
Shellsort With Three Incrementsby Svante Janson and Donald E. KnuthAbstract. A perturbation technique can be used to simplify and sharpen A. C. Yao'stheorems about the behavior of shellsort with increments (h; g; 1). In particular, whenh = �(n7=15) and g = �(h1=5), the average running time is O(n23=15). The proof involvesinteresting properties of the inversions in random permutations that have been h-sortedand g-sorted.Shellsort, also known as the \diminishing increment sort" [7, Algorithm 5.2.1D], puts the elementsof an array (X0; : : : ;Xn�1) into order by successively performing a straight insertion sort on largerand larger subarrays of equally spaced elements. The algorithm consists of t passes de�ned byincrements (ht�1; : : : ; h1; h0), where h0 = 1; the jth pass makes Xk � Xl whenever l � k = ht�j .A. C. Yao [11] has analyzed the average behavior of shellsort in the general three-pass casewhen the increments are (h; g; 1). The most interesting part of his analysis dealt with the thirdpass, where the running time is O(n) plus a term proportional to the average number of inversionsthat remain after a random permutation has been h-sorted and g-sorted. Yao proved that if gand h are relatively prime, the average number of inversions remaining is (h; g)n + bO(n2=3) ; (0:1)where the constant implied by bO depends on g and h. He gave a complicated triple sum for  (h; g),which is too di�cult to explain here; we will show that (h; g) = 12 g�1Xd=1 Xr �h� 1r ��dg�r �1� dg�h�1�r ���� r � �hdg ����� : (0:2)Moreover, we will prove that the average number of inversions after such h-sorting and g-sorting is (h; g)n +O(g3h2) ; (0:3)where the constant implied by O is independent of g, h, and n.The main technique used in proving (0.3) is to consider a stochastic algorithm A whose outputhas the same distribution as the inversions of the third pass of shellsort. Then by slightly perturbingthe probabilities that de�ne A, we will obtain an algorithm A� whose output has the expected value (h; g)n exactly. Finally we will prove that the perturbations cause the expected value to changeby at most O(g3h2).Section 1 introduces basic techniques for inversion counting, and section 2 adapts those tech-niques to a random input model. Section 3 proves that the crucial random variables needed forinversion counting are nearly uniform; then section 4 shows that the leading term  (h; g)n in (0.3)would be exact if those variables were perfectly uniform. Section 5 explains how to perturb them1



so that they are indeed uniform, and section 6 shows how this perturbation yields the error termO(g3h2) of (0.3).The asymptotic value of  (h; g) is shown to be (�h=128)1=2g in section 7. The cost of thethird pass in (ch; cg; 1)-shellsort for c > 1 is analyzed in section 8. This makes it possible to boundthe total running time for all three passes, as shown in section 9, leading to an O(n23=15) averagerunning time when h and g are suitably chosen.The bound O(g3h2) in (0.3) may not be best possible. Section 10 discusses a conjecturedimprovement, consistent with computational experiments, which would reduce the average cost toO(n3=2), if it could be proved.The tantalizing prospect of extending the techniques of this paper to more than three incre-ments is explored brie
