ON THE VARIANCE OF THE RANDOM SPHERE OF INFLUENCE GRAPHS?

P. Hitczenko*t, S. Janson®, and J.E. Yukich?

Abstract.

We show that the variance of the number of edges in the random sphere of influence graph
built on n i.i.d. sites which are uniformly distributed over the unit cube in R?, grows
linearly with n. This is then used to establish a central limit theorem for the number of
edges in the random sphere of influence graph built on a Poisson number of sites. Some
related proximity graphs are discussed as well.

1. Introduction.

The main focus of this paper is to find a growth rate on the variance of the number of
edges in the sphere of influence graph. These graphs have been introduced by Toussaint
[15] and, according to specialists in pattern recognition, perform better than previously
used proximity graphs. Let X, ..., X,, be i.i.d. random variables uniformly distributed on
the unit cube in R%, d > 2. We will call these points sites. The random sphere of influence
graph is constructed as follows: for each i, let B; be a ball around X; with radius equal
to min{|X; — X;| : ¢ # j} (i.e. the distance from X; to its closest neighbor). This ball is
often called the sphere of influence of X;. We draw an edge between X; and X}, if and
only if the balls B; and By, overlap. The quantity of interest is the total number of edges
in the graph. We call this the size of the graph and denote it by e, e,, or e(Xy,..., X,,).
It is known that we always have cyn < Ee < Cyn for some absolute positive constants
cq and Cy (we refer the reader to the survey paper [10] for detailed references on this
result). Fiiredi [7] showed that Ee/n has a limit as n — oo and identified the value of
that limit (in the case d = 2, the limiting value is 1 + 7/4.) The same result was later
obtained by Chalker et al. in [3]. The authors of the latter paper also found a bound on
the tail probability of the deviation of the size of sphere of influence graph from its mean.
Fluctuations results are a bit more difficult because the sphere of influence graph does
not have very good regularity properties: in certain configurations, relocating just one site
can lead to a significant change in the number of edges. (This is seen by considering the
following situation: if n — 1 sites are regularly spaced on a circle, and the last site is near
the center of that circle, then it is incident to all » — 1 remaining sites; if it is moved to
the boundary of the circle its degree becomes bounded independently of n. Changes in the
degrees of other sites are insignificant.)
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This paper concentrates mainly on finding the upper and lower bounds on the variance
of the size of the sphere of influence graph. We will show that the variance grows linearly
in n, the total number of sites.

Theorem 1. Let e, be the number of edges in the sphere of influence graph built on n
i.i.d. sites uniformly distributed over [0,1]%. Then there exist absolute positive constants,
cq and Cy such that for any n > 4

can < var(ey,) < Cyn.

The proof of the upper bound is based on the Efron — Stein inequality and will be
given in the next section. The lower bound follows a technique developed by Avram and
Bertsimas [1], and we will give the details in section 3.

One consequence of our variance bound is the fact that, at least if we consider a
Poisson distributed number of points, the total number of edges, normalized in the usual
way, satisfies the central limit theorem. As it turns out, our methods give upper bounds on
higher moments, and work for some related proximity graphs as well. We will discuss some
of these results briefly in the last section. Throughout the paper, the constants (denoted
by various letters) are always absolute. They can possibly depend on d which is considered
arbitrary, but fixed. The value of a constant may change from line to line. The volume of
the unit ball in R? is denoted by vg4.

2. Upper bound for the variance.

Given the sites X1,..., X, let D(X;) be the degree of a vertex X; (i.e. the number of
edges incident to X;) in the sphere of influence graph. The general approach uses the
Efron — Stein inequality, along the same lines as in Steele [14], Section 6. To this end, let
us denote by e the size of the graph with the ¢th observation withheld, i.e.

e;.k = e(X]_, .. .,Xi_]_,X'H-lv .. 7Xn)

We wish to apply the Efron — Stein inequality [6], which says that

2

n n
1
var(e,—1) = var(e;) < E E e, — — E e;
n
i=1 j=1

Since the average minimizes the sum under the above expectation, it can be replaced by
n

any other quantity, for example by e. Thus, we will need an upper bound on E Z(e;k —e).
i=1
To this end, first observe that adding a new site creates new edges (incident to that site)
and may remove edges between old sites, but cannot create any new edges between two
old sites. Therefore,
e —e; < D(X;).

