
ON THE SPACE Qp AND ITS DYADIC COUNTERPARTSVANTE JANSONAbstract. We de�ne a dyadic counterpart Qdp of Qp, and study some relationsbetween Qp and Qdp. For example, a function on T belongs to Qp if and onlyif (almost) all its translates belong to Qdp. Conversely, functions in Qp may beobtained by averaging translates of functions in Qdp.1. IntroductionThe space Qp, 0 < p < 1 was introduced in [1] as the Banach space of allanalytic functions in the unit disc � satisfyingsupw2�ZZ � jf 0(z)j2g(z; w)p dx dy <1; (1)where z = x + iy and g(z; w) = log j(1 � �wz)=(w � z)j. As is shown in [1], Qpis a proper subspace of BMOA (which is obtained by taking p = 1 in (1)), andQp1 ( Qp2 if 0 < p1 < p2 < 1.Ess�en and Xiao [4] showed that an analytic function f , in H1 say, belongs toQp if and only if its boundary values on the unit circle T satisfysupI jIj�p ZI ZI jf(x)� f(y)j2jx� yj2�p dx dy <1; (2)where I ranges over all intervals � T.We will in the sequel consider functions de�ned on T rather than �, and werede�ne Qp to be the space of all (measurable) functions on T that satisfy (2),analytic or not. (Analyticity is not important in (2); in fact, it was shown byEss�en and Xiao [4, Corollary 3.2] that a real function satis�es (2) if and only if itis the real part of (the boundary values of) an analytic function in Qp.) We de�nekfkQp to be the square root of the supremum in (2); this is a seminorm only, sincekfkQp = 0 if f is a.s. constant, and a proper norm is given by e.g. kfkQp + j RT f j.Note that Qp � BMO. (BMO can be de�ned by taking p = 2 in (2). In fact,it follows easily using the John{Nirenberg inequality that any p with 1 < p � 2yields BMO.)It is well-known that BMO has a dyadic counterpart BMOd. The purpose ofthis note is to de�ne a corresponding dyadic version Qdp of Qp, and to study somerelations between Qp and Qdp. 2. Main resultsWe will, for convenience, identify the circle T with the unit interval [0; 1), keep-ing in mind that subintervals may wrap around 0. In particular, our circle haslength 1. (The ambiguity in interpreting jx� yj in (2) is harmless.)A dyadic interval is an interval of the type [(m � 1)2�n; m2�n); let D = D(T)be the set of all dyadic subintervals of T (including T itself) and let Dn(T), n � 0,be the subset of the 2n dyadic intervals of length 2�n.1



2 SVANTE JANSONWe de�ne the dyadic distance �(x; y) between two points in T by�(x; y) = inffjIj : x; y 2 I 2 D(T)g:The space Qdp, 0 < p < 1, may now be de�ned as the space of all (measurable)functions f on T such thatsupI2D jIj�p ZI ZI jf(x)� f(y)j2�(x; y)2�p dx dy <1: (3)Again we de�ne a seminorm kfkQdp as the square root of the supremum, and anorm as this seminorm + j RT f j. Some equivalent de�nitions, and correspondingequivalent (semi)norms, are given in Section 4.Since �(x; y) � jx � yj, and the supremum in (3) is over a subset of the set ofintervals in (2), it follows immediately that Qp � Qdp. The inclusion is strict; forexample, it is easily seen that if f(x) = log x, 0 < x < 1, then f 2 Qdp (cf. thesimilar analytic example log(1 � z) in [4]), but f =2 BMO because of the in�nitejump at 0, and thus f =2 Qp.It is also immediate that Qdp � BMOd, which is obtained by taking p = 2 in(3). (In fact, the John{Nirenberg theorem again shows that any p with 1 < p � 2in (3) de�nes BMOd.)It is clear that one reason for the discrepancy between Qp and Qdp is that Qp istranslation (i.e. rotation) invariant whereas Qdp is not. Indeed, the next theoremsshow that a function belongs to Qp if and only if all its translates belong to Qdp.Remark. Although the theorems are phrased in terms of translating the function,it is obviously equivalent, and sometimes more natural, to instead consider thefunction as �xed and translate the dyadic partition used to de�ne Qdp.Let �t denote the translation operator �tf(x) = f(x� t).Theorem 1. Let 0 < p < 1. Then f 2 Qp if and only if �tf 2 Qdp for all t 2 Tand supt k�tfkQdp <1. Moreover, kfkQp � supt k�tfkQdp.(Here � means that the two sides are equivalent within constant factors thatmay depend on p.)The condition that �tf 2 Qdp for all t may be relaxed considerably.Theorem 2. Let 0 < p < 1. Then the following are equivalent.(i) f 2 Qp(ii) �tf 2 Qdp for all t 2 T(iii) �tf 2 Qdp for almost all t 2 T(iv) �tf 2 Qdp for t 2 E � T, with jEj > 0.It follows easily from the proof below that the median (or any other �xed quan-tile) of t 7! k�tfkQdp is an equivalent seminorm on Qp.We state two immediate corollaries of Theorem 2.Corollary 3. Let 0 < p < 1 and let f be a function on T. If f 2 Qp then�tf 2 Qdp for all t 2 T, while if f =2 Qp then �tf =2 Qdp for a.e. t 2 T.(The corresponding result for BMO is easy, see Lemma 7 below; the dual resultfor H1 (where `all' and `a.e.' are interchanged) is given in [2].)For 0 < q � 1, de�ne Lq(Qdp) as the space of all measurable functions F onT � T, such that F (t; �) 2 Qdp for a.e. t and kF (t; �)kQdp 2 Lq(T).



ON THE SPACE Qp AND ITS DYADIC COUNTERPART 3Remark. This is not the usual Lebesgue space of Banach space valued functions,de�ned as the closure of simple functions in the obvious norm. The problem isthat Qdp is not separable, and it is easily seen that if e.g. F (t; x) = 1[0 < x < t](where 1 denotes the indicator function), then F belongs to Lq(Qdp) for any q � 1with our de�nition, but kF (t; �)�F (s; �)kQdp � 1=4 for a.e. s and t, and thus thereis no separable subspace of Qdp that contains F (t; �) for a.e. t, as required by thestandard de�nition, see e.g. [3].Corollary 4. Let 0 < p < 1 and 0 < q � 1. Then f 2 Qp if and only if�tf(x) 2 Lq(Qdp).Again, an equivalent seminorm on Qp is given by k k�tfkQdpkLq .Conversely, if q > 1, starting with any function in Lq(Qdp), we may construct afunction in Qp as a suitable average.Theorem 5. Let 0 < p < 1 and 1 < q � 1. Suppose that F (t; x) 2 Lq(Qdp), andde�ne g(x) = RTF (t; x+ t) dt. Then g 2 Qp.Theorem 5 is an extension to Qp of a result by Garnett and Jones [5] for BMO.That result has important applications, since it