y in section 11.1. Counting inversions. We shall assume throughout this paper that g and h are relativelyprime. To �x the ideas, suppose h = 5, g = 3, n = 20, and suppose we are sorting the 2-digitnumbers(X0;X1; : : : ;Xn�1) = (03; 14; 15; 92; 65; 35; 89; 79; 32; 38; 46; 26; 43; 37; 31; 78; 50; 28; 84; 19) :(Cf. [6, Eq. 3.3{(1)].) The �rst pass of shellsort, h-sorting, replaces this array by(X 00;X 01; : : : ;X 0n�1) = (03; 14; 15; 32; 19; 35; 26; 28; 37; 31; 46; 50; 43; 84; 38; 78; 89; 79; 92; 65) :The second pass, g-sorting, replaces it by(X 000 ;X 001 ; : : : ;X 00n�1) = (03; 14; 15; 26; 19; 35; 31; 28; 37; 32; 46; 38; 43; 65; 50; 78; 84; 79; 92; 89) :Our task is to study the inversions of this list, namely the pairs k, l for which k < l and X 00k > X 00l .The result of g-sorting is the creation of g ordered bits X 00j < X 00j+g < X 00j+2g < � � � for0 � j < g, each of which contains no inversions within itself. So the inversions remaining areinversions between di�erent sublists. For example, the 20 numbers sorted above lead tolist 0 = (03; 26; 31; 32; 43; 78; 92) ;list 1 = (14; 19; 28; 46; 65; 84; 89) ;list 2 = (15; 35; 37; 38; 50; 79) ;the inversions between list 0 and list 1 are the inversions of(03; 14; 26; 19; 31; 28; 32; 46; 43; 65; 78; 84; 92; 89) :It is well known [7, x5.21] that two interleaved ordered lists of lengths m have Pm�1r=0 jr � srjinversions, where sr of the elements of the second list are less than the (r+1)st element of the �rstlist; for example, (03; 14; 26; : : : ; 89) hasj0� 0j+ j1� 2j+ j2� 3j+ j3� 3j+ j4� 3j+ j5� 5j+ j6� 7j = 42



inversions. If r � sr, the (r+1)st element of the �rst list is inverted by r�sr elements of the second;otherwise it inverts sr � r of those elements. (We assume that the list elements are distinct.) Thesame formula holds for interleaved ordered lists of lengths m and m � 1, because we can imaginean in�nite element at the end of the second list.Let Ykl be the number of elements Xk0 such that k0 � k (mod h) andXk0 < Xl. The n numbersYll for 0 � l < n clearly characterize the permutation performed by h-sorting; and it is not hardto see that the full set of hn numbers Ykl for 0 � k < h and 0 � l < n is enough to determine therelative order of all the X's.There is a convenient way to enumerate the inversions that remain after g-sorting, using thenumbers Ykl. Indeed, let Jkl = (k mod h+ hYkl) mod g : (1:1)Then Xl will appear in list j = Jll after g-sorting. Let Sjl be the number of elements Xk0 suchthat Xk0 < Xl and Xk0 is in list j. The inversions between lists j and j0 depend on the di�erencejSjl � Sj0lj when Xl goes into list j.Given any values of j and j0 with 0 � j < j0 < g, let js = (j + hs) mod g, and let d beminimum with jd = j0. Thus, d is the distance from j to j0 if we count by steps of h modulo g. LetH = fj1; j2; : : : ; jdg (1:2)be the h numbers between j and j0 in this counting process, and let Ql be the number of indices ksuch that 0 � k < h and Jkl 2 H. Then we can prove the following basic fact:Lemma 1. Using the notation above, we haveSjl � Sj0l = Ql � bhd=gc (1:3)for all j, j0, and l with 0 � j < j0 < g and 0 � l < n.Proof. Since the X's are distinct, there is a permutation (l0; l1; : : : ; ln�1) of f0; 1; : : : ; n�1g suchthat Xl0 < Xl1 < � � � < Xln�1 . We will prove (1.3) for l = lt by induction on t.Suppose �rst that l = l0, so that Xl is the smallest element being sorted. Then Ykl = 0 forall k, hence Jkl = k mod g for 0 � k < h. Also Sjl = Sj0l = 0. Therefore (1.3) is equivalent in thiscase to the assertion that precisely bhd=gc elements of the multisetf0 mod g; 1 mod g; : : : ; (h� 1) mod ggbelong to H.A clever proof of that assertion surely exists, but what is it? We can at any rate use brute forceby assuming �rst that j = 0. Then the number of solutions to x � hd (mod g) and 0 � x < h isthe number of integers in the interval ��hd=g : : �h(d� 1)=g�, namely d�h(d� 1)=ge� d�hd=ge =bhd=gc�bh(d�1)=gc. Therefore the assertion for j = 0 follows by induction on d. And once we've3



