
ON THE VARIANCE OF THE RANDOM SPHERE OF INFLUENCE GRAPHxP. Hitczenko*y, S. Jansony, and J.E. YukichzAbstract.We show that the variance of the number of edges in the random sphere of in
uence graphbuilt on n i.i.d. sites which are uniformly distributed over the unit cube in Rd, growslinearly with n. This is then used to establish a central limit theorem for the number ofedges in the random sphere of in
uence graph built on a Poisson number of sites. Somerelated proximity graphs are discussed as well.1. Introduction.The main focus of this paper is to �nd a growth rate on the variance of the number ofedges in the sphere of in
uence graph. These graphs have been introduced by Toussaint[15] and, according to specialists in pattern recognition, perform better than previouslyused proximity graphs. Let X1; : : : ; Xn be i.i.d. random variables uniformly distributed onthe unit cube in Rd, d � 2. We will call these points sites. The random sphere of in
uencegraph is constructed as follows: for each i, let Bi be a ball around Xi with radius equalto minfjXi � Xjj : i 6= jg (i.e. the distance from Xi to its closest neighbor). This ball isoften called the sphere of in
uence of Xi. We draw an edge between Xj and Xk if andonly if the balls Bj and Bk overlap. The quantity of interest is the total number of edgesin the graph. We call this the size of the graph and denote it by e, en, or e(X1; : : : ; Xn).It is known that we always have cdn � Ee � Cdn for some absolute positive constantscd and Cd (we refer the reader to the survey paper [10] for detailed references on thisresult). F�uredi [7] showed that Ee=n has a limit as n ! 1 and identi�ed the value ofthat limit (in the case d = 2, the limiting value is 1 + �=4.) The same result was laterobtained by Chalker et al. in [3]. The authors of the latter paper also found a bound onthe tail probability of the deviation of the size of sphere of in
uence graph from its mean.Fluctuations results are a bit more di�cult because the sphere of in
uence graph doesnot have very good regularity properties: in certain con�gurations, relocating just one sitecan lead to a signi�cant change in the number of edges. (This is seen by considering thefollowing situation: if n� 1 sites are regularly spaced on a circle, and the last site is nearthe center of that circle, then it is incident to all n � 1 remaining sites; if it is moved tothe boundary of the circle its degree becomes bounded independently of n. Changes in thedegrees of other sites are insigni�cant.)x This is a preprint of an article accepted for publication in Random Structures andAlgorithms c
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This paper concentrates mainly on �nding the upper and lower bounds on the varianceof the size of the sphere of in
uence graph. We will show that the variance grows linearlyin n, the total number of sites.Theorem 1. Let en be the number of edges in the sphere of in
uence graph built on ni.i.d. sites uniformly distributed over [0; 1]d. Then there exist absolute positive constants,cd and Cd such that for any n � 4cdn � var(en) � Cdn:The proof of the upper bound is based on the Efron { Stein inequality and will begiven in the next section. The lower bound follows a technique developed by Avram andBertsimas [1], and we will give the details in section 3.One consequence of our variance bound is the fact that, at least if we consider aPoisson distributed number of points, the total number of edges, normalized in the usualway, satis�es the central limit theorem. As it turns out, our methods give upper bounds onhigher moments, and work for some related proximity graphs as well. We will discuss someof these results brie
y in the last section. Throughout the paper, the constants (denotedby various letters) are always absolute. They can possibly depend on d which is consideredarbitrary, but �xed. The value of a constant may change from line to line. The volume ofthe unit ball in Rd is denoted by vd.2. Upper bound for the variance.Given the sites X1; : : : ; Xn, let D(Xi) be the degree of a vertex Xi (i.e. the number ofedges incident to Xi) in the sphere of in
uence graph. The general approach uses theEfron { Stein inequality, along the same lines as in Steele [14], Section 6. To this end, letus denote by e�i the size of the graph with the ith observation withheld, i.e.e�i = e(X1; : : : ; Xi�1; Xi+1; : : : ; Xn):We wish to apply the Efron { Stein inequality [6], which says thatvar(en�1) = var(e�n) � E nXi=10@e�i � 1n nXj=1 e�j1A2 :Since the average minimizes the sum under the above expectation, it can be replaced byany other quantity, for example by e. Thus, we will need an upper bound on E nXi=1(e�i�e)2.To this end, �rst observe that adding a new site creates new edges (incident to that site)and may remove edges between old sites, but cannot create any new edges between twoold sites. Therefore, e� e�i � D(Xi):We will now estimate e�i � e. LetN(Xi) = fj � n; j 6= i : jXj �Xij � jXj �Xkj; k 6= ig2