enables several deep results forBMO to be shown as consequences of similar but much simpler results for BMOd[5]. We do not know if there are similar applications of Theorem 5.If we introduce the linear operator Tf(t; x) = f(x � t) (mapping functions onT to functions on T2), Corollary 4 shows that T de�nes an embedding of Qp intoLq(Qdp). Conversely, Theorem 5 shows if q > 1, then the adjoint averaging operatorT � : F 7! RTF (t; x + t) dt maps Lq(Qdp) into Qp. Moreover, T �T is the identityand TT � is a projection, which yields the following corollaries.Corollary 6. If 0 < p < 1 and 1 < q � 1, then Qp is isomorphic to thecomplemented subspace T (Qp) of Lq(Qdp).Corollary 7. If 0 < p < 1 and 1 < q � 1, then T � maps Lq(Qdp) onto Qp.The �nal theorem in this section gives a di�erent relation between Qp and Qdp.The example logx above of a function in Qdp nQp failed to be in Qp because it didnot belong to BMO; in fact, this is the only way to get such an example.Theorem 8. Let 0 < p < 1. Then Qp = Qdp \ BMO.3. PreliminariesThroughout the paper, p is a �xed number with 0 < p < 1. We let c and Cdenote unspeci�ed positive constants that may depend on p (but not on anythingelse).We de�ne, for any interval I and integrable function f ,f(I) = 1jIj ZI f;the mean of f on I, and 'f (I) = 1jIj ZI jf � f(I)j2;the square mean oscillation of f on I. Obviously, 'f(I) < 1 , f 2 L2(I); weextend the de�nition to all measurable functions f on I by letting 'f(I) = 1



4 SVANTE JANSONwhen f =2 L1(I). Recall that f 2 BMO if and only if supI 'f(I) < 1. Note thewell-known identities 1jIj ZI jf � aj2 = 'f(I) + jf(I)� aj2 (4)for any complex number a, and1jIj2 ZI ZI jf(x)� f(y)j2 dx dy = 2'f(I): (5)Moreover, if I is divided into two subintervals I 0 and I 00 of the same length 12 jIj,then jf(I)� f(I 0)j = jf(I)� f(I 00)j = 12 jf(I 0)� f(I 00)j and'f(I) = 12jI 0j ZI0 jf � f(I)j2 + 12jI 00j ZI00 jf � f(I)j2= 12�'f(I 0) + jf(I)� f(I 0)j2�+ 12�'f(I 00) + jf(I)� f(I 00)j2�= 12'f(I 0) + 12'f(I 00) + 14 jf(I 0)� f(I 00)j2: (6)In particular, jf(I)� f(I 0)j = 12 jf(I 0)� f(I 00)j � 'f(I)1=2: (7)Furthermore, if I � J , then by (4),'f(I) � 1jIj ZI jf � f(J)j2 � jJ jjIj'f (J): (8)We de�ned above dyadic intervals in T. Similarly, if I is any interval, dyadicor not, we let Dn(I), n � 0, denote the set of the 2n subintervals of length 2�njIjobtained by n successive bipartitions of I.We de�ne, for any interval I and a measurable function f on I, f (I) = 1Xk=0 XJ2Dk(I) 2�pk'f(J): (9)By (9) and (5), f (I) = 1Xk=0 XJ2Dk(I) 2�pk 12�2�kjIj��2 ZJ ZJ jf(x)� f(y)j2 dx dy= ZTZT�I(x; y)jf(x)� f(y)j2 dx dy; (10)where �I(x; y) = 12 1Xk=0 XJ2Dk(I) 2(2�p)kjIj�21[x; y 2 J ]: (11)Since x; y 2 J 2 Dk(I) implies jx� yj � jJ j = 2�kjIj, and thus 2k � jIj=jx� yj,�I(x; y) � X2k�jIj=jx�yj 2(2�p)kjIj�2 � C� jIjjx� yj�2�pjIj�2 = CjIj�pjx� yjp�2;furthermore �I(x; y) = 0 unless x; y 2 I. Consequently, f(I) � CjIj�p ZI ZI jf(x)� f(y)j2jx� yj2�p dx dy: (12)The converse is less obvious, but will be proved in Lemma 3 below.