We will now estimate e; — e. Let

NXy) ={j<n,g#i: |X;-Xi| <|X;— Xgl|, k#1}
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be the (possibly empty) set of (indices) of sites for which X; is the nearest neighbor.
Consider e and suppose that X; is removed. Then, every site for which X; was the nearest
neighbor will have to find a new nearest neighbor. As a result, its new sphere of influence
will have a larger radius, and may therefore intersect other spheres, causing an increase
in the total number of edges. However, for each such site, say X, the increase cannot be
more than the degree of X; in the random sphere of influence graph with vertex ¢ withheld.
Let us denote this degree by D;(X;). Then we can write

i.e.

(e —e)? <D*X)+ | > Di(X)

By the Cauchy — Schwarz inequality the rightmost term can be bounded above by

D*(X;) +|N(X;)| Y DX
JEN(X))

where |N(X;)| denotes the cardinality of N(X;). It is easy to see [3] that |[N(X;)| < Kg,
where K, is a constant depending only on the dimension d. Thus taking expectations, we
infer that

var(ef) <Y E [ D*(X;))+ Ky » D}X
= JEN(X;)

=nE | D*(X1)+ Ky > DIX;) ],
JEN(X1)
since the random variables in question are identically distributed. Thus the proof will be

complete once we show that
ED?(X;) < C,

E ) DiX;)<C

JEN(X1)

and

As we will see below, the first estimate follows from the proof of the second so we con-
centrate on the second bound. To this end, let I; be the indicator of the event that the



nearest neighbor of X; is X;. Further, let G be the o-algebra generated by X,..., X,,.
Then we have

E ) DX ZE (I;D¥(X ZE (D?(X;)E(I;]G)) .

JEN(X1)

Denote by p; the conditional expectation E(I;|G). Using Holder’s inequality, we see that
the sum above can be bounded above by

n

S (BD(X,) (Bp) .

Thus, in order to complete this part of the proof, it suffices to show that Ep? < C/n? and
ED}(X,;) = ED}(X,) < C.

In order to justify the second statement (which we will do for D(X;) rather than
D;(X3) in order to simplify notation), let I; ; be the event that there is an edge between
sites X; and X, and for simplicity we will denote its indicator by the same symbol.

Then we have

3
ED?*(X,) = lej =E Z I Iy g
2<4,5,k<n
= (n - ].)P(ILQ) + 3(n - 1)(71, - 2)P(Il,2 N 11,3)
+ (n - 1)(71, - 2)(n - 3)P(I172 N I173 N 11,4).

It was shown in [5] (or in [3]) that P([1,2) =~ cd /n for a constant cg depending only on d.
So, it remains to show that P(I; o N I; 3) < — and P(I2NI13NI4) < —. Since both
n3
computations are essentially the same, we W111 present only the second one. We also note
that the first inequality implies that ED? (X;) <C.
Let Py, +, +,( - ) be the conditional probability given that | X1 —Xs| = t2, | X1—X3| = 3,
and | X1 — X4| = t4. Then, by symmetry

P(lioNTigNlia) = 3!/ Py, to s (T2 N 113N 11 4) f234(t2, ts, ta)dtadtsdly,
0<ta<tz<ty

where f5 34 is the joint density of the distances between X; and X,, X; and X3, and X3
and Xy4.

