ON THE SPACE (), AND ITS DYADIC COUNTERPART
SVANTE JANSON

ABSTRACT. We define a dyadic counterpart Qg of @y, and study some relations
between (), and QZ. For example, a function on T belongs to @, if and only
if (almost) all its translates belong to QZ. Conversely, functions in (), may be
obtained by averaging translates of functions in Qg.

1. INTRODUCTION

The space @), 0 < p < 1 was introduced in [1] as the Banach space of all
analytic functions in the unit disc A satisfying

sup [ [ 1Pt drdy < o, (1)
wEA A
where z = x + iy and g(z,w) = log|(1 — wz)/(w — z)|. As is shown in [1], @,
is a proper subspace of BMOA (which is obtained by taking p = 1 in (1)), and
Qpl ng2 if0<p <py<1.

Essén and Xiao [4] showed that an analytic function f, in H' say, belongs to
@, if and only if its boundary values on the unit circle T satisfy

. |f(z) = f(y)P . ~
St}p|f| /f/f—|fr—y|2 dx dy < oo, (2)

p

where I ranges over all intervals C T.

We will in the sequel consider functions defined on T rather than A, and we
redefine @), to be the space of all (measurable) functions on T that satisfy (2),
analytic or not. (Analyticity is not important in (2); in fact, it was shown by
Essén and Xiao [4, Corollary 3.2] that a real function satisfies (2) if and only if it
is the real part of (the boundary values of) an analytic function in @),.) We define
| fllq, to be the square root of the supremum in (2); this is a seminorm only, since
1 fllg, = 01if f is a.s. constant, and a proper norm is given by e.g. || fllo, + | [7 fl-

Note that @, € BMO. (BMO can be defined by taking p = 2 in (2). In fact,
it follows easily using the John-Nirenberg inequality that any p with 1 < p < 2
yields BMO.)

It is well-known that BMO has a dyadic counterpart BMOd. The purpose of
this note is to define a corresponding dyadic version Qg of @), and to study some

relations between (), and Qg.

2. MAIN RESULTS

We will, for convenience, identify the circle T with the unit interval [0, 1), keep-
ing in mind that subintervals may wrap around 0. In particular, our circle has
length 1. (The ambiguity in interpreting |z — y| in (2) is harmless.)

A dyadic interval is an interval of the type [(m — 1)27",m2™"); let D = D(T)
be the set of all dyadic subintervals of T (including T itself) and let D, (T), n > 0,

be the subset of the 2" dyadic intervals of length 27",
1
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We define the dyadic distance 6(z,y) between two points in T by
d(z,y) =1inf{|I|: z,y € I € D(T)}.

The space Qg, 0 < p < 1, may now be defined as the space of all (measurable)
functions f on T such that

sup|[|”/1/[%dxdy<oo. (3)

TeD

Again we define a seminorm ||f||os4 as the square root of the supremum, and a
norm as this seminorm + | [ f|. Some equivalent definitions, and corresponding
equivalent (semi)norms, are given in Section 4.

Since §(z,y) > |x — y|, and the supremum in (3) is over a subset of the set of
intervals in (2), it follows immediately that @, C Qg. The inclusion is strict; for
example, it is easily seen that if f(x) = logz, 0 < z < 1, then f € Qg (cf. the
similar analytic example log(1 — z) in [4]), but f ¢ BMO because of the infinite
jump at 0, and thus f ¢ Q).

It is also immediate that Qg C BMOd, which is obtained by taking p = 2 in
(3). (In fact, the John-Nirenberg theorem again shows that any p with 1 < p <2
in (3) defines BMOd.)

It is clear that one reason for the discrepancy between (), and Qg is that @), is
translation (i.e. rotation) invariant whereas Q¢ is not. Indeed, the next theorems
show that a function belongs to @), if and only if all its translates belong to Qg.

Remark. Although the theorems are phrased in terms of translating the function,
it is obviously equivalent, and sometimes more natural, to instead consider the
function as fixed and translate the dyadic partition used to define Qg.

