probability theory or combinatorics are used, and there is
plenty of opportunity to develop new methods.

I There are also applications inside mathematics, for example in
extremal combinatorics.
For many problems in graph theory, an extremal or almost
extremal case can be obtained by a suitable random graph;
this includes many cases where no explicit construction is
known.
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Example - Networks with high girth and chromatic number

The chromatic number of a network is the smallest number of
colours that can be used to colour the nodes such that adjacent
nodes always have different colours.
The girth of a network is the length of the smallest cycle.
It is easy to construct networks with high chromatic number if we
allow small girth (e.g. 3) – just put in many edges.

Theorem (Erdős, 1959)

For any numbers k and m, there exists a graph with girth > k and
chromatic number > m.

Proof.
Take a random graph G (n, p) with p = A/n, where A is a large
constant (depending on m). Then, as n→∞,
P(G (n, p) has chromatic number ≤ m)→ 0,
P(G (n, p) has girth > k)→ q > 0.



Properties of random networks

Many properties of random networks have been studied
mathematically.
Here are a few important examples.

Remark
Mathematicians are usually interested in asymptotic results as
n→∞.



Node degrees

The degree of a node is the number of links connecting the node
to other nodes.
The classical Erdős–Rényi random graphs have node degrees that
are random, but with a rather small random dispersion and very
small probability of having a degree that is much larger than the
average. In fact, the distribution is Binomial or Hypergeometric,
and asymptotically Poisson.

This is one reason for considering other random networks.
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Small subgraphs

Let H be a fixed graph, for example K3. Let Xn be the number of
copies of H as subgraphs of G (n, p).
Let H have vH vertices and eH edges, and let dH = eH/vH .

EXn ∼ cnvH peH

Thus EXn →∞ ⇐⇒ p � n−vH/eH = n−1/dH .

If dF ≤ dH for all subgraphs F ⊂ H (H is balanced), this is also
necessary and sufficient for P(Xn > 0)→ 1. (Xn > 0 w.h.p.)
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An unbalanced graph. dH = 7/5 = 1.4, dF = 6/4 = 1.5.



Theorem
(A typical threshold result.)
Let mH = max{dF : F ⊆ H}. Then
XH > 0 w.h.p. ⇐⇒ p � n−1/mH .
XH = 0 w.h.p. ⇐⇒ p � n−1/mH .

Theorem (Rucinski (1988))

If p � n−1/mH and n2(1− p)→∞, then XH is asymptotically
normal.

Theorem
If dH > dF for all F ⊂ H (H is strictly balanced), and

p ∼ cn−1/dH , then XH
d−→ Po(λ) for some λ > 0.
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Proof.

XH =
∑
α

Iα

where α are the copies of H in the complete graph Kn.
The indicators are weakly dependent.
Etc.



Components

A component in a network is a connected part of the network.
Example: w
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This network has 4 components.
The network is connected if there is only one component.



A typical case is that there is a giant component containing a large
part of all nodes, possibly together with many very small
components with only one or a few nodes each.

Another case, typical for very sparse networks, is that there are
many small components but no really big one.



This is often interesting in applications. For example, in
epidemiology, a component may represent the set of people that
will become ill, if one vertex is infected from the outside. Hence a
network with a large component is likely to give large epidemics,
but a network with only small components is safer.

On the other hand, if the network represents Internet after a
computer virus attack, then we want a large component.
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Theorem (Erdős and Rényi)

A classical Erdős–Rényi random graph G (n,m) with n nodes and
m edges has a giant component if m > n/2 but not otherwise.

More formally: If n→∞ and m ∼ cn for some constant c , and C1

is the largest component of the random network, then

|C1|
n

p−→

{
0 if c ≤ 1/2,

ρ(2c) > 0 if c > 1/2.

If c < 1/2, then |C1| = Op(log n).
The same holds for G (n, p) with p ∼ c ′/n, with c ′ = 2c so the
threshold is c ′ = 1, i.e. p = 1/n.



Theorem (Erdős and Rényi)

A classical Erdős–Rényi random graph G (n,m) with n nodes and
m edges is connected if m > n log n/2 but not otherwise.

More precisely: If n→∞ and m = n log n/2 + cn/2 + o(n) for
some constant c, then

P(connected)→ e−e−c
.

The number of isolated nodes is asymptotically Po(e−c).

The same holds for G (n, p) with p = (log n + c + o(1))/n.



Branching processes

One useful technique to study Erdős–Rényi networks and many
other random network models is to start at some node, find first its
neighbours, then their neighbours, and so on, until an entire
component has been explored.
For some models (for example the Erdős–Rényi networks), the
number of new nodes found each time are (asymptotically)
independent and with the same distribution, so this yields a
branching process, more precisely a Galton–Watson process, where
each individual gets a random number of children, and these
numbers are i.i.d.