proved it for some pair j < j0, we can prove it for j + 1 < j0 + 1, assuming that j0 + 1 < g: Thevalue of d stays the same, and the values of j1; j2; : : : ; jd increase by 1 (mod g). So we lose onesolution if js � h� 1 (mod g) for some s with 1 � s � d; we gain one solution if js � �1 (mod g)for some s. Since js � h � 1 () js�1 � �1, the net change is zero unless j1 � h � 1 (but thenj = g � 1) or jd � �1 (but then j0 = g � 1). This completes the proof by brute force when l = l0.Suppose (1.3) holds for l = lt; we want to show that it also holds for when l is replaced byl0 = lt+1. The numbers Ykl and Ykl0 are identical for all but one value of k, sinceYkl0 = Ykl + [l � k (mod h)] :Thus, the values of Jkl and Jkl0 are the same except that Jkl increases by h (mod g) when k � l(mod h). It follows that Ql0 = Ql + [Jll = j]� [Jll = j0] :This completes the proof by induction on t, since Sjl0 = Sjl + [Jll = j] for all j.Corollary. Using the notations above, the total number of inversions between lists j and j0 isn�1Xl=0 ��Ql � bhd=gc �� [Jll = j] : (1:4)Proof. This is jSjl � Sj0lj = jr � srj summed over all r such that Xl is the (r + 1)st element oflist j.In the example of n = 20 two-digit numbers given earlier, with h = 5, g = 3, j = 0, and j0 = 1,we have d = 2, H = f2; 1g,l = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Xl = 03 14 15 92 65 35 89 79 32 38 46 26 43 37 31 78 50 28 84 19Y0l = 0 1 1 4 3 1 4 4 1 2 2 1 2 2 1 3 3 1 4 1Y1l = 0 0 1 4 3 2 3 3 2 2 2 1 2 2 2 3 2 2 3 1Y2l = 0 0 0 4 3 2 4 3 2 2 3 1 2 2 2 3 3 1 4 1Y3l = 0 0 0 3 2 1 3 2 0 2 2 0 2 1 0 2 2 0 2 0Y4l = 0 0 0 4 3 2 4 4 2 2 3 1 3 2 1 4 3 1 4 0J0l = 0 2 2 2 0 2 2 2 2 1 1 2 1 1 2 0 0 2 2 2J1l = 1 1 0 0 1 2 1 1 2 2 2 0 2 2 2 1 2 2 1 0J2l = 2 2 2 1 2 0 1 2 0 0 2 1 0 0 0 2 2 1 1 1J3l = 0 0 0 0 1 2 0 1 0 1 1 0 1 2 0 1 1 0 1 0J4l = 1 1 1 0 1 2 0 0 2 2 1 0 1 2 0 0 1 0 0 1Ql = 3 4 3 2 4 4 3 4 3 4 5 2 4 4 2 3 4 3 4 3and the underlined values Jll are 0 for l = 0, 3, 8, 11, 12, 14, 15 (accounting for the seven elementsin list 0). The inversions between lists 0 and 1 are thereforej3� 3j+ j2� 3j+ j3� 3j+ j2� 3j+ j4� 3j+ j2� 3j+ j3� 3j = 4according to (1.4). 4



2. Random structures. We obtain a random run of shellsort if we assume that the input array(X0;X1; : : : ;Xn�1) is a random point in the n-dimensional unit cube. For each integer l in therange 0 � l < n and for each \time" t in the range 0 � t � 1 we will consider the contributionmade by Xl to the total number of inversions if Xl = t.Thus, instead of the quantities Ykl and Jkl de�ned in the previous section, we de�neYkl(t) = Xk0�k ( mod h)0�k0<n [Xk0 < t] ; (2:1)Jkl(t) = �k mod h+ hYkl(t)� mod g : (2:2)These equations are almost, but not quite, independent of l, because we assume that Xl = t whileall other X's are uniformly and independently random.For each pair of indices j and j0 with 0 � j < j0 < g, we de�ne H as in (1.2), and we letQl(t) = h�1Xk=0 [Jkl(t) 2H][k 6= l mod h] : (2:3)This de�nition is slightly di�erent from our original de�nition of Ql, because we have excluded theterm for k = l mod h. However, formula (1.4) remains valid because j =2 H; when Jll = j, theexcluded term is therefore zero.Notice that, for �xed l, the random variables Ykl(t) for 0 � k < h are independent. Thereforethe random variables Jkl(t) are independent; and Ql(t) is independent of Jll(t). The averagecontribution of Xl to the inversions between lists j and j0 when Xl = t is thereforeWjj0l(t) = Pr [Jll(t) = j] E ��Ql(t)� bhd=gc�� (2:4)by (1.4), where probabilities and expectations are computed with respect to (X0; : : : ;Xl�1;Xl+1; : : : ;Xn�1). The average total contribution of Xl is obtained by integrating over all valuesof t:Lemma 2. Let Wjj0l = Z 10 Wjj0l(t) dt : (2:5)Then the average grand total number of inversions in the third pass of shellsort isX0�j<j0<g0�l<n Wjj0l : (2:6)Our goal is to �nd the asymptotic value of this sum, by proving that it agrees with the estimate(0.3) stated