Let 7; denote the translation operator 7.f(z) = f(z — t).

Theorem 1. Let 0 < p < 1. Then f € Q, if and only if 7,f € Qg forallt €T
and sup, ||7f|| g4 < 0o. Moreover, || f|lq, < sup; || || qa-

(Here < means that the two sides are equivalent within constant factors that
may depend on p.)
The condition that 7, f € Qg for all £ may be relaxed considerably.

Theorem 2. Let 0 < p < 1. Then the following are equivalent.
(i) f €@y

(i) 7f € Qf for allt € T

(iii) 7f € Qf for almost all t € T

(iv) nf € Qf for t € E CT, with |E| > 0.

It follows easily from the proof below that the median (or any other fixed quan-
tile) of ¢ — [|7; f{|a is an equivalent seminorm on Q.
We state two immediate corollaries of Theorem 2.

Corollary 3. Let 0 < p < 1 and let f be a function on T. If f € Q, then
Tf € Qg for all t € T, while if f ¢ Q, then nf ¢ Qg for a.e. t € T.

(The corresponding result for BMO is easy, see Lemma 7 below; the dual result
for H' (where ‘all’ and ‘a.e.’ are interchanged) is given in [2].)

For 0 < ¢ < o0, define Lq(Qg) as the space of all measurable functions F' on
T x T, such that F(t,) € Qg for a.e. t and [|[F(t,-)||lgs € L(T).
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Remark. This is not the usual Lebesgue space of Banach space valued functions,
defined as the closure of simple functions in the obvious norm. The problem is
that Q7 is not separable, and it is easily seen that if e.g. F(t,z) = 1[0 < z < 1]
(where 1 denotes the indicator function), then F' belongs to Lq(Qg) for any ¢ < oo
with our definition, but ||F'(¢,-) — F'(s,-)|lgz > 1/4 for a.e. s and ¢, and thus there
is no separable subspace of Qg that contains F(¢,-) for a.e. t, as required by the
standard definition, see e.g. [3].

Corollary 4. Let 0 < p < 1 and 0 < ¢ < oco. Then f € Q, if and only if
nf(x) € Lq(Qg)-

Again, an equivalent seminorm on @), is given by || [|7.f||qa/lze-

Conversely, if ¢ > 1, starting with any function in Lq(Qg), we may construct a
function in ), as a suitable average.

Theorem 5. Let 0 < p <1 and1 < q < oco. Suppose that F(t,r) € Lq(Qg), and
define g(x) = [ F(t,x +t)dt. Then g € Q,.

Theorem 5 is an extension to @, of a result by Garnett and Jones [5] for BMO.
That result has important applications, since it enables several deep results for
BMO to be shown as consequences of similar but much simpler results for BMOd
[5]. We do not know if there are similar applications of Theorem 5.

If we introduce the linear operator T'f(t,z) = f(x — t) (mapping functions on
T to functions on T?), Corollary 4 shows that T defines an embedding of @, into
Lq(Qg). Conversely, Theorem 5 shows if ¢ > 1, then the adjoint averaging operator
T*: F v [LF(t,x +t)dt maps LY(Q}) into Q,. Moreover, T*T is the identity
and TT* is a projection, which yields the following corollaries.

Corollary 6. If 0 < p < 1 and 1 < q < oo, then Q, is isomorphic to the
complemented subspace T(Qp) of LY(Qf).

Corollary 7. If 0 <p <1 and 1< q < oo, then T* maps Lq(Qg) onto @Q,.

The final theorem in this section gives a different relation between @), and Qg.

The example log z above of a function in Qg \ @, failed to be in @), because it did
not belong to BMO; in fact, this is the only way to get such an example.

Theorem 8. Let 0 < p < 1. Then Q, = Q4 N BMO.

