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CONVERSE HYPERCONTRACTIVITY

Christer Borell and Svante Janson

1. Introduction

. 2
Consider the number operator N = -dz/dx2 + xd/dx in L7 (u),

_ .2
where duy = (2m) l/ze X /de . Then, for each t > 0,

wy e, s, €L, 1<p <,
1+e“t (p-1) P

and.

o) e, e, feLy, ce<p<t.
1+e“ " (p-1) P

Here (1.1) 1is the famous Nelson hypercontractivity inequality [5] and
(1.2) was noticed by one of the authors [1].

In [6] Neveu gives a very simple and beautiful proof of (1.1) by
using the Ita calculus of Brownian motion and, not surprisingly, the
same line of reasoning works for p < 1 as well [1]. Another perhaps
more elementary proof of (1.2) is obtained by extending the so—called
"two-point inequality" to the parameter interval p <1 [2].

The purpose of the present note is to point out that (1l.1) & (1.2),
and that this proof also proves the analogue of (1.2) for the Poisson

2 3

integral on a sphere in R” or R”, a result which we have not been

able to show in a more direct way. We begin with the number operator

and indicate the minor modifications for the Poisson integral later.




2. Proof of (1.1) « (1.2)

We will prove that (l1.1) and (1.2) both are equivalent to

] af
(with Df = Ei)

2 2
-1 -1
(2.1) [ £P entPay || fngznu fHI; < %:ﬁ (27 NE) = —2(‘;—_1—) o708y,

2
0 < inf £(x) < sup f(x) <, Df €L, p#0,1.

More precisely, (1.1) 1is equivalent to (2.1) for 1 <p <=, (1.2)
is equivalent to (2.1) for -« < p <1, and (2.1) for any value of
p # 0,1 is equivalent to (2.1) for any other p. The equivalence of

(1.1) and (2.1) is due to Gross [3] and we follow his ideas.

By an approximation argument, (1.1) and (1.2) are equivalent

to

2.2)  [le™|

2 is a decreasing (increasing) function of
t
l1+e” (p-1)

t >0, for p>1 (p<1l) and O0< inff < supf < .

For such a function f, set ft = e-th.

For t >0 and ~e= < p < =, “ft”p = exp %»ln_fft(x)pdu(x) is an

analytic function of p (the apparent singularity at p =0 1is removable)

and
2 _1 1-p P 14
3 Nl = 2 LR (SeBen g -l anlle L) o # 0.
Since Ji f = -Nf
at 't t?
9 _ 1-p -
3e Ecly = lEcd, © S ne

é% ”ft”p and -g% ”ft”p are bounded on compact subsets of
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. . 3 .
{t >0,-=<p<ewo}. Thus | ft“p 1s continuous. Hence T ”ft”p is
continuous and || ft”p is differentiable. Consequently, with
2t
p, =1l+e (p-1), we have for P, #0,
dpt

FTY ”ftipt ==t ft”pt+ 35 ft“Pt It

-p, p.1 2(p, -1 l=p, /P, Py
S e L (R )

2
P
Since (2.2) 1is equivalent to t_d l£]l. <0, it is equivalent
P -1 dt t P, —

to
2 p-1 P D
- By e NE v 2 (fefemg - Hft“p ln“ft”p)f_ 0, p # 0,1,
i.e. (2.1).

To show that (2.1) for different values of p are equivalent,

let g = 272 . Since (Dfp’l,nf> = (p-l)<fp_2Df,Df> = (p—l)(Z/p)2<Dg,Dg>,

(2.1) for (£f,p) 1is equivalent to (2.1) for (g,2) .
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3. The Poisson Integral

In this section,

unit sphere in R

let 1 be the normalized surface measure on the

(d 573) and define N by Nf

spherical harmonics of degree n.

Then e.—tN is the Poisson integral P -+

variables (1.1) and

(3.1) I _£l
l+r

and

(3.2) 2 £l
1+

Equivalent formulations are: Assume that u 1is positive and harmonic in

the unit ball, then

_.2(

._2(

e
(1.2) correspond to

<€, £eL,,
p-1) P z
>el o, £eL,
p-1) P 2

(3.3) Hummqsﬂdﬂ%,l<p<q<w,o
and
(3.4) Toteolly > ueoll,, -=<aq<p<1,
or
(3.5) l]u(rx)“lnq EA ||u(x)'1np, -l<p<agc<

For d=1 these reduce to the "two-point inequality" [2]. For
3, (3.1) is proved in [7] and [4] respectively. We will show that this

implies (3.2) and thus (3.4) and (3.5). (The argument is independent

of the dimension, but

Exactly as above,

2
(3.6) ffpln.fpdu-l]fﬂslnﬂfng 5.7r§:17 <fp_1?N§>, 0<fe Y, pto,l.

Different values of p

implies (3.6) for any p . The following argument by Weissler is used

and with a change of

l<p<ew

nf if f

(3.1) is not known for d > 4.)

(3.1) and (3.2) are equivalent to

are no longer equivalent, but

(3.6)

is

, 0<r«<l1

~—o<p<1l,0<r<l1.

for p=2

d=2
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for p>1 in [7], [4].

Let u be the harmonic extension of £ to the interior. Then
9 . d-1
NE(x) = FES u(rx)l . Let B denote the unit ball, 8B = S and

Q = |3B] . Then

p=l N _ o P 18w _ 1 3?10
R NEY = [ u PajB - p£Au

-1 [ WP7|val? = MDD (| waf 2
B 2] B

p/2

Let g = f and let v be the harmonic extension of g to

the unit ball. Then Qd<g,Ng> = | IVvlz by a similar calculation.
B
p/2

Since u and v have the same boundary values and v 1is harmonic,

f [Vvlz < f IVup/zlz by Dirichlet’s principle. Thus,
B B

2
p-1
——P———a(p_l) (EPTHNE) > LeuNe) s
and (3.6) for (f,p) 1is a consequence of (3.6) for (g,2). This

completes the proof that (3.1) implies (3.2).




4 - 06

References

1.

Borell, C.: Convexity in Gauss space. Les aspects statistiques
et les aspects physiques des processus gaussiens, Saint-Flour
22-29 juin 1980, 27 - 37, CNRS N° 307.

Borell, C.: Positivity improving operators and hypercontractivity.

Math. Z. (to appear). 16 (¢

Gross, L.: Logarithmic Sobolev inequalities. Amer. J. Math. 97,
1061-1083 (1975).

Janson, S.: On hypercontractivity for multipliers om orthogonal

polynomials. Ark. Mat. (to appear).

Nelson, E.: The free Maxrkoff field. J. Functional Anal. 12, 211-227
(1973).

Neveu, J.: Sur 1l’espérance conditionnelle par rapport 3 un
mouvement brownien. Ann. Inst. H. Poincaré B 12, 105-109
(1976).

Weissler, F.B.: Logarithmic Sobolev inequalities and hypercontractive

estimates on the circle. J. Functional Anal. 37, 218-234 (1980).

Christer Borell Svante Janson

Department of Mathematics Department of Mathematics
Chalmers University of Technology Uppsala University

412 96 Goteborg, Sweden Thunbergsvigen 3

752 38 Uppsala, Sweden