in the introduction.3. Near uniformity. The complicated formulas of the previous section become vastly simplerwhen we notice that each random variable Jkl(t) is almost uniformly distributed: The probabilitythat Jkl(t) = j is very close to 1=g, for each j, as long as t is not too close to 0 or 1. To prove thisstatement, it su�ces to show that Ykl(t) mod g is approximately uniform, because h is relativelyprime to g. Notice that Ykl(t) has a binomial distribution, because it is the sum of approximatelyn=h independent random 0{1 variables that take the value 1 with probability t.5



Lemma 3. If Y has the binomial distribution with parameters (m; t), then����Pr [Y mod g = j]� 1g ���� < 1g �gm(t) (3:1)for 0 � j < g, where �gm(t) = 2 1Xk=1 e�8t(1�t)k2m=g2 : (3:2)Proof. Let yj = Pr [Y mod g = j], and consider the discrete Fourier transformŷk = g�1Xj=0 !kjyj = E!kYwhere ! = e2�i=g . We haveŷk = mXl=0 �ml �tl(1� t)m�l!kl = (!kt+ 1� t)m ; (3:3)and j!kt+ 1� tj2 = t2 + (1� t)2 + t(1� t)(!k + !�k)= 1� 2t(1� t)(1� cos 2�k=g)= 1� 4t(1� t) sin2 �k=g : (3:4)If 0 � x � �=2 we have sinx � 2x=�; hence, if 0 � k � 12g,j!kt+ 1� tj2 � 1� 16t(1 � t)k2=g2 < e�16t(1�t)k2=g2 :And if 12g < k < g we have jŷkj = jŷg�kj. Thereforeg�1Xk=1 jŷkj � 2 g=2Xk=1 e�8t(1�t)k2m=g2 < �gm(t) : (3:5)The desired result follows since yj = 1g g�1Xk=0 !�kj ŷkand thus ����yj � 1g ���� = �����1g g�1Xk=1 !�kj ŷk ����� � 1g g�1Xk=1 jŷkj :Corollary. We have ����Pr [Jkl(t) = j]� 1g ���� < 1g �(t) (3:6)for 0 � k < h, where �(t) = ( 2P1k=1 e�4t(1�t)k2n=g2h ; if n � 4h;g; if n < 4h. (3:7)Proof. Each variable Ykl(t) in (2.1) for 0 � k < h has the binomial distribution with parameters(m; t), where if n � 4h m = d(n� k)=he � [k = l mod h] � nh � 2 � n2h :Now Jkl(t) = j if and only if Ykl(t) has a certain value mod g. The case n < 4h is trivial.6



4. Uniformity. Let's assume now that, for given l and t, the random variables Jkl(t) have aperfectly uniform distribution. Since the variables Jkl(t) are independent for 0 � k < h, this meansthat Pr [J0l(t) = j0; J1l(t) = j1; : : : ; J(h�1)l(t) = jh�1] = 1gh (4:1)for all h-tuples (j0; j1; : : : ; jh�1).In such a case the random variable Ql(t) de�ned in (2.3) is the sum of h � 1 independentindicator variables, each equal to 1 with probability d=g because H has d elements. Hence Ql(t)has the binomial distribution with parameters (h� 1; d=g), and it is equal to r with probability�h� 1r ��dg�r �1� dg�h�1�r : (4:2)Let W �jj0l(t) be the value of Wjj0l(t) under the assumption of uniformity �see (2.4)�. ThusW �jj0l(t) is independent of t, and we let W �jj0l =W �jj0l(t) in accordance with (2.5). ThenW �jj0l = 1g h�1Xr=0 �h� 1r ��dg�r �1� dg�h�1�r ���� r � �hdg ����� : (4:3)For given values of d and j, the index j0 = (j + hd) mod g is at distance d from j. Supposea(d) of these pairs (j; j0) have j < j0. Then g � a(d) of them have j > j0, and a(g � d) = g � a(d)since j is at distance g�d from j0. The sum of (4.3) over all j < j0 is therefore independent of a(d):X0�j<j0<g W �jj0l = g�1Xd=1 a(d)g h�1Xr=0 �h� 1r ��dg�r �1� dg�h�1�r ���� r � �hdg �����= g�1Xd=1 a(g � d)g h�1Xr=0 � h� 1h� 1� r��g � dg �h�1�r �1� g � dg �r� ���� h� 1� r � �h(g � d)g �����= 12 g�1Xd=1 h�1Xr=0 �h� 1r ��dg�r �1� dg�h�1�r ���� r � �hdg ����� :(We have used the fact that bh(g � d)=gc = h� 1� bhd=gc when hd=g is not an integer.) But thisis just the quantity  (h; g) in (0.2), for each value of l. We have provedLemma 4. If we assume that the variables Jkl(t) have exactly the uniform distribution, the quan-tity (2:6) is exactly  (h; g)n.5. Perturbation. To complete the proof of (0.3), we use a general technique applicable tothe analysis of many algorithms: If a given complicated algorithm A almost always has the sameperformance characteristics as a simpler algorithm A�, then the expected performance of A is the7