3. PRELIMINARIES

Throughout the paper, p is a fixed number with 0 < p < 1. We let ¢ and C
denote unspecified positive constants that may depend on p (but not on anything
else).

We define, for any interval I and integrable function f,

1
I):m/lf,
w(nzﬁ/lv—f(f)?

the square mean oscillation of f on I. Obviously, ¢(I) < co & f € L*(I); we
extend the definition to all measurable functions f on I by letting ¢¢(I) = oo

the mean of f on I, and
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when f ¢ L'(I). Recall that f € BMO if and only if sup; p;(I) < oo. Note the
well-known identities

1
i / = aP = op(D) + |£(I) — a? (1)
for any complex number a, and
7 [ 1) = £ dedy = 2,1, )

Moreover, if I is divided into two subintervals I” and I” of the same length $|I],

then | f(I) = fF(I")] = [f(1) = (I”)|—2|f(1’)—f(f”)|and

) = 5177 1= 1P+ g [ 1=

= 5(es(I) + 1) = FT)7) + (Spf(I”)‘Hf() FaMF)

<Pf

Z%w(f) sor(I") + 1A = FI)P. (6)
In particular,
If(1) = fU)] = l| (I') = FU")] < (D). (7)
Furthermore, if I C J, then by (4
< Ml
< / £ = P < o). )

We defined above dyadic intervals in T. Similarly, if I is any interval, dyadic
or not, we let D, (I), n > 0, denote the set of the 2" subintervals of length 27" |I|
obtained by n successive bipartitions of .

We define, for any interval I and a measurable function f on I,

Z D 2Rpp(T) 9)

k= UJGDk )

By (9) and (5),

= Z 2 M) [ [ 1) - fP ey

k=0 JeDy(

- / / s (e, )| f () — F () da dy, (10)

where
Z Z 2P 11721z, y € J]. (11)
k=0 JEDk
Since 2,y € J € Dy(I) implies |:v—y| < |J| = 27¥|1|, and thus 2¥ < |I|/|z —y],
I 2—p
e € S0 20 < () = el -y
k |1‘ - y|
26 <|1)/ 2|

furthermore oy (x,y) = 0 unless z,y € I. Consequently,

br(I) < CUl”/f/f%dxdy- (12)

The converse is less obvious, but will be proved in Lemma 3 below.
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If I is a dyadic interval, and =,y € I, then z,y € J for some J € Dy (I) if and
only if §(x,y) < 27%|I|, and thus, by (11),

_ _ Il \2P _ _
e =4 5 2 = () = (e,

2k<[11/d(z.y) ’

Consequently, if I is a dyadic interval,

Bp(T) = |f|—p/1/1%dmy. (13)

4. THE DYADIC SPACE

The dyadic space Qg was defined above by (3). We give here several equivalent
definitions.

Theorem 9. Let 0 < p < 1. Then f € QU if and only if sup;cpp(I) < oo,
Moreover, sup;cpp(I)? is a seminorm on Q2, equivalent to |fllgz as defined
above.

Proof. Immediate by the definition and (13). O

We let F,, denote the o-field generated by the partition D,(T); thus, if f €
L'(T), then E(f | F,) is the function that is constant f(I) on each dyadic interval
I € D,(T).

Theorem 10. Let 0 < p < 1. If f € LY(T) and f, = E(f | Fn), then the
following are equivalent.

(i) f e

(ii) For some M < oo and every n > 0,

22 CPRE(f = fupnl® | Fo) <M a.s.

(iii) For some M < oo and every n > 0,

ZZ |fn+k+1 - fn+k| ‘ F, ) < M a.S.

k=0
Proof. If I € Dy(T) and J € Dy(I) C Dy, then op(J) = |J|7" [ |f — fasrl®
and |J| = 27%|I|. Hence, by the definition (9)

o)=Y 242 17~ fust —Zzlp’“Eu fukl? | 2)(@)

k=0

for x € I, which together with Theorem 9 shovvs (i) & (ii).
Furthermore,

E(If = faskl” | 7o) =D E(lfarjsr — faril® | Fn),
=k

and thus, interchanging the order of summation,

00 J
ZQ (1-p)k |f Soikl? ‘-7'— :ZZQ |fn+J+1 Fassl” ‘ ‘7:")
7=0 k=0
= 22 |fn+9+1 fn+j|2 ‘ fn)’

Jj=0
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which yields the equivalence of (ii) and (iii). O
Again, equivalent seminorms on @Qf may defined from (ii) and (iii), by taking the
square roots of the smallest possible M.