In the computation below, the statement “B,(X;) is empty” means that no other site
is contained in a ball with radius r centered at X;. If the distance between X; and X4
is t4, and there is an edge between those two sites, then one of the balls By, /2(X1) or
By, /2(X4) must be empty. It follows that

Piytota(lioNlisNIia) < Peypor,(I1,4)
<Pyt ts ({Braya(X1) = 0} U {By,2(Xa) = 0}) .
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Now, By, /2(X1) or By, /2(X4) is empty means that one of these balls contains none of the
remaining n — 4 points. It follows that this last probability is no more than (assuming as

we may that t, < v/d)
n—4
t
2 (1 = cd(f)d> ,

where c¢g > 0. If t4 > t3 > to, then t4 > (1/3)(t4 + t2 + t4), and using the inequality
1 —x < e ™ we see that the quantity above does not exceed

(n—4)cq 4 (m—4)cd a | yd | 4
26Xp{ - Tt4} S 26Xp{ - w(tél +t3 +t2)}
Substituting this quantity in the integral above, and noting that (by conditioning on X1)
foza(tots, ts) < gty 13714371 we find that

P(Il,z N I173 N 11,4)

—4
< cq / exp{ - W(tg +t3 +t5) }tg—ltg—ltg—ldtzdtgdu
0<ta<tz<ty 32

< - (n = 4)ed a) a1y, ’
sealf, =P Tgar

Cd
(n—4)%’

as desired.

Finally, to obtain an upper bound on Ep?, we note that since p; is equal to the
volume of the intersection of the unit cube and the sphere of influence about X; (in e}),
and denoting this sphere by STG1(X;) and its radius by rsSIG, (X;)» We see that

Vd
Ep? < Ev013(SIG1(Xj)) = vﬁErgcll-Gl(Xj) = 3dv3/0 r3d_1P(7"SIGI(Xj) > r)dr,

and since (for r < v/d)
P(rsic,(x;) > 1) < C(1 = cgr®)"™? < exp{—cqr®(n — 2)},

it follows that Ep? < C/n?.



3. Lower bound for the variance.

To obtain the lower bound we will use a technique developed by Avram and Bertsimas [1],
see also Steele [13], Section 5.8. It is convenient to change our notation; let S be a subset
of [0, 1]¢, and denote by e(S) the sum of the degrees of vertices contained in S. (Note that,
if both endpoints of an edge are contained in S, this edge is counted twice.) Therefore, we
have e([0,1]¢) = 2e, and if Sy,... Sy are pairwise disjoint subsets of [0, 1]¢ then

k
e(lJS85) = _e(S)).
j=1 j=1

Let £ = [n'/4] and subdivide [0,1]¢ into ny = ¢¢ congruent subcubes Q1,...,Q,, with
edge length 1/¢. Let mgq = 4(1 + [V/d]) + 1 and subdivide each subcube into congruent
subcubes with edge length e = 1/mgf (so that @Q; is subdivided into m% cubes). Let C; be
the cube in the center of (); and for each 1 < ¢ < n; let A; be the event that:

(i) C; contains exactly 4 of the sites X1,..., X,

(ii) each of the m% — (mg — 2)% subcubes of @; sharing a face with the boundary of Q;

contains exactly one site, and
(iii) the remainder of the cube @; contains no more sites.
Since there are n sites and the volume of each of the subcubes of (); is proportional to
1/n, P(A;) > «ag4, where a4 is a positive number not depending on n. In particular,
n1

EZ[ 4, > agn. Moreover, mg is chosen large enough so that on the event A; the four
i=1

sites inside C; have edges only among themselves. Let G be the g-algebra generated by

everything except the location of the four sites within Cj, for those C; for which A; occurs.

That is, if J(w) ={j: w € A,}, then

[

G=0dJ{X1,...., X, ()| UG

=
Since for any random variable Y and any o - algebra F we have
var(Y) = var(EzY) + Evarz(Y),
where varz(Y) = Ex(Y — ExY)?2, we have
4var(e) = 4var(Eg(e)) + 4Evarg(e)

> 4Evarg(e) = Evarg (Z e(Ci)>

=1

= Evarg <Z e(C’Z) + Ze(@))

= igJ

= Evarg (Z e(C’i)> ,

i€J
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where the last equality follows from the fact that Z e(C;) is G - measurable and that the
igJ

variance is translation invariant. Further, given G, the random variables e(C;), i € J, are

independent. Therefore,

Evarg (Ze(Cﬂ) = EZvarge(C’i).