be the (possibly empty) set of (indices) of sites for which Xi is the nearest neighbor.Consider e and suppose that Xi is removed. Then, every site for which Xi was the nearestneighbor will have to �nd a new nearest neighbor. As a result, its new sphere of in
uencewill have a larger radius, and may therefore intersect other spheres, causing an increasein the total number of edges. However, for each such site, say Xj , the increase cannot bemore than the degree of Xj in the random sphere of in
uence graph with vertex i withheld.Let us denote this degree by Di(Xj). Then we can writee�i � e+ Xj2N(Xi)Di(Xj);i.e. e�i � e � Xj2N(Xi)Di(Xj):Combining this with the previous estimate we obtain(e�i � e)2 � D2(Xi) +0@ Xj2N(Xi)Di(Xj)1A2 :By the Cauchy { Schwarz inequality the rightmost term can be bounded above byD2(Xi) + jN(Xi)j Xj2N(Xi)D2i (Xj);where jN(Xi)j denotes the cardinality of N(Xi). It is easy to see [3] that jN(Xi)j � Kd,where Kd is a constant depending only on the dimension d. Thus taking expectations, weinfer that var(e�n) � nXi=1 E0@D2(Xi) +Kd Xj2N(Xi)D2i (Xj)1A= nE0@D2(X1) +Kd Xj2N(X1)D21(Xj)1A ;since the random variables in question are identically distributed. Thus the proof will becomplete once we show that ED2(X1) � C;and E Xj2N(X1)D21(Xj) � C:As we will see below, the �rst estimate follows from the proof of the second so we con-centrate on the second bound. To this end, let Ij be the indicator of the event that the3



nearest neighbor of Xj is X1. Further, let G be the �-algebra generated by X2; : : : ; Xn.Then we haveE Xj2N(X1)D21(Xj) = nXj=2E �IjD21(Xj)� = nXj=2E �D21(Xj)E(Ij jG)� :Denote by pj the conditional expectation E(Ij jG). Using H�older's inequality, we see thatthe sum above can be bounded above bynXj=2(ED31(Xj))2=3(Ep3j )1=3:Thus, in order to complete this part of the proof, it su�ces to show that Ep3j � C=n3 andED31(Xj) = ED31(X2) � C.In order to justify the second statement (which we will do for D(X1) rather thanD1(X2) in order to simplify notation), let Ii;j be the event that there is an edge betweensites Xi and Xj , and for simplicity we will denote its indicator by the same symbol.Then we haveED3(X1) = E0@ nXj=2 I1;j1A3 = E X2�i;j;k�n I1;iI1;jI1;k= (n� 1)P(I1;2) + 3(n� 1)(n� 2)P(I1;2 \ I1;3)+ (n� 1)(n� 2)(n� 3)P(I1;2 \ I1;3 \ I1;4):It was shown in [5] (or in [3]) that P(I1;2) � cd=n for a constant cd depending only on d.So, it remains to show that P(I1;2 \ I1;3) � cdn2 and P(I1;2 \ I1;3 \ I1;4) � cdn3 . Since bothcomputations are essentially the same, we will present only the second one. We also notethat the �rst inequality implies that ED2(X1) � C.LetPt2;t3;t4( � ) be the conditional probability given that jX1�X2j = t2, jX1�X3j = t3,and jX1 �X4j = t4. Then, by symmetryP(I1;2 \ I1;3 \ I1;4) = 3! Z0<t2<t3<t4 Pt2;t3;t4(I1;2 \ I1;3 \ I1;4)f2;3;4(t2; t3; t4)dt2dt3dt4;where f2;3;4 is the joint density of the distances between X1 and X2, X1 and X3, and X1and X4.In the computation below, the statement \Br(Xj) is empty" means that no other siteis contained in a ball with radius r centered at Xj. If the distance between X1 and X4is t4, and there is an edge between those two sites, then one of the balls Bt4=2(X1) orBt4=2(X4) must be empty. It follows thatPt2;t3;t4(I1;2 \ I1;3 \ I1;4) � Pt2;t3;t4(I1;4)� Pt2;t3;t4 ��Bt4=2(X1) = ;	 [ �Bt4=2(X4) = ;	� :4