5. PROOFS

The proofs are based on the following fundamental lemma. Note that this lemma
and the two following ones are valid for (finite) intervals in R as well as in T; we
will pass between the two cases without further comment.

Lemma 1. Let I be an interval and let I' and I" be two intervals such that I' and
I" are adjacent, |I'| = |I"| =|I| and I C I' UI". Then, for any f € L*(I' UT"),

pr(I) < op(I') + o (I") + | F(I') = FU), (14)
Up(I) < C(&p(I) + e (I") + 1 (T) = FA)F). (15)
Proof. Tt follows from (8) and (6) that

! n
ortn < g o0 ) = o) 4 o) 4 31500 - 1P,
proving (14).

For (15), we assume for simplicity that I’ = [0,1) and I” = [1,2); this is no
loss of generality by homogeneity. For each j > 0, let {I;;}; 2" be the 27! dyadic
intervals of length 277 contained in I' U I" (i.e., D;(I') U D, (I”)) arranged in the
natural order. If J € D;(I), then J C I;; U Ij,i+1 for some 7, and thus by (14)
applied to .J,

0i(T) < orLi) + (L) + 1 f(Lig) — f (L)
The 27 different J € D;(I) yield different values of i, and summing over all j and
J we thus obtain

Z Z 2 Ppp(J

J=0 JeD;(
oo 20+t 0o 20+1_q
<2) ) 27l +Z Z 2P f(L) = F(Lae). (16)
7=0 =1 =

The first double sum on the right hand side of (16) is just 1 ¢(I")+1¢(I"). In order
to estimate the final sum, consider a pair (j,i) with j > 0 and 1 <4 < 27+t — 1.
Let I* be the smallest dyadic interval that contains I;; U I;;41, and let the length
of I* be 277%™ where m > 1. (Recall that |I;;| = 277.) Moreover, for 0 <1 < m,
let J; and K, be the dyadic intervals of length 277+ that contain I;; and I;;,4,
respectively; thus I;; = JoyC i C---CJ,=I1"and [;;;, = Ky C --- C K,,, =
I*. Using the Cauchy—Schwarz inequality and (7), we obtain

£ (T3~ F(Tjia)] (Zwu PO+ DD IR — F(K)])

< (23007) (10 - S0 + P15 - £ (5P

<O P (ps (D) + or(K)).

(17)
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If i # 27, then I;; Ul;;sy C I' or I", and thus [I*| < 1 and m < j. If i = 27,
however, then I* = [0,2) and m = j + 1; in this case we modify (17) by observing
that J; = I and K; = I" and thus

[FT30) = FTa)] < D1 (Tia) = FUD L+ D L) = FIEC)]+ () = )]

which by the same argument yields

[ (Tjs) = FTa) P < C Y P(os () + o5 (K)) + CLAUT) = FUIMP. - (18)

=1

We now keep j > 0 fixed and sum (17) or (18) (when i = 27) for 1 < ¢ < 277! -1,
We observe that the intervals J; and K that appear belong to D;_;(I")UD,_;(I"),
with 1 <[ < j. Moreover, each dyadic interval .J in D;_;(I') U D;_;(I") appears
at most four times as a J; or a K; (viz. when, in D;(J), [;; is the rightmost
interval, I; ;1 is the leftmost interval or I;; and I, ;41 are the two middle intervals).
Consequently, since (18) is used only once,

20+l

Z F(L;0) — f(Tj00)] <OZ > Pop(J) + C|f(I) — FI")[%

I=1 JeD;_y(I')UD;_i(I")

Summing over j we finally obtain, substituting 7 = k + [,

oo 2itl_q

> D 2 = FL)

7=0 =1
SO DL TPy +OZ2 PIFI) — ()P
I=1 k=0 JED,(I')UD.(I")
= CYy(I') + Cop(I") + CIA(IT) = FT")P,
which by (16) completes the proof of (15). O

We proceed with further results on ¢ (I).