ON THE SPACE Qp AND ITS DYADIC COUNTERPART 5If I is a dyadic interval, and x; y 2 I, then x; y 2 J for some J 2 Dk(I) if andonly if �(x; y) � 2�kjIj, and thus, by (11),�I(x; y) = 12 X2k�jIj=�(x;y) 2(2�p)kjIj�2 � � jIj�(x; y)�2�pjIj�2 = jIj�p�(x; y)p�2:Consequently, if I is a dyadic interval, f (I) � jIj�p ZI ZI jf(x)� f(y)j2�(x; y)2�p dx dy: (13)4. The dyadic spaceThe dyadic space Qdp was de�ned above by (3). We give here several equivalentde�nitions.Theorem 9. Let 0 < p < 1. Then f 2 Qdp if and only if supI2D  f (I) < 1.Moreover, supI2D  f (I)1=2 is a seminorm on Qdp, equivalent to kfkQdp as de�nedabove.Proof. Immediate by the de�nition and (13).We let Fn denote the �-�eld generated by the partition Dn(T); thus, if f 2L1(T), then E(f j Fn) is the function that is constant f(I) on each dyadic intervalI 2 Dn(T).Theorem 10. Let 0 < p < 1. If f 2 L1(T) and fn = E(f j Fn), then thefollowing are equivalent.(i) f 2 Qdp.(ii) For some M <1 and every n � 0,1Xk=0 2(1�p)k E�jf � fn+kj2 �� Fn� � M a.s.(iii) For some M <1 and every n � 0,1Xk=0 2(1�p)k E�jfn+k+1 � fn+kj2 �� Fn� � M a.s.Proof. If I 2 Dn(T) and J 2 Dk(I) � Dn+k, then 'f(J) = jJ j�1 RJ jf � fn+kj2,and jJ j = 2�kjIj. Hence, by the de�nition (9), f (I) = 1Xk=0 2�pk 2kjIj ZI jf � fn+kj2 = 1Xk=0 2(1�p)k E�jf � fn+kj2 �� Fn�(x)for x 2 I, which together with Theorem 9 shows (i), (ii).Furthermore,E�jf � fn+kj2 �� Fn� = 1Xj=k E�jfn+j+1 � fn+jj2 �� Fn�;and thus, interchanging the order of summation,1Xk=0 2(1�p)k E�jf � fn+kj2 �� Fn� = 1Xj=0 jXk=0 2(1�p)k E�jfn+j+1 � fn+jj2 �� Fn�� 1Xj=0 2(1�p)j E�jfn+j+1 � fn+jj2 �� Fn�;



6 SVANTE JANSONwhich yields the equivalence of (ii) and (iii).Again, equivalent seminorms on Qdp may de�ned from (ii) and (iii), by taking thesquare roots of the smallest possible M .5. ProofsThe proofs are based on the following fundamental lemma. Note that this lemmaand the two following ones are valid for (�nite) intervals in R as well as in T; wewill pass between the two cases without further comment.Lemma 1. Let I be an interval and let I 0 and I 00 be two intervals such that I 0 andI 00 are adjacent, jI 0j = jI 00j = jIj and I � I 0 [ I 00. Then, for any f 2 L1(I 0 [ I 00),'f(I) � 'f(I 0) + 'f(I 00) + jf(I 0)� f(I 00)j2; (14) f (I) � C� f (I 0) +  f (I 00) + jf(I 0)� f(I 00)j2�: (15)Proof. It follows from (8) and (6) that'f(I) � jI 0 [ I 00jjIj 'f (I 0 [ I 00) = 'f(I 0) + 'f(I 00) + 12 jf(I 0)� f(I 00)j2;proving (14).For (15), we assume for simplicity that I 0 = [0; 1) and I 00 = [1; 2); this is noloss of generality by homogeneity. For each j � 0, let fIj;ig2j+1i=1 be the 2j+1 dyadicintervals of length 2�j contained in I 0 [ I 00 (i.e., Dj(I 0) [ Dj(I 00)), arranged in thenatural order. If J 2 Dj(I), then J � Ij;i [ Ij;i+1 for some i, and thus by (14)applied to J , 'f(J) � 'f (Ij;i) + 'f(Ij;i+1) + jf(Ij;i)� f(Ij;i+1)j2:The 2j di�erent J 2 Dj(I) yield di�erent values of i, and summing over all j andJ we thus obtain f (I) = 1Xj=0 XJ2Dj(I) 2�pj'f(J)� 2 1Xj=0 