1€ 1€J

Conditionally on G, for ¢ € .J, the sphere of influence graph built on the four sites that are
contained in C; can have 2, 3, 4, 5, or 6 edges, each with positive probability. Moreover,
the number of edges depends only on the location of those four sites within C;, and thus
is independent of n. Consequently, varge(C;) > ¢, for some constant ¢ not depending on
n, and therefore,

n
EZvarge(Ci) > CEZIAi > cogn.
€T i=1

Putting all of these estimates together gives
var(e) > cn,
for some absolute constant c.

4. Remarks.

This section contains some consequences and results related to Theorem 1. Perhaps the
most significant one is a central limit theorem for the size of the random sphere of influence
graph built on a Poisson number of points. It seems reasonable to conjecture that the CLT
holds for a nonrandom number of sites, but we have not established that. We begin with
the CLT and we will discuss higher moments and other proximity graphs later in this
section.

(i) Central limit theorem for the size of the sphere of influence graph. In
what follows we use the variance bounds of Theorem 1 and the local behavior of the
sphere of influence graph to establish the following result (throughout N(n) denotes a
Poisson random variable with parameter n, independent of all other random variables
under consideration, and in order to emphasize the dependence on n we will write in this
section e, = e(X7y, ..., X,,).)

Theorem 2. (CLT for the number of edges in the sphere of influence graph) We have

enm) — Eenm)
var1/2 (eN(n))

= N(0,1), as n — 00.

The local behavior is formalized through the notion of dependency graphs, an idea
used by Avram and Bertsimas [1] to establish the asymptotic normality of the length of the
k-nearest neighbor graph on a random sample as well as the length of the Delaunay and
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Voronoi tessellations on a random sample. This approach is also discussed in Steele [13,
Sections 5.7, 5.8] and Yukich [16, Section 8.3]. The underlying idea is as follows: subdivide
[0, 1] into Cn/ logn subcubes of edge length C(logn/n)*/®. Consider the high probability
event that all subcubes contain at least one point and at most C'logn points. Then,
conditionally on this event, the sphere of influence graph around a point is determined by
only a finite number of the neighboring subcubes. Consequently, the number of edges in
the sphere of influence graph satisfies “m-dependence” and thus a central limit theorem,
by the theory of dependency graphs (see Baldi and Rinott [2], Janson [9], Petrovskaya
and Leontovich [11]). To formalize this discussion, let us recall that if V is a collection
of vertices (but not necessarily points in R?) and {Y;} random variables, then the graph
G = (V,E) is a dependency graph for the family {Y;} of random variables if the following
two conditions are satisfied:
(i) {Y;} are indexed by the vertex set V,
(i) if V4 and V, are two disjoint sets of vertices of G such that no edge E of G has one
endpoint in V; and the other in Va, then the sets of random variables {Y;};cy, and
{Y:}icv, are independent.

We then have

Theorem 3. (Baldi and Rinott, [2]) Let {Y,;, i € V,} be random variables with a
dependency graph G, = (V,,E,). Let S, = ZieVn Ypi, 02 := varS, < oo. Let D,

denote the maximum degree of G,, and suppose that |Y,;| < By, a.s. for alli € V,,. Then
for all x € R we have

card(V,,)D2 B3

3
On

p (S =E5 ) _piv(0,1) < 2| < 3201 + 672)(
‘ ( JES )

n

)1/2.