Lemma 2. For any interval I and f € L'(I),

L
|I|/ %dxdy<02|[| |y DTt Cug(D),

Proof. By (10) and Fubini,
7| 1] )
g et nie= [ o [ vt ) - s drdy.
This and (10) show that it suffices to verify

I
2|I|/ arp(t,y) dt +ar(z,y) > | Ple —yP?, wyel. (19)
I
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First, suppose that =,y € I with |z —y| < $|I| and let [ > 0 be such that
27721 < |z — y| < 27'7Y1|. Then, by (11),

1 iy
2Pl 11721 J)dt
sigi [ et _QM/‘ S 2y €

I7| 11 2 TeDI(T+1)
7]
| | s -

I
> clz —y|P 212 PR Z / 1[z,y € J +t]dt.

JeD(

It is easily seen that the final integral, for each J, equals |J| — |z — y| > $|J|, and
thus the sum over J is at least £|I|. Hence (19) holds for |z —y| < $|I].
Finally, if z,y € I with |z — y| > 1|1], then, taking k¥ = 0 in (11),

ar(w,y) 2 511172 2 e[| P|lz -y~
and (19) holds in this case too. O
Lemma 3. For any interval I and [ € LI(I)

o < i [ [EOTOE dvay < co

Proof. The left inequality is just (12).

For the right inequality, we may assume that f is defined on R with f constant
= f(I) outside I. Let I_ and I, be the two intervals of the same length as I that
are adjacent to I on the left and right, respectively. Note that then ¢¢(I_) =
Us(I,) = 0 and that f(I) = f(I,) = f(I)

For every ¢ with |t| < |I|, either I+t C I UT or I+t C IUI,, and in both
cases Lemma 1 yields ¢¢(I +t) < Cy¢(I). The result follows by Lemma 2. O

An immediate consequence of Lemma 3 is another characterization of Q).

Lemma 4. Q, equals the space of all functions f on T such that sup;crs(I) is
finite. - ]

We will use the fact that it here suffices to consider intervals I with dyadic
lengths. (Note that we do not require I to be dyadic, only its length. Restriction
to dyadic intervals would give Qd by Theorem 9.)

Lemma 5. ), equals the space of all functions f on T such that sup; wf (I) < o0,
where I ranges over the set of all intervals in T with dyadic length2™™, n =0,1,...

Proof. Since every interval I is contained in an interval J with dyadic length
|.J| < 2|I|, it is obvious that it suffices to consider intervals of dyadic lengths in
(2). The proof is completed by Lemma 3. O

Proof of Theorem 1. Since every interval of dyadic length is the translate of a
dyadic interval, Lemma 5 shows that f € @), if and only if sup,crsup;ep ¥ (I—t) <
0o. Moreover, using Theorem 9,

111G, = supsup (I —t) = sup Sup v, (I) = sup I72f NG
teT IeD teT I teT

and the result follows. O
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Proof of Theorem 8. As remarked above, the inclusion @, C Qg N BMO follows
directly from the definitions.

Conversely, suppose that f € Qz N BMO. Let I be an interval of dyadic length.
Then there exist two adjacent dyadic intervals I' and I" of the same length |I|
such that I C I'U I". Lemma 1 yields

ve(I) < Cp(I') + Cpp(I") + CLF(I) = f(T") .