2j+1Xi=1 2�pj'f(Ij;i) + 1Xj=0 2j+1�1Xi=1 2�pjjf(Ij;i)� f(Ij;i+1)j2: (16)The �rst double sum on the right hand side of (16) is just  f (I 0)+ f(I 00). In orderto estimate the �nal sum, consider a pair (j; i) with j � 0 and 1 � i < 2j+1 � 1.Let I� be the smallest dyadic interval that contains Ij;i [ Ij;i+1, and let the lengthof I� be 2�j+m, where m � 1. (Recall that jIj;ij = 2�j.) Moreover, for 0 � l � m,let Jl and Kl be the dyadic intervals of length 2�j+l that contain Ij;i and Ij;i+1,respectively; thus Ij;i = J0 � J1 � � � � � Jm = I� and Ij;i+1 = K0 � � � � � Km =I�. Using the Cauchy{Schwarz inequality and (7), we obtainjf(Ij;i)�f(Ij;i+1)j2 � � mXl=1 jf(Jl�1)� f(Jl)j+ mXl=1 jf(Kl)� f(Kl�1)j�2� �2 1Xl=1 l�2�� mXl=1 l2jf(Jl)� f(Jl�1)j2 + mXl=1 l2jf(Kl)� f(Kl�1)j2�� C mXl=1 l2�'f(Jl) + 'f(Kl)�: (17)



ON THE SPACE Qp AND ITS DYADIC COUNTERPART 7If i 6= 2j, then Ij;i [ Ij;i+1 � I 0 or I 00, and thus jI�j � 1 and m � j. If i = 2j,however, then I� = [0; 2) and m = j +1; in this case we modify (17) by observingthat Jj = I 0 and Kj = I 00 and thusjf(Ij;i)� f(Ij;i+1)j � jXl=1 jf(Jl�1)� f(Jl)j+ jXl=1 jf(Kl)� f(Kl�1)j+ jf(I 0)� f(I 00)jwhich by the same argument yieldsjf(Ij;i)� f(Ij;i+1)j2 � C jXl=1 l2�'f(Jl) + 'f (Kl)�+ Cjf(I 0)� f(I 00)j2: (18)We now keep j � 0 �xed and sum (17) or (18) (when i = 2j) for 1 � i � 2j+1�1.We observe that the intervals Jl and Kl that appear belong to Dj�l(I 0)[Dj�l(I 00),with 1 � l � j. Moreover, each dyadic interval J in Dj�l(I 0) [ Dj�l(I 00) appearsat most four times as a Jl or a Kl (viz. when, in Dl(J), Ij;i is the rightmostinterval, Ij;i+1 is the leftmost interval or Ij;i and Ij;i+1 are the two middle intervals).Consequently, since (18) is used only once,2j+1�1Xi=1 jf(Ij;i)� f(Ij;i+1)j2 � C jXl=1 XJ2Dj�l(I0)[Dj�l(I00) l2'f(J) + Cjf(I 0)� f(I 00)j2:Summing over j we �nally obtain, substituting j = k + l,1Xj=0 2j+1�1Xi=1 2�pjjf(Ij;i)� f(Ij;i+1)j2� C 1Xl=1 1Xk=0 XJ2Dk(I0)[Dk(I00) 2�pk�pll2'f(J) + C 1Xj=0 2�pjjf(I 0)� f(I 00)j2= C f(I 0) + C f(I 00) + Cjf(I 0)� f(I 00)j2;which by (16) completes the proof of (15).We proceed with further results on  f (I).Lemma 2. For any interval I and f 2 L1(I),jIj�p ZI ZI jf(x)� f(y)j2jx� yj2�p dx dy � C 12jIj Z jIj�jIj  f (I + t) dt+ C f (I):Proof. By (10) and Fubini,12jIj Z jIj�jIj  f(I + t) dt = ZTZT 12jIj Z jIj�jIj �I+t(x; y) dt jf(x)� f(y)j2 dx dy:This and (10) show that it su�ces to verify12jIj Z jIj�jIj �I+t(x; y) dt+ �I(x; y) � cjIj�pjx� yjp�2; x; y 2 I: (19)



8 SVANTE JANSONFirst, suppose that x; y 2 I with jx � yj � 12 jIj and let l � 0 be such that2�l�2jIj < jx� yj � 2�l�1jIj. Then, by (11),12jIj Z jIj�jIj �I+t(x; y) dt � 12jIj Z jIj�jIj 12 XJ2Dl(I+t) 2(2�p)ljIj�21[x; y 2 J ] dt= 2(2�p)l4jIj3 XJ2Dl(I) Z jIj�jIj 1[x; y 2 J + t] dt� cjx� yjp�2jIj2�p�3 XJ2Dl(I) Z jIj�jIj 1[x; y 2 J + t] dt:It is easily seen that the �nal integral, for each J , equals jJ j � jx� yj � 12 jJ j, andthus the sum over J is at least 12 jIj. Hence (19) holds for jx� yj � 12 jIj.Finally, if