To apply Theorem 3 to the random variables ey (,) we subdivide [0, 1]¢ into m sub-

cubes )1, ...,Q,, of edge length s ~ K(logn/n)l/d, where K is a large constant to be
chosen later. For all 1 < <m let N; = %e(Qi). This evidently yields the decomposition

ejv(n):: j{:_ﬁh.
=1

Let n;, 1 < 4 < m, denote the number of points falling in subcube ;. Since each n;,
1 < i < m, is a Poisson random variable with parameter ~ K?logn, it follows that if

A, = ﬂ{l <n; < K'logn},
i=1

then A, is a high probability event, namely for every o > 0 there are K = K(«a) and
K' = K'(«a) such that
P(A4,) >1—-n""

We now fix K := K(a) and K’ := K'(«a) with a = 5, say.
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We next define a distance function on sets of subcubes as follows: if A = [ J,. 4, Q; and
B = J;cp Qi for subsets A and B of {1,2,...,m}, then

d(A,B) =dg(A,B)/s,

where dy denotes the usual Hausdorff distance. (This distance essentially measures the
width of the “moat” separating two collection of subcubes where the common unit of
measurement, is the edge length of a subcube.) We now make the key observation that
conditionally on A,,, the sphere of influence around any point has radius at most v/d + 3s;
hence neighbors in the sphere of influence graph have distance at most 2v/d + 3s, and the
degree of a site depends only on the location of the sites with a distance less than 3v/d + 3s.
Thus, if A = J;c4 Qi and B = |J,c g Qi satisty d(A, B) > 6v/d + 3, then conditionally on
A,, the sets of random variables

{N;, i€ A} and {N;, i€ B}

are independent.

Define the random variable Y; to be N;, conditioned on the event A,. We now
define a dependency graph G,, := (V,,, E,,) as follows. Let V,, consist of the m subcubes
Q1,...,Qm. Say that the edge E = (V;,Vj), 1 < 4,5 < m, belongs to E, if and only
if d(Q;,Q;) < 6V/d+ 3. By the argument above, Gy, is a dependency graph for {Y;}
(although not for the unconditioned variables N;).

The maximal degree D,, of G, satisfies D,, < K4. Moreover, given the event A, we
have

N; <Clogn, 1<i<m,

and thus Y,, < B,, := C'logn. Moreover, Theorem 1 and the identity

var(en(n)) = var(Eq(n(n)) (en(m))) + Evaro () (enm))

imply that
on = var(en()) > cn,

where (N (n)) denotes the o-algebra generated by N (n). Since P(4,) > 1—n"7, it follows
easily that the variance of ey(,) conditioned on A,, equals var(ey,)) + o(1) > cn. Thus,
by Theorem 3 we have established that conditionally on the event A, Z, := (en(m)n —

Een(n))/(var(en()))'/? converges to a normal N (0, 1) random variable. Finally, it follows
that Z,, converges unconditionally to a N (0, 1) random variable by taking limits as n — oo
in the expression

P{Z, <z} = P{Z, <z|A,}P{A,} + P{Z, < z|AL}P{A;}
and using the fact that P{A,,} — 1 as n — oco. This proves Theorem 2.

(ii) Higher moments of degrees. Although it is not needed in this paper, it is perhaps
worth recording that our method can be used to get bounds for higher moments of the
degrees of the vertices in the sphere of influence graph. Indeed, we have
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Proposition 4. For some constants Cy, c¢q we have for all k > 1,
(a)  |ID(Xy)[[x < Cak,
(b) Ee®PX1) < 2 and thus P(D(Xy) > k) < 2e %k,

Proof: (a) We have

k
ED*(X,) =E > LoDy p = K1 jP(Iipn . N,

2<iy,...,ig<n j=1

where K,,_; j is the number of terms Iy ;, -...- I ; such that exactly j of the i,,’s are
distinct. It can, of course, be computed exactly, but for our purposes it is enough to know
that K,_1; < ("J k. (ThlS is, in fact, the correct order.) So we get

n—1).
ED*(X)) gZ( ; ) FP(LipN .. N 1ji).