same as the performance of A� plus an error term based on the cases where A and A� di�er. (See,for example, the analysis in [8], where this \principle of negligible perturbation" is applied to anontrivial branching process.)In the present situation we retain the (n � 1)-dimensional probability space (X0; : : : ;Xl�1; t;Xl+1; : : : ;Xn�1) on which the random variables Jkl(t) were de�ned in (2.2), and we de�ne a newset of random variables J�kl(t) on the same space, where J�kl(t) has exactly a uniform distributionon f0; 1; : : : ; g � 1g. This can be done in such a way that Jkl(t) = J�kl(t) with high probability.More precisely, when l and t are given, Jkl(t) depends only on the variables Xk0 with k0 � k(mod h) and k0 6= l. The unit cube on these variables is partitioned into g parts P0; P1; : : : ; Pg�1such that Jkl(t) = j when the variables lie in Pj ; the volume of Pj is Pr [Jkl(t) = j]. We will divideeach Pj into g sets P 0j0, P 0j1, : : : , P 0j(g�1), and de�ne J�kl(t) = i on P 0ji. This subdivision, performedseparately for each k, will yield independent random variables J�0l(t), J�1l(t), : : : , J�(h�1)l(t). Wewill show that the subdivision can be done in such a way thatPr [J�kl(t) = j] = 1=g ; (5:1)Pr [J�kl(t) 6= Jkl(t)] < �(t) ; (5:2)for 0 � j < g and 0 � k < h. Thus, we will have perturbed the values of Jkl(t) with low probabilitywhen �(t) is small.The following construction does what we need, and more:Lemma 5. Let p1; : : : ; pm and p�1; : : : ; p�m be nonnegative real numbers with p1 + � � � + pm =p�1 + � � �+ p�m = 1. Then there are nonnegative reals p0ij for 1 � i; j � m such thatpi = mXj=1 p0ij ; (5:3)p�j = mXi=1 p0ij ; (5:4)and Xi6=j p0ij = 1�Xj p0jj = 12Xj jpj � p�j j: (5:5)Proof. This is a special case of \maximal coupling" in probability theory [5; 9, xIII.14]; it can beproved as follows.Let p0jj = min(pj ; p�j ), and observe thatXj p0jj =Xj min(pj ; p�j ) =Xj 12 (pj + p�j � jpj � p�j j) = 1� 12 Xj jpj � p�j j : (5:6)The existence of nonnegative p0ij, i 6= j, such that (5.3) and (5.4) hold follows from the max 
ow{mincut theorem [4]: Consider a network with a source s, a sink t, and 2m nodes v1; : : : ; vm; v�1 ; : : : ; v�m;the edges are svj with capacity pj�p0jj , v�j t with capacity p�j�p0jj , and viv�j with in�nite capacity.8



6. The e�ect of perturbation. When independent random variables J�kl(t) have been de�nedsatisfying (5.1) and (5.2), we can use them to de�ne Q�l (t) as in (2.3) and W �jj0l(t) as in (2.4). Thisvalue W �jj0l(t) has already been evaluated in (4.3); we want now to use the idea of perturbation tosee how much Wjj0l(t) can di�er from W �jj0l(t).Since Ql(t) = O(h) and jQl(t)�Q�l (t)j � h�1Xk=0 [Jkl(t) 6= J�kl(t)] ; (6:1)we have��Wjj0l(t)�W �jj0l(t)�� = ����Pr [Jll(t) = j]� Pr [J�ll(t) = j]�E ��Ql(t)� bhd=gc��+ Pr [J�ll(t) = j]�E ��Ql(t)� bhd=gc�� � E ��Q�kl(t)� bhd=gc������< 1g �(t)O(h) + 1g h�1Xk=0 Pr [Jkl(t) 6= J�kl(t)]= O�hg��(t) : (6:2)(We assume that J�kl(t) = J�(k mod h)l(t) when k � h.)To complete our estimate we need to integrate this di�erence over all t.Lemma 6. R 10 �(t) dt = O(g2h=n).Proof. The case n < 4h is trivial. Otherwise we haveZ 10 �(t) dt = 2Z 1=20 �(t) dt< 4Z 1=20 1Xk=1 e�2tk2n=g2h dt< 4Z 10 1Xk=1 e�2tk2n=g2h dt= 4 1Xk=1 g2h2k2n = �23 g2hn :Theorem 1. The average number of inversions remaining after h-sorting and then g-sorting arandom permutation of n elements, when h is relatively prime to g, is  (h; g)n + O(g3h2), where (h; g) is given by (0:2).Proof. By (6.2) and Lemmas 2, 4, and 6, the average is  (h; g)n plusX0�j<j0<g0�l<n Z 10 �Wjj0l(t)�W �jj0l(t)� dt = O(g2n)O(h=g)Z 10 �(t) dt= O(g3h2) :9