x; y 2 I with jx� yj > 12 jIj, then, taking k = 0 in (11),�I(x; y) � 12 jIj�2 � cjIj�pjx� yjp�2and (19) holds in this case too.Lemma 3. For any interval I and f 2 L1(I),c f (I) � jIj�p ZI ZI jf(x)� f(y)j2jx� yj2�p dx dy � C f (I):Proof. The left inequality is just (12).For the right inequality, we may assume that f is de�ned on R with f constant= f(I) outside I. Let I� and I+ be the two intervals of the same length as I thatare adjacent to I on the left and right, respectively. Note that then  f (I�) = f (I+) = 0 and that f(I�) = f(I+) = f(I).For every t with jtj < jIj, either I + t � I� [ I or I + t � I [ I+, and in bothcases Lemma 1 yields  f (I + t) � C f (I). The result follows by Lemma 2.An immediate consequence of Lemma 3 is another characterization of Qp.Lemma 4. Qp equals the space of all functions f on T such that supI�T f (I) is�nite.We will use the fact that it here su�ces to consider intervals I with dyadiclengths. (Note that we do not require I to be dyadic, only its length. Restrictionto dyadic intervals would give Qdp by Theorem 9.)Lemma 5. Qp equals the space of all functions f on T such that supI  f (I) <1,where I ranges over the set of all intervals in T with dyadic length 2�n, n = 0; 1; : : :Proof. Since every interval I is contained in an interval J with dyadic lengthjJ j < 2jIj, it is obvious that it su�ces to consider intervals of dyadic lengths in(2). The proof is completed by Lemma 3.Proof of Theorem 1. Since every interval of dyadic length is the translate of adyadic interval, Lemma 5 shows that f 2 Qp if and only if supt2T supI2D  f (I�t) <1. Moreover, using Theorem 9,kfk2Qp � supt2T supI2D  f (I � t) = supt2T supI2D  �tf(I) � supt2T k�tfk2Qdp;and the result follows.



ON THE SPACE Qp AND ITS DYADIC COUNTERPART 9Proof of Theorem 8. As remarked above, the inclusion Qp � Qdp \ BMO followsdirectly from the de�nitions.Conversely, suppose that f 2 Qdp \BMO. Let I be an interval of dyadic length.Then there exist two adjacent dyadic intervals I 0 and I 00 of the same length jIjsuch that I � I 0 [ I 00. Lemma 1 yields f (I) � C f (I 0) + C f (I 00) + Cjf(I 0)� f(I 00)j2:The �rst two terms on the right hand side are bounded by Ckfk2Qdp by Theorem 9,and the last term is bounded by C'f (I 0 [ I 00) � Ckfk2BMO by (7). Hence  f(I) isbounded uniformly for all intervals I of dyadic length, and the result follows byLemma 5.Lemma 6. Let I � T be an interval of length 2�n, n � 1, and let m(t), for t 2 T,be the smallest integer such that the translated interval I + t is contained in adyadic interval of length 2�n+m(t). Thenjft : m(t) > Mgj � 2�M ; M = 0; 1; : : : (20)In particular, for every r <1,ZTm(t)r dt � 1Xm=1mr21�m <1:Proof. Clearly, m(t) � n, so (20) is trivial for M � n. For 0 �M < n, it is easilyseen that ft : m(t) > Mg consists of 2n�M intervals of length 2�n, and thus thereis equality in (20).In particular, jft : m(t) =Mgj � 21�M , and the �nal estimate follows.Lemma 7. Suppose that �tf 2 BMOd for t 2 E, where