Now, Bt4=2(X1) or Bt4=2(X4) is empty means that one of these balls contains none of theremaining n� 4 points. It follows that this last probability is no more than (assuming aswe may that t4 < pd) 2�1� cd� t42 �d�n�4 ;where cd > 0. If t4 > t3 > t2, then td4 � (1=3)(td4 + td3 + td2), and using the inequality1� x � e�x we see that the quantity above does not exceed2 expn� (n� 4)cd2d td4o � 2 expn� (n� 4)cd3 � 2d �td4 + td3 + td2�o:Substituting this quantity in the integral above, and noting that (by conditioning on X1)f2;3;4(t2; t3; t4) � cdtd�12 td�13 td�14 , we �nd thatP(I1;2 \ I1;3 \ I1;4)� cd Z0<t2<t3<t4 expn� (n� 4)cd3 � 2d �td2 + td3 + td4�otd�12 td�13 td�14 dt2dt3dt4� cd �Z 10 expn� (n� 4)cd3 � 2d tdotd�1dt�3= cd(n� 4)3 ;as desired.Finally, to obtain an upper bound on Ep3j , we note that since pj is equal to thevolume of the intersection of the unit cube and the sphere of in
uence about Xj (in e�1),and denoting this sphere by SIG1(Xj) and its radius by rSIG1(Xj), we see thatEp3j � Evol3(SIG1(Xj)) = v3dEr3dSIG1(Xj) = 3dv3d Z pd0 r3d�1P(rSIG1(Xj) � r)dr;and since (for r � pd)P(rSIG1(Xj) � r) � C(1� cdrd)n�2 � expf�cdrd(n� 2)g;it follows that Ep3j � C=n3:
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3. Lower bound for the variance.To obtain the lower bound we will use a technique developed by Avram and Bertsimas [1],see also Steele [13], Section 5.8. It is convenient to change our notation; let S be a subsetof [0; 1]d, and denote by e(S) the sum of the degrees of vertices contained in S. (Note that,if both endpoints of an edge are contained in S, this edge is counted twice.) Therefore, wehave e([0; 1]d) = 2e, and if S1; : : : Sk are pairwise disjoint subsets of [0; 1]d thene( k[j=1Sj) = kXj=1 e(Sj):Let ` = dn1=de and subdivide [0; 1]d into n1 = `d congruent subcubes Q1; : : : ; Qn1 withedge length 1=`. Let md = 4(1 + dpde) + 1 and subdivide each subcube into congruentsubcubes with edge length " = 1=md` (so that Qi is subdivided into mdd cubes). Let Ci bethe cube in the center of Qi and for each 1 � i � n1 let Ai be the event that:(i) Ci contains exactly 4 of the sites X1; : : : ; Xn,(ii) each of the mdd � (md � 2)d subcubes of Qi sharing a face with the boundary of Qicontains exactly one site, and(iii) the remainder of the cube Qi contains no more sites.Since there are n sites and the volume of each of the subcubes of Qi is proportional to1=n, P(Ai) � �d, where �d is a positive number not depending on n. In particular,E n1Xi=1 IAi � �dn. Moreover, md is chosen large enough so that on the event Ai the foursites inside Ci have edges only among themselves. Let G be the �-algebra generated byeverything except the location of the four sites within Ci, for those Ci for which Ai occurs.That is, if J(!) = fj : ! 2 Ajg, thenG = �8<:J; fX1; : : : ; Xng\0@[j2J Cj1Ac9=; :Since for any random variable Y and any � - algebra F we havevar(Y ) = var(EFY ) +EvarF (Y );where varF (Y ) = EF (Y �EFY )2, we have4var(e) = 4var(EG(e)) + 4EvarG(e)� 4EvarG(e) = EvarG  nXi=1 e(Ci)!= EvarG  Xi2J e(Ci) +Xi=2J e(Ci)!= EvarG  Xi2J e(Ci)! ;6



where the last equality follows from the fact thatXi=2J e(Ci) is G - measurable and that thevariance is translation invariant. Further, given G, the random variables e(Ci), i 2 J , areindependent. Therefore, EvarG  Xi2J e(Ci)! = EXi2J varGe(Ci):Conditionally on G, for i 2 J , the sphere of in
uence graph built on the four sites that arecontained in Ci can have 2, 3, 4, 5, or 6 edges, each with positive probability. Moreover,the number of edges depends only on the location of those four sites within Ci, and thusis independent of n. Consequently, varGe(Ci) � c, for some constant c not depending onn, and therefore, EXi2J varGe(Ci) � cE nXi=1 IAi � c�dn:Putting all of these estimates together givesvar(e) � cn;for some absolute constant c.4. Remarks.This section contains some consequences and results related to Theorem 1. Perhaps themost signi�cant one is a central limit theorem for the size of the random sphere of in
uencegraph built on a Poisson number of points. It seems reasonable to conjecture that the CLTholds for a nonrandom number of sites, but we have not established that. We begin withthe CLT and we will discuss higher moments and other proximity graphs later in thissection.(i) Central limit theorem for the size of the sphere of in
uence graph. Inwhat follows we use the variance bounds of Theorem 1 and the local behavior of thesphere of in
uence graph to establish the following result (throughout N(n) denotes aPoisson random variable with parameter n, independent of all other random variablesunder consideration, and in order to emphasize the dependence on n we will write in thissection en = e(X1; :::; Xn).)Theorem 2. (CLT for the number of edges in the sphere of in
uence graph) We haveeN(n) �EeN(n)var1=2(eN(n)) =) N(0; 1); as n!1:The local behavior is formalized through the notion of dependency graphs, an ideaused by Avram and Bertsimas [1] to establish the asymptotic normality of the length of thek-nearest neighbor graph on a random sample as well as the length of the Delaunay and7



Voronoi tessellations on a random sample. This approach is also discussed in Steele [13,Sections 5.7, 5.8] and Yukich [16, Section 8.3]. The underlying idea is as follows: subdivide[0; 1]d into Cn= logn subcubes of edge length C(logn=n)1=d. Consider the high probabilityevent that all subcubes contain at least