Notice that the proof of this theorem implicitly uses Lemma 5 for each choice of l and t,without requiring any sort of continuity between the values of J�kl(t) as t varies. We could havede�ned J�kl(t) in a continuous fashion; indeed, the random variables [Xk < t] partition the (n� 1)-cube into 2n�1 subrectangles in each of which Jkl(t) has a constant value, so we could de�ne J�kl(t)over (n � 1)-dimensional rectangular prisms with smooth transitions as a function of t. But suchcomplicated re�nements are not necessary for the validity of the perturbation argument.7. Asymptotics. Our next goal is to estimate  (h; g) when h and g are large. Notice that (h; g) = 12 g�1Xd=1 E ����Z(h� 1; d=g) � �hdg ����� (7:1)where Z(m; p) has the binomial distribution with parameters m and p. The mean of Z(h� 1; d=g)is (h�1)d=g = bhd=gc+O(1), and the variance is (h�1)d(g�d)=g2 . If we replace Z by a normallydistributed random variable with this same mean and variance, the expected value of jZ �bhd=gcjis approximately (2�)�1=2 R1�1 jtje�t2=2 dt = 2=p2� times the standard deviation, so (7.1) will beapproximately 1g r h2� g�1Xd=1 pd(g � d) : (7:2)The detailed calculations in the remainder of this section justify this approximation and provide arigorous error bound.Lemma 7. If Z has the binomial distribution with parameters (m; p), and bmpc � a � dmpe,then E jZ � aj =r2p(1� p)m� +O� 1pmp(1� p)� : (7:3)Proof. Consider �rst the case a = mp. By a formula of De Moivre [1, page 101] and Poincar�e [10,pages 56{60], see Diaconis and Zabell [2],E jZ �mpj = 2dmpe� mdmpe�pdmpe(1� p)m+1�dmpe: (7:4)In order to prove (7.3) in this case we may assume that p � 1=2, since jZ�mpj = jm�Z�m(1�p)j.Moreover, we may assume that mp > 1 since (7.3) otherwise is trivial. Then, a routine applicationof Stirling's approximation shows thatE jZ �mpj =r2p(1 � p)m� exp�O� 1mp�� : (7:5)Next observe that if bmpc � a � dmpe, we haveE jZ � aj = E jZ �mpj+ (mp� a)�1� 2Pr [Z �mp]� : (7:6)Since Pr [Z �mp] = 12 + O�(mp(1 � p))�1=2�, for example by the Berry{Esseen estimate of theerror in the central limit theorem [3, xXVI.5], the result follows.10



Corollary. The asymptotic value of  (h; g) is (h; g) =r �h128 g +O(g�1=2h1=2) +O(gh�1=2) : (7:7)Proof. Since bhd=gc � b(h+ 1)d=gc � b(hd + g � 1)=gc = dhd=ge, Lemma 7 yields (h+ 1; g) = 12 g�1Xd=1 E ����Z(h; d=g) � �(h+ 1)dg �����= g�1Xd=1 s h2� dg�1� dg�+O �hdg�1� dg���1=2!!=r h2� g�1Xd=1sdg�1� dg�+O(gh�1=2) :And Euler's summation formula with f(x) =p(x=g)(1 � x=g) tells us thatg�1Xd=1 f(d) = Z g�11 f(x) dx+ 12f(1) + 12f(g � 1) + 112f 0(g � 1)� 112f 0(1) �R= g Z 10 pt(1� t) dt+O(g�1=2) = �g8 +O(g�1=2)becausejRj = ����Z g�11 B2(x mod 1)2 f 00(x) dx���� � 112 Z g�11 ��f 00(x)�� dx = 112f 0(1)� 112f 0(g � 1) :The error term is thus O(g1=2) when h = g2 + 1; for example, we haveh g  (h; g) p�h=128 g di�erence/pg901 30 140.018 141.076 0.19331601 40 249.539 250.741 0.19002501 50 390.412 391.739 0.18778. Common factors. Now let's consider the behavior of shellsort with increments (ch; cg; 1),where c is an integer > 1. It is easy to see that the �rst two passes are equivalent to the �rst twopasses of (h; g; 1) shellsort on c independent subarrays (Xa;Xa+c;Xa+2c; : : :) of size d(n � a)=cefor 0 � a < c. The inversions that remain are the  (h; g)n + O(g3h2c) inversions within thesesubarrays, plus \cross-inversions" between �c2� pairs of subarrays.Yao [11, Theorem 2] proved that the average number of cross-inversions is 18 p�c (1�c�1)n3=2+O(cghn). The following lemma improves his error term slightly.11