With analogous notation as before we have, forn > 2j+2and G ={0<ts < ... <
tj-l-l}a

P(lion...N 11 41)
S j!\/;PtQ,...,tj+1 ({Btj+1/2(X1) — @} U {Btj+1/2(Xj+1) - @}) ftQ, J+1dt2 dtj-l-]_
= Qj'/(l —cqltjpr /MUY fy edbs . dtjy

(n—j—1
<]|c7/exp 3‘72 Jea (td+...+t;’+1)}t‘§ Lot idly . dj gy

() =< (%)

For n < 27 + 1 we have the same estimate, since trivially

37\’
P(lioN...NIjp) <1< | —
n

These give, since j! > j7e™J by Stirling’s formula,

S (n= 1\ g6 Sl
k k k.k
ED* (X)) Z( ) 2P <Y R <k,
Jj=1 j=1
which completes the proof of part (a).
(b) By (a),
tD(X A A LA k
Ee/P(X) =3}~ HEDN(X) < > A< D (tCae)k < 2,
k=0 k=0 k=0
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provided t < 1/2eC,. The second inequality follows by Chebyshev’s inequality.

(iii) Proximity graphs. The methods used for the sphere of influence graph can be
applied with minor changes to other constructions that are of interest in computational
geometry. We will discuss briefly what have been labeled proximity graphs by Devroye
[4]. Given n points, z1,...,%,, one draws an edge between z; and z; if and only if
a certain region S(z;,x;) contains z;,z; and no other sites. Typical examples are the
relative neighbor graph (RNG) and the Gabriel graph (GG). In the first one, S(z;, z;) is
a lens which is the intersection of two balls centered and z; and z;, respectively, having
radius equal to |z; — x|, while in GG S(z;,x;) is a ball centered at (z; + z;)/2 with
radius |z; — z;|/2. Our terminology follows Preparata and Shamos [12], which provides
more information on these constructions as well as on their applications. We will mention
here only that since Sqa(zi,z;) C Srna(zi,x;), RNG is a subgraph of GG, and thus
erna < egg (and both are of order n). Here, and throughout the rest of this section,
e with a corresponding subscript denotes the number of edges in a graph whose name is
indicated in the subscript. Occasionally, when the argument applies in general, we will omit
the subscript. It is known that RNG is a supergraph of the MST and GG is a subgraph
of the DT, where MST and DT represent the minimum spanning tree and the Delaunay
triangulation, respectively, of n points (although neither MST nor DT is a proximity graph
in the sense described above). Let us recall that in DT, there is an edge between z; and z;
if and only if there is a ball which has both of these two points on the surface and which
contains no other points.

In order to bound the variance via the Efron — Stein inequality note that e — e} <
deg(X;), and ef —e < .J;, where

Ji = Ca’rd{(j7 k) : Xz € Sj,k7 Xm ¢ Sj,k; m 7é i,j, k},
where for simplicity of notation we write S; ; = S(X;, X;). Hence,
(e —e})? < deg®(X;) + J?

and we need to show
Edeg’(X;)<C and EJ?<C.

Since degpya(X1) < deggg(X1), we will show that Edegls(X1) < C. (Note, that
degpne < C, but this is not necessarily true for GG). By the same argument as for SIG,
we need to bound Ps7t(I172 mIl,g), fort > s> 0. But, if |X1 —X2| = S, |X1 —X3| = t, and
s <t then

n—3

P, +(I12N113) < (1= vol(Bya((X1+ X3)/2) N0, 1]‘1))"_3 < (T—cat/2)%)" 7,

and the bound on ED?(X) follows by the same integration. To bound EJ? let .J; ;, denote
the event {X; € Sjr, Xm & Sjk; m # 1, j,k} as well as its indicator. Then

n—1 n—1
EJ? = Z P(Jj,kﬂngm):< 5 )P(J2,3)+2< 5 )(n—3)P(J2,3ﬁJ2,4)