Theorem
A Galton–Watson process has a positive probability of surviving for
ever if and only if the expected number of children is > 1.
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Branching processes

For an Erdős–Rényi network G (n, p) the expected number of
neigbours is np, so the branching process approximation yields the
condition c = np > 1.
It follows also that ρ(c) is the survival probability in a
Galton–Watson process with offspring distribution Po(c), which is
given by

1− ρ = e−cρ

In some other random network models, we obtain instead a
multi-type branching process where individuals may be of different
types, with different offspring distributions. (Typically an infinite
number of types are needed.)
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Susceptibility

The susceptibility or mean cluster size χ(G ) is the expected size of
the component containing a random node. Equivalently, it is n
times the probability that two random nodes lie in the same
component (and thus may be connected by a path in the network).
If the components are C1,C2, . . . , then

χ(G ) =

∑
i |Ci |2

n
.

Theorem
For G (n, p), as n→∞:

χ(G (n, p)) ∼p

{
1

1−np , 1− np � n−1/3

nρ(np)2, np − 1� n−1/3.
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Distances and diameter

Given that two nodes are in the same component, we may ask for
the distance between them, i.e., the shortest path between them in
the network. The maximum distance is the diameter. The average
distance between two random nodes is often at least as interesting.

In many networks (random and “real-world”), the diameter and
average distance are of the order log n, and thus quite small even
when the number n of nodes is large. This phenomenon is often
called Small Worlds.
It says, essentially, that the number of vertices within distance x
grows exponentially.
Example: The giant component of G (n, p) with p = c/n, c > 1.
Counter example: A lattice, and other geometric networks
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Other random networks

The classical Erdős–Rényi random networks have node degrees
that are random, but with a rather small random dispersion and
very small probability of having a degree that is much larger than
the average. (The distribution is Binomial or Hypergeometric, and
asymptotically Poisson, with an exponentially decreasing tail..)



Power laws

Many networks from “reality” seem to have node degrees that are
distributed according to a power law, i.e., there are constants γ
and C1 such that

number of nodes with degree k ≈ C1k−γ

or, which is roughly equivalent, with another constant C2,

number of nodes with degree at least k ≈ C2k−(γ−1).

(Since the networks are finite (although large), this can of course
hold only in some (large) range and not for all k.)
Networks with a power law are often called scale-free.



The degree of a random node has (asymptotically) finite mean
⇐⇒ γ > 2.

The degree of a random node has (asymptotically) finite variance
⇐⇒ γ > 3.



It has during the last decade been popular to study large networks
“in real life” and find such power laws for them, often with a value
of γ between 2 and 3.

As always when something becomes popular, it is easy to
overinterpret data, and see power laws also when the evidence
really is weak. (Seek and ye shall find.)
I’m not an expert on any example, but I think that one should be
suspicious.
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Random network models

A classical (Erdős–Rényi) random network is thus too
homogeneous to be a good model in many applications. (In others
it is excellent.)

Many other random network models have been proposed and
studied, especially the last 10 years, often with power laws for the
node degrees.
This has given new input and new life to the theory of random
network, and has stimulated the mathematical development.
(Independently of whether the models are good models for
anything or not.)



Some proposed random network models

1. (Inequality depends on other properties.)
1a. Fix n (number of nodes). Give each node i a number ai which
we call activity. Let A =

∑n
i=1 ai be the sum of all activities. For

each pair i , j of nodes, make a random choice and join them by an
edge ij with probability pij =

ai aj

A .
(Chung and Lu (2002), and several others.)

I If we choose all activities ai equal, say c , we get a classical
random network G (n, p) with p = c/n.

I If we choose ai according to a power law, we get
(asymptotically) the same power law for the degrees.

I In general: the degrees of most nodes are close to their
activities, so by choosing the activities, we can obtain almost
any desired distribution of the node degrees.
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Example. Let ai be proportional to
√

n/
√

i ; this yields pij ≈ c/
√

ij
for some constant c > 0. In this case, the node degrees follow a
power law with exponent γ = 3.

Theorem
With high probability, there exist a giant component if
1
A

∑n
i=1 a2i > 1, but not otherwise.

Example. Power law with γ ≤ 3 (as in the example above): since
the harmonic series diverges, there is always a giant component
even if many edges are removed. (Good for communication
network. Bad for epidemics.)
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Proof.
Branching process approximation, with the links to the neighbours
as individuals in the branching process.
The expected number of children of a link is

∑
i

ai∑
j aj

ai =

∑
i a2i∑
i ai

.



Variants

1b Determine the probabilities pij by some other formula.
Example 2b below is the case pij = c/max(i , j). Bollobás,
Janson and Riordan (2006) have studied the case
pij = κ(i/n, j/n)/n for a given function κ on [0, 1]2 (and more
generally). (“Inhomogeneous random graph”)

Theorem (Bollobás, Janson and Riordan)

This random network has a giant component if and only if the
integral operator with kernel κ has norm on L2[0, 1] (or,
equivalently, spectral radius) greater than 1.



