Séminaire Initiation à 1'Analyse 4 - 01 G. CHOQUET, M. ROGALSKI, J. SAINT RAYMOND 21e année, 1981/82, n° 4, 6 p.

CONVERSE HYPERCONTRACTIVITY

Christer Borell and Svante Janson

1. Introduction

Consider the number operator $N=-d^2/dx^2+xd/dx$ in $L^2(\mu)$, where $d\mu=(2\pi)^{-1/2}e^{-x^2/2}dx$. Then, for each t>0,

(1.1)
$$\|e^{-tN}f\|_{1+e^{2t}(p-1)} \le \|f\|_{p}$$
, $f \in L_{2}$, $1 ,$

and.

(1.2)
$$\|e^{-tN}f\|_{1+e^{2t}(p-1)} \ge \|f\|_{p}$$
, $f \in L_{2}^{+}$, $-\infty .$

Here (1.1) is the famous Nelson hypercontractivity inequality [5] and (1.2) was noticed by one of the authors [1].

In [6] Neveu gives a very simple and beautiful proof of (1.1) by using the Itô calculus of Brownian motion and, not surprisingly, the same line of reasoning works for p < 1 as well [1]. Another perhaps more elementary proof of (1.2) is obtained by extending the so-called "two-point inequality" to the parameter interval p < 1 [2].

The purpose of the present note is to point out that $(1.1) \Leftrightarrow (1.2)$, and that this proof also proves the analogue of (1.2) for the Poisson integral on a sphere in \mathbb{R}^2 or \mathbb{R}^3 , a result which we have not been able to show in a more direct way. We begin with the number operator and indicate the minor modifications for the Poisson integral later.

2. Proof of $(1.1) \Leftrightarrow (1.2)$

We will prove that (1.1) and (1.2) both are equivalent to (with Df = $\frac{df}{dx}$)

$$(2.1) \qquad \int f^{p} \ln f^{p} d\mu - \|f\|_{p}^{p} \ln \|f\|_{p}^{p} \leq \frac{p^{2}}{2(p-1)} \left\langle f^{p-1}, Nf \right\rangle = \frac{p^{2}}{2(p-1)} \left\langle Df^{p-1}, Df \right\rangle,$$

$$0 < \inf f(x) < \sup f(x) < \infty, Df \in L^{2}, p \neq 0, 1.$$

More precisely, (1.1) is equivalent to (2.1) for $1 , (1.2) is equivalent to (2.1) for <math>-\infty , and (2.1) for any value of <math>p \neq 0$, 1 is equivalent to (2.1) for any other p. The equivalence of (1.1) and (2.1) is due to Gross [3] and we follow his ideas.

By an approximation argument, (1.1) and (1.2) are equivalent to

(2.2)
$$\|e^{-tN}f\|_{1+e^{2t}(p-1)}$$
 is a decreasing (increasing) function of $t>0$, for $p>1$ $(p<1)$ and $0<\inf f\le \sup f<\infty$.

For such a function f, set $f_t = e^{-tN}f$.

For t>0 and $-\infty , <math>\|f_t\|_p = \exp\frac{1}{p}\ln\int f_t(x)^p d\mu(x)$ is an analytic function of p (the apparent singularity at p=0 is removable) and

$$\frac{\partial}{\partial p} \|f_{t}\|_{p} = \frac{1}{p} \|f_{t}\|_{p}^{1-p} \left(\int f_{t}^{p} \ln f_{t} - \|f_{t}\|_{p}^{p} \ln \|f_{t}\|_{p} \right) \quad (p \neq 0).$$

Since $\frac{\partial}{\partial t} f_t = -Nf_t$,

$$\frac{\partial}{\partial t} \| f_t \|_p = - \| f_t \|_p^{1-p} \int f_t^{p-1} N f_t$$
.

 $\frac{\partial}{\partial p} \| f_t \|_p$ and $\frac{\partial}{\partial t} \| f_t \|_p$ are bounded on compact subsets of

 $\{t>0, -\infty . Thus <math>\|f_t\|_p$ is continuous. Hence $\frac{\partial}{\partial t} \|f_t\|_p$ is continuous and $\|f_t\|_p$ is differentiable. Consequently, with $p_t = 1 + e^{2t}(p-1)$, we have for $p_t \neq 0$,

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\| \mathbf{f}_{t} \right\|_{\mathbf{p}_{t}} = \frac{\partial}{\partial t} \left\| \mathbf{f}_{t} \right\|_{\mathbf{p}_{t}} + \frac{\partial}{\partial \mathbf{p}} \left\| \mathbf{f}_{t} \right\|_{\mathbf{p}_{t}} \frac{\mathrm{d}\mathbf{p}_{t}}{\mathrm{d}t} =$$

$$= - \left\| \mathbf{f}_{t} \right\|_{p_{t}}^{1-p_{t}} \int \mathbf{f}_{t}^{p_{t}-1} \mathbf{N} \mathbf{f}_{t} + \frac{2(p_{t}-1)}{p_{t}} \left\| \mathbf{f}_{t} \right\|_{p_{t}}^{1-p_{t}} \left(\int \mathbf{f}_{t}^{p_{t}} \ln \mathbf{f}_{t} - \left\| \mathbf{f}_{t} \right\|_{p_{t}}^{p_{t}} \ln \left\| \mathbf{f}_{t} \right\|_{p_{t}} \right).$$

Since (2.2) is equivalent to $\frac{p_t^2}{p_t-1} \frac{d}{dt} \|f_t\|_{p_t} \leq 0, \text{ it is equivalent}$ to

$$-\frac{p^2}{p-1} \int f_t^{p-1} N f_t + 2p \left(\int f_t^p \ln f_t - \|f_t\|_p^p \ln \|f_t\|_p \right) \le 0, p \ne 0,1,$$
i.e. (2.1).