Lemma 8. The average number of cross-inversions after ch-sorting and cg-sorting is18 p�c (1� c�1)n3=2 +O(cgh1=2n) +O(c2g3h2) : (8:1)Proof. Let's consider �rst the process of h-sorting and g-sorting two independent arrays (X0;X1,: : : ;Xn�1) and ( bX0; bX1; : : : ; bXn�1), then interleaving the results to obtain (X 000 ; bX 000 ;X 001 ; bX 001 ; : : :X 00n�1; bX 00n�1). The cross inversions are then the pairs fX 00l ; bX 00l0g where either X 00l > bX 00l0 and l � l0or X 00l < bX 00l0 and l > l0.Recasting this process in the model of section 2 above, we assume that Xl = t, while the other2n�1 variables (X0; : : : ;Xl�1; : : : ;Xn�1; bX0; : : : ; bXn�1) are independent and uniformly distributedbetween 0 and 1. We de�neYkl(t) = Xk0�k ( mod h)0�k0<n [Xk0 < t] ; bYkl(t) = Xk0�k ( mod h)0�k0<n [ bXk0 < t] (8:2)as in (2.1). The elements of each array are divided into h subarrays by h-sorting, and the elements< t have Ykl(t) and bYkl(t) elements in the kth subarrays. Then g-sorting will form g lists, withLjl(t) = h�1Xk=0 �Ykl(t)� akjg � (8:3)elements < t in the jth list of the �rst array, where akj 2 f0; 1; : : : ; g � 1g is given by k + akjh � j(mod g). Similarly, there will be bLjl(t) = h�1Xk=0 & bYkl(t)� akjg ' (8:4)elements < t in the jth list of the second. Element Xl = t of the �rst array will go into list j = Jll(t)as before, where Jkl(t) is de�ned in (2.2). The number of cross-inversions between this element andthe elements of the second array will then beVl(t) = g�1Xj0=0 �� bLj0l(t)� Ljl(t)� [j0 < j]�� : (8:5)The average total number of cross-inversions is the sum of EVl(t) over all l, integrated for 0 � t � 1.We know from Lemma 3 that the numbers Ykl(t) mod g have approximately a uniform distri-bution. Therefore �Ykl(t)� akjg � = Ykl(t)� akj +Rjkl(t)gwhere Rjkl(t) is approximately uniform on f0; 1; : : : ; g � 1g. It follows thatLjl(t) = Zl(t)g + h�1Xk=0 �Rjkl(t)� akjg � ; (8:6)12



where Zl(t) = h�1Xk=0 Ykl(t)is the total number of elements in the �rst array that are < t.Since Rjkl(t) depends on Ykl(t) mod g only, or equivalently on Jkl(t), we may use the per-turbed truly uniform random variables J�kl(t) in section 5 (or repeat the argument there withRjkl(t)) and construct random variables R�jkl(t) that are uniform on f0; 1; : : : ; g � 1g and satisfyPr [R�jkl(t) 6=Rjkl(t)] < �(t); moreover, the variables R�jkl(t) are independent for 0 � k < h and�xed j and l. ConsequentlyE jR�jkl(t)�Rjkl(t)j � g Pr [R�jkl(t) 6=Rjkl(t)] < g�(t) : (8:7)By independence and the fact that ER�jkl(t) = (g � 1)=2,E  h�1Xk=0R�jkl(t)� h(g � 1)=2!2 = h�1Xk=0E �R�jkl(t)� (g � 1)=2�2 < hg2;which by the Cauchy{Schwarz inequality yieldsE �����h�1Xk=0R�jkl(t)� h(g � 1)=2����� < phg: (8:8)Let Wjl = 1g �Ph�1k=0 Rjkl(t)� h(g � 1)=2� and bj = 1g �h(g � 1)=2 �Ph�1k=0 akj�; thenLjl(t) = Zl(t)g +Wjl + bj ; (8:9)where by (8.7) and (8.8) E jWjl(t)j < ph+ h�(t):A similar argument shows that bLjl(t) = bZl(t)g +cWjl + bj :Hence Vl(t) = g�1Xj0=0  j bZl(t)� Zl(t)jg +O(jWj0lj+ jcWj0lj+ 1)!and EVl(t) = E j bZl(t)� Zl(t)j+O(gph ) +O(gh)�(t) : (8:10)The quantity j bZl(t) � Zl(t)j is just what we would get if we were counting the cross-inversionsbetween two fully sorted arrays that have been interleaved. ThereforeZ 10 n�1Xl=0 E �� bZl(t)� Zl(t)�� dt13



must be the average number of inversions of a random 2-ordered permutation of 2n elements;this, according to Douglas H. Hunt in 1967, is exactly n22n�2��2nn � [7, exercise 5.2.1{14]. Since�2nn � = �1 +O(1=n)�4n=p�n, we obtain the desired totalZ 10 E n�1Xl=0 Vl(t) dt = p� n3=24 +O(gh1=2n) +O(g3h2) (8:11)by Lemma 6. Similarly, the same result holds for two arrays of di�erent sizes n+O(1).Lemma 8 follows if we replace n by n=c+O(1) in (8.11) and multiply by �c2�.9. The total cost. So far we have been considering only the number of inversions removedduring the third pass of a three-pass shellsort. But the �rst two passes can be analyzed as in Yao'spaper [11]:Theorem 2. Let g and h be relatively prime and let c be a positive integer. The