Variants

1b Determine the probabilities pij by some other formula.
Example 2b below is the case pij = c/max(i , j). Bollobás,
Janson and Riordan (2006) have studied the case
pij = κ(i/n, j/n)/n for a given function κ on [0, 1]2 (and more
generally). (“Inhomogeneous random graph”)

Theorem (Bollobás, Janson and Riordan)

This random network has a giant component if and only if the
integral operator with kernel κ has norm on L2[0, 1] (or,
equivalently, spectral radius) greater than 1.



1c Fix a (finite or infinite) space S of “types”, and a probability
measure µ on S , and a symmetric function
W : S × S → [0, 1]. Give each vertex i a random type Xi ∈ S ,
i.i.d. with distribution µ. Conditioned on these types Xi , add
an edge ij with probability W (Xi ,Xj ), independently of all
other edges.
Stochastic Block Model (S finite); Graphon model.

I Again, constant W = p gives G (n, p).

I S = [0, 1] is popular in mathematical studies, but not
necessary.

I These random networks are exchangeable. Conversely, every
infinite exchangeable network can be constructed in this way.
(By an extension of De Finetti’s theorem to random arrays by
Aldous and Hoover.)
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1d Fix the node degrees as a given sequence d1, . . . , dn, and take
a random network, uniformly among all possible networks with
these degrees.
(“Configuration model”. Bender and Canfield (1978),
Bollobás (1985), Molloy and Reed (1995, 1998), and others.)

Theorem (Molloy and Reed)

The random network with given node degrees d1, d2, . . . , dn has a
giant component if and only if

∑
i di (di − 2) > 0.
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Proof.
Branching process approximation.
The expected number of children of a link is∑

i

di∑
j dj

(di − 1) =

∑
i di (di − 1)∑

i di

and ∑
i di (di − 1)∑

i di
> 1 ⇐⇒

∑
i

di (di − 2) > 0.



More examples: (Inequality depends on who is first.)

Let c be a constant.

2a Add new nodes one by one. After adding a node, add c edges
connecting it to c randomly chosen old nodes. (c must be an
integer.)

2b Add new nodes one by one. If there already are n nodes, make
a random choice for each old node and connect it to the new
node with probability c/n. (c can be any positive real
number.)

Theorem
In this case, there will be a giant component if c > 1/4, but not
otherwise.
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2c Add new node one by one. Each time, add with probability c
also a new edge, with two endpoints chosen at random among
all nodes (old and new). (c must be less than 1.) Known as
the CHKNS model, after Callaway, Hopcroft, Kleinberg,
Newman and Strogatz (2001).

Theorem
For the CHKNS model, there is a giant component if c > 1/8, but
not otherwise.
More precisely, if c = 1

8 + ε, the proportion of the nodes belonging
to the giant component is (asymptotically)

exp
(
− π

2
√

2
ε−1/2 + O(log ε)

)
.

These random networks do not have power laws for the degrees.
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More examples: (Inequality depends on chance, and “For
whosoever hath, to him shall be given”.)

3a Add nodes one by one. Join every node by an edge to one old
node; this node is chosen with probability proportional to the
number of edges that node already has.

3b (More generally.) Let c be a positive integer. Add nodes one
by one. Join every new node by c edges to c old nodes; these
nodes are chosen with probabilities proportional to the
number of edges that the nodes already have.

This model is called preferential attachment. (Barabási and Albert,
1999).
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Theorem
In the preferential attachment model above, the node degrees have
a power law distribution with exponent 3.

Minor variations of the attachment probabilities yield power laws
with other exponents.

Theorem
Let a > −1 be fixed and let the probability of attaching a new edge
to an old node of degree k be proportional to k + a. Then the
node degrees have a power law distribution with exponent 3 + a.
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Theorem (Oliveira and Spencer)

Let α > 1 be fixed and let the probability of attaching a new edge
to an old node of degree k be proportional to kα. Then only a
finite number of nodes will ever have degrees larger than
1/(α− 1), so the proportion of such vertices tends to 0.
If α > 2, then moreover, after some random time, all new nodes
will attach to the same node.



Stochastic processes

Another useful tool is to introduce a time parameter and study
suitable stochastic processes that describe, for example, the
exploration of the successive neighbourhoods of a vertex.

Standard theorems about convergence of a stochastic process to a
deterministic function, or to a Gaussian process, then can be
applied.

Example

The existence and size of a giant component in a random network
with given vertex degrees.

Example

Constuct a random network with given vertex degrees. Consider an
epidemic, where an infected vertex infects each neighbour with
some fixed rate β, and recovers and becomes immune with rate ρ.
Study the total number of infected, and also the time evolution.
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A random network

Randomnetworks. Patrick J. McSweeney (Syracuse University)
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