The first two terms on the right hand side are bounded by C||f||2Qg by Theorem 9,

and the last term is bounded by Co;(I' UI") < C||fll3mo by (7). Hence ¢(I) is
bounded uniformly for all intervals I of dyadic length, and the result follows by
Lemma 5. U

Lemma 6. Let I C T be an interval of length 27", n. > 1, and let m(t), fort € T,
be the smallest integer such that the translated interval I + t is contained in a
dyadic interval of length 2= "T™®)  Then

[{t:m(t) > M}| <27, M=0,1,... (20)

In particular, for every r < oo,

/m(t)’" dt < Z m'2'™ < oo.
T m=1

Proof. Clearly, m(t) < n, so (20) is trivial for M > n. For 0 < M < n, it is easily
seen that {t : m(t) > M} consists of 2" ™ intervals of length 27, and thus there
is equality in (20).

In particular, |{t : m(t) = M}| < 2'=™and the final estimate follows. O

Lemma 7. Suppose that f € BMOd fort € E, where E C T is a set with
positive measure. Then f € BMO.

Proof. Let M > 1 be such that 27 < |E|. Then, since ¢t — ||7.f||zmoq is
measurable, there exists a number A < oo and a subset E' C E with |E'| > 2
such that ||7f||gvoa < A for t € E'.

Suppose that I is an interval of dyadic length 27" with n > M, and let m(t) be
as in Lemma 6. By (20) and our assumptions, [{t : m(t) > M}| < 2™ < |F'|,
and thus there exists a ¢ € E' such that m(t) < M. Then ||7.f||Bmoa < A and
I+t is contained in a dyadic interval .J with |J|/|T| = 2™® < 2™ and thus, using

(8),
|71

pr(I) = rf(I+1) < m%f(J) < 2Y||7fllEnoa < 2742
Consequently, () is uniformly bounded for all I of dyadic length < 27 this
easily implies, using (6) and (8), that ¢(I) is uniformly bounded for all intervals

ICT,ie. feBMO. 0

Proof of Theorem 2. By Theorem 1, it remains only to show that (iv) = (i). Hence,
assume that (iv) holds. Since Q¢ € BMOd, Lemma 7 shows that f € BMO.
Now, choose some t € E. Since BMO is translation invariant, also 7, f € BMO;
furthermore, 7, f € Qg by assumption. Hence 7, f € (), by Theorem 8, and thus
[ € @, since @), is translation invariant. O

Proof of Theorem 5. We write f,(z) = F(t,x) and hy(z) = F(t,z + t).
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Suppose that I is an interval of dyadic length 27", n > 1. We fix t € T and let
(ignoring the case when I + ¢ is dyadic) I" and I"” be the two dyadic intervals of
length 27" that intersect /. Then I C I' UI" and Lemma 1 yields

Un (D7 = (T + )7 < C(0p, (1) + 4, (1) + | £i(I) = fi(I7)])
< C(|fillgz + 1f:(T") = fulI")])- (21)

Let m(t) be as in Lemma 6, and let, for [ = 0, ..., m(t), J; and K; be the dyadic
intervals of length 27" that contain I" and I"”, respectively. Then Ity = K
and, using (7),

m(t)
D) = FI <Y (L ie) = FOD+ LFUD) = F(EK-)])

m(t)

<Y (on ()Y + o5, (K)'?)
=1

< m(t)[|fell gz-

Consequently, (21) yields
U, (12 < Cm(t)|fill oz-

Since g = [, hydt and ¢;(I)"/? may be regarded as an L? norm, we may use
Minkowski’s inequality and obtain

w0 < [ ar<c [ mlflos
T T
Consequently, by Holder’s inequality, choosing r < oo such that 1/r +1/¢ =1,

Yo ()" < CllmO) | r )l Fl| o (qa)-

By Lemma 6, this shows that ,(/) is uniformly bounded when I is an interval
of dyadic length < 1/2. The case I = T follows easily (we omit the details), and
thus g € ), by Lemma 5. U
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