To show that (2.1) for different values of p are equivalent, let $g = f^{p/2}$. Since $\langle Df^{p-1}, Df \rangle = (p-1)\langle f^{p-2}Df, Df \rangle = (p-1)(2/p)^2\langle Dg, Dg \rangle$, (2.1) for (f,p) is equivalent to (2.1) for (g,2).

3. The Poisson Integral

In this section, let μ be the normalized surface measure on the unit sphere in \mathbb{R}^d $(d \leq 3)$ and define N by Nf = nf if f is a spherical harmonics of degree n.

Then e^{-tN} is the Poisson integral $P_{e^{-t}}$, and with a change of variables (1.1) and (1.2) correspond to

(3.1)
$$\|P_r f\|_{1+r^{-2}(p-1)} \le \|f\|_p$$
, $f \in L_2$, $1 , $0 < r < 1$$

and

(3.2)
$$\|P_{r}f\|_{1+r^{-2}(p-1)} \ge \|f\|_{p}$$
, $f \in L_{2}^{+}$, $-\infty , $0 < r < 1$.$

Equivalent formulations are: Assume that u is positive and harmonic in the unit ball, then

(3.3)
$$\|u(rx)\|_{q} \le \|u(x)\|_{p}$$
, $1 , $0 \le r \le \sqrt{\frac{p-1}{q-1}}$$

and

(3.4)
$$\|u(rx)\|_{q} \ge \|u(x)\|_{p}$$
, $-\infty < q < p < 1$, $0 \le r \le \sqrt{\frac{1-p}{1-q}}$

or

(3.5)
$$\|u(rx)^{-1}\|_{q} \le \|u(x)^{-1}\|_{p}, -1$$

For d=1 these reduce to the "two-point inequality" [2]. For d=2 and 3, (3.1) is proved in [7] and [4] respectively. We will show that this implies (3.2) and thus (3.4) and (3.5). (The argument is independent of the dimension, but (3.1) is not known for $d \geq 4$.)

Exactly as above, (3.1) and (3.2) are equivalent to

$$(3.6) \qquad \int f^{p} \ln f^{p} d\mu - \|f\|_{p}^{p} \ln \|f\|_{p}^{p} \leq \frac{p^{2}}{2(p-1)} \left\langle f^{p-1}, \mathbb{N}f \right\rangle, \ 0 < f \in C^{\infty}(S^{d-1}), \ p \neq 0, 1.$$

Different values of p are no longer equivalent, but (3.6) for p=2 implies (3.6) for any p. The following argument by Weissler is used

for p > 1 in [7], [4].

Let u be the harmonic extension of f to the interior. Then $\mathrm{Nf}(x) = \frac{\partial}{\partial r} \left. \mathrm{u}(rx) \right|_{r=1}. \text{ Let B denote the unit ball, } \partial B = S^{d-1} \text{ and } \Omega_d = |\partial B|. \text{ Then}$

$$\Omega_{d}\langle f^{p-1}, Nf \rangle = \int_{\partial B} u^{p-1} \frac{\partial u}{\partial r} = \frac{1}{p} \int_{\partial B} \frac{\partial u^{p}}{\partial r} = \frac{1}{p} \int_{B} \Delta u^{p} =$$

$$= (p-1) \int_{B} u^{p-2} |\nabla u|^{2} = \frac{4(p-1)}{p^{2}} \int_{B} |\nabla u^{p/2}|^{2}.$$

Let $g=f^{p/2}$ and let v be the harmonic extension of g to the unit ball. Then $\Omega_d\langle g, Ng \rangle = \int\limits_B |\nabla v|^2$ by a similar calculation. Since $u^{p/2}$ and v have the same boundary values and v is harmonic, $\int\limits_B |\nabla v|^2 \leq \int\limits_B |\nabla u^{p/2}|^2$ by Dirichlet's principle. Thus,

$$\frac{p^2}{4(p-1)} \left\langle f^{p-1}, Nf \right\rangle \ge \left\langle g, Ng \right\rangle,$$

and (3.6) for (f,p) is a consequence of (3.6) for (g,2). This completes the proof that (3.1) implies (3.2).

References

- 1. Borell, C.: Convexity in Gauss space. Les aspects statistiques et les aspects physiques des processus gaussiens, Saint-Flour 22-29 juin 1980, 27-37, CNRS $N^{\rm O}$ 307.
- 2. Borell, C.: Positivity improving operators and hypercontractivity.

 Math. Z: (to appear). 180 (1982) 225 -234
- 3. Gross, L.: Logarithmic Sobolev inequalities. Amer. J. Math. 97, 1061-1083 (1975).
- Janson, S.: On hypercontractivity for multipliers on orthogonal polynomials. Ark. Mat. (to appear).
- 5. Nelson, E.: The free Markoff field. J. Functional Anal. 12, 211-227 (1973).
- Neveu, J.: Sur l'espérance conditionnelle par rapport à un mouvement brownien. Ann. Inst. H. Poincaré B 12, 105-109 (1976).
- 7. Weissler, F.B.: Logarithmic Sobolev inequalities and hypercontractive estimates on the circle. J. Functional Anal. 37, 218-234 (1980).

Christer Borell Department of Mathematics Chalmers University of Technology 412 96 Göteborg, Sweden Svante Janson
Department of Mathematics
Uppsala University
Thunbergsvägen 3
752 38 Uppsala, Sweden