(4,k),(£,m)
n—1 n—3
+ ( 9 ) ( 9 >P(J2,3 N J4,5),
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and we need to show that each of those terms is bounded. If P4( - ) is the conditional
probability given that |Xs — X3| = s, then

PS(J273) = VOl(Sz,g)(l - VOl(Sz,g N [0, 1]d))n—3 S KSd(l - st)n—.?)’

and integrating against the density of the distance between X and X3 we see that the
first term is bounded. A proof of the second bound is similar; with obvious notation we
have A

Ps7t(J2,3 N J274) = VOl(Sng N 82,4) (1 - VOl(SzA N [0, 1]d))n_

< Ks?(1— K(t?+ s%)/2)" ",

if ¢ > s. The computation for the third probability is essentially the same, except that
X1 € S23N Sy entails that | Xy — Xy4| < diam(Ss 3) + diam(Sy5), and if | Xy — X3| = s
and | X4 — X5| =t, then diam(S3 3) + diam(Ss5) < K(s+t). Thus

Psi(Jo3NJss) =Psy <J2,3 N J4,5)‘|X2 — X4 < K(s+ t)) Ps (| X2 — X4 < K(s+1))
< Ks¥(s®+1h) (1 - th)n—B ,

andthe last estimate follows.

As for the lower bound, the basic principle is the same as for the sphere of influence
graph: we subdivide the unit cube into small cubes, and consider those cubes for which
there is a boundary behavior that isolates the behavior inside the cube from the develop-
ments outside that cube and for which there is a fixed number of points near the center
of the cube. A variability in the placements of those central points will cause variability
in the number of edges within that cube, and since the average number of cubes for which
that happens is of order n, and different cubes behave independently, superlinearity of the
variance follows. For example, for GG, assuming d = 2 for simplicity, after subdividing the
unit square into Q;’s as before, consider the event A; that the square Q; contains exactly
5 points located as follows. Assuming Q; = [a —h,a+h] x [b— h,b+ h], let 2° be its center
(a,b) and let y?, ..., y? be the four points (a + %h, b), (a,b+ %h); A; then is the event that
Q; contains exactly five points z,y1,...,ys with |z — 2% < eh and |y; — y?| < 0h, where
and 0 are some fixed small numbers.

It is easily seen that if first € and then § are chosen small enough, then A; implies the
following, denoting the points outside Q; by {z;}:

(i) If a Gabriel sphere S(z;, zi;) or S(z;,yx) contains z, then it also contains some y; in
its interior.
(ii) A Gabriel sphere S(z;,z) always contains some yj.
(iii) A Gabriel sphere S(y;,z) never contains any other point.
(iv) A Gabriel sphere S(y;,yr) contains no other point except possibly z; moreover, if y;
and y; do not lie opposite each other, both S(y;,yx) and its complement intersect

{z: |z — 2% < eh}.

It follows that conditioned on A;, moving around the central point x may only affect
the edges between the y;’s, and the number of such edges will vary and has a non-zero
variance. Consequently, conditioning as before on everything except the location of the
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central point for those Q;’s for which A; occurs, we obtain a lower bound of order n on
the variance of Ngg. For RNG the construction is similar.

It should be noted that this approach for a lower bound does not work for DT. In
fact, the result is not true for DT. For example, if d = 2 and X;’s are uniformly distributed
on the unit square then the variance of the number of edges in DT is of order log n rather
than n. This is perhaps a bit surprising, especially if one takes into account the fact that
the total length of the edges in DT has variance of order n (see [1]). To see that variance
of the number of edges in DT (or any other triangulation, for that matter) is of order logn
one just notes that epr is linked to the number of extreme points of the convex hull of
X;’s by the formula epr = 3(n — 1) — card{ext(conv({X;}))}, so that var(epr) is equal
to the variance of the number of extreme points in the sample X, ..., X,,. But the latter
variance is of order logn if the X;’s are i.i.d. uniform on the unit square [8]. This means
that the behavior of DT is not really “local” which is perhaps a bit counterintuitive.
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