E � T is a set withpositive measure. Then f 2 BMO.Proof. Let M � 1 be such that 2�M < jEj. Then, since t 7! k�tfkBMOd ismeasurable, there exists a number A <1 and a subset E 0 � E with jE 0j > 2�Msuch that k�tfkBMOd � A for t 2 E 0.Suppose that I is an interval of dyadic length 2�n with n �M , and let m(t) beas in Lemma 6. By (20) and our assumptions, jft : m(t) > Mgj � 2�M < jE 0j,and thus there exists a t 2 E 0 such that m(t) � M . Then k�tfkBMOd � A andI+ t is contained in a dyadic interval J with jJ j=jIj = 2m(t) � 2M , and thus, using(8), 'f(I) = '�tf (I + t) � jJ jjIj'�tf(J) � 2Mk�tfk2BMOd � 2MA2:Consequently, 'f(I) is uniformly bounded for all I of dyadic length � 2�M ; thiseasily implies, using (6) and (8), that 'f(I) is uniformly bounded for all intervalsI � T, i.e. f 2 BMO.Proof of Theorem 2. By Theorem 1, it remains only to show that (iv)) (i). Hence,assume that (iv) holds. Since Qdp � BMOd, Lemma 7 shows that f 2 BMO.Now, choose some t 2 E. Since BMO is translation invariant, also �tf 2 BMO;furthermore, �tf 2 Qdp by assumption. Hence �tf 2 Qp by Theorem 8, and thusf 2 Qp since Qp is translation invariant.Proof of Theorem 5. We write ft(x) = F (t; x) and ht(x) = F (t; x+ t).



10 SVANTE JANSONSuppose that I is an interval of dyadic length 2�n, n � 1. We �x t 2 T and let(ignoring the case when I + t is dyadic) I 0 and I 00 be the two dyadic intervals oflength 2�n that intersect I. Then I � I 0 [ I 00 and Lemma 1 yields ht(I)1=2 =  ft(I + t)1=2 � C� ft(I 0)1=2 +  ft(I 00)1=2 + jft(I 0)� ft(I 00)j�� C�kftkQdp + jft(I 0)� ft(I 00)j�: (21)Let m(t) be as in Lemma 6, and let, for l = 0; : : : ; m(t), Jl and Kl be the dyadicintervals of length 2�n+l that contain I 0 and I 00, respectively. Then Jm(t) = Km(t)and, using (7),jft(I 0)� ft(I 00)j � m(t)Xl=1 �jf(Jl�1)� f(Jl)j+ jf(Kl)� f(Kl�1)j�� m(t)Xl=1 �'ft(Jl)1=2 + 'ft(Kl)1=2�� m(t)kftkQdp:Consequently, (21) yields  ht(I)1=2 � Cm(t)kftkQdp:Since g = RTht dt and  f (I)1=2 may be regarded as an L2 norm, we may useMinkowski's inequality and obtain g(I)1=2 � ZT ht(I)1=2 dt � C ZTm(t)kftkQdp dt:Consequently, by H�older's inequality, choosing r <1 such that 1=r + 1=q = 1, g(I)1=2 � Ckm(t)kLr(T)kFkLq(Qdp):By Lemma 6, this shows that  g(I) is uniformly bounded when I is an intervalof dyadic length � 1=2. The case I = T follows easily (we omit the details), andthus g 2 Qp by Lemma 5. References[1] R. Aulaskari, J. Xiao, R.H. Zhao, On subspaces and subsets of BMOA and UBC. Analysis15 (1995), 101{121.[2] B. Davis, Hardy spaces and rearrangements. Trans. Amer. Math. Soc. 261 (1980), 211{233.[3] N. Dunford & J.T. Schwartz, Linear Operators, Part I. Interscience, New York 1958.[4] M. Ess�en and J. Xiao, Some results on Qp spaces, 0 < p < 1. J. reine angew. Math. 485(1997), 173{195.[5] J.B. Garnett and P.W. Jones, BMO from dyadic BMO. Paci�c J. Math. 99 (1982), 351{371.Department of Mathematics, Uppsala University, PO Box 480, S-751 06 Uppsala,SwedenE-mail address : svante.janson@math.uu.se