average numberof inversions removed when (ch; cg; 1)-shellsort is applied to a random n-element array isn24ch +O(n) (9:1)on the �rst pass, 18g r �ch (h� 1)n3=2 +O(hn) (9:2)on the second, and (h; g)n + 18r�c (c� 1)n3=2 +O�(c� 1)gh1=2n�+O(c2g3h2) (9:3)on the third.Proof. The �rst pass removes an average of 14�n=ch+O(1)�2 inversions from ch subarrays of sizebn=chc or dn=che; this proves (9.1). The second pass is equivalent to the second pass of (h; g; 1)-shellsort on c independent subarrays of sizes bn=cc or dn=ce. Equation (9.3) is Lemma 8. So thetheorem will follow if we can prove (9.2) in the case c = 1. And that case follows from [11, equation(32)], with the O(n) term replaced by O(n=kh) in the notation of that paper. (See also [7, secondedition, exercise 5.2.1{40.)Corollary. If h = �(n7=15), g = �(n1=5), and gcd(g; h) = 1, the running time of (h; g; 1)-shellsortis O(n23=15).Proof. The �rst pass takes time O(n2�7=15), by (9.1); the second takes O(n3=2+7=30�1=5) +O(n1+7=15), by (9.2); and the third takes O(n1+1=5+7=30) +O(n3=5+14=15) by (7.6) and (9.3).14



10. Two conjectures. Our estimate O(g3h2) for the di�erence between  (h; g)n and the averagenumber of third-pass inversions may not be the best possible. In fact, the authors conjecturethat the di�erence is at most O(g3h3=2). This sharper bound may perhaps follow from methodsanalogous to those in the proof of Lemma 8.If such a conjecture is valid, the running time of (h; g; 1)-shellsort will be O(n3=2) when h � n1=2and g � n1=4. A computer program was written to test this hypothesis by applying (h; g; 1)-shellsortto random arrays of n elements with h = g2 + 1 and n = g2h = g4 + g2. The following empiricalresults were obtained, to three signi�cant �gures:g inversions  (h; g)n g inversions=105  (h; g)n=1051 0� 0 0 17 36:6 � 2:36=32 37.32 7:12 � 2:09=100 7.5 18 51:7 � 3:35=32 52.63 94:4 � 13:6=100 98.3 19 71:5 � 4:81=32 72.94 563� 59:1=100 581 20 97:3 � 6:14=10 99.25 2210 � 195=100 2280 21 130� 8:93=10 1336 6740 � 560=100 6910 22 174� 12:3=10 1767 17200 � 1300=100 17600 23 226� 14:0=10 2308 38600 � 2820=100 39500 24 291� 16:8=10 2979 78900 � 5670=100 80600 25 368� 23:7=10 38010 149000 � 10600=100 152000 26 475� 29:1=10 48011 265000 � 17200=32 271000 27 595� 39:0=10 60312 447000 � 30300=32 458000 28 735� 44:9=10 75013 727000 � 49300=32 742000 29 922� 52:1=10 92614 1140000 � 75400=32 1160000 30 1110 � 74:0=10 114015 1730000 � 116000=32 1760000 31 1370 � 97:9=10 138016 2530000 � 166000=32 2590000 32 1650 � 101=10 1670(The inversion counts are given here in the form �� �=pr, where � and � are the empirical meanand standard derivation in r independent trials. For example, 10000 trials were made when g � 10,but only 100 trials were made when g � 20.) Both mean and standard derivation seem to begrowing proportionately to g6 � n3=2, with � � �=15 for g � 10.These data suggest also another conjecture, that the average number of inversions is �  (h; g)nwhen h and g are relatively prime. Indeed, the deviations from uniformity between A and A� shouldtend to cause fewer inversions, because A forces the balance condition Ykl(1) = n=h+O(1) for allk and l. This second conjecture obviously implies running time �(n3=2) when h = �(n1=2) andg = �(n1=4).11. More than three increments? It may be possible to extend this analysis to (h; g; f; 1)-shellsort, by analyzing the following stochastic algorithm. \Initialize two sets of counters (I0; I1;: : : ; Ig�1) and (J0; J1; : : : ; Jh�1) by setting Ij  j mod f and Jk = k mod g for all j and k. Thenexecute the following procedure n times: Choose a random k in the range 0 � k < h. Set j  Jkand i Ij ; then set Jk  (Jk + h) mod g and Ij  (Ij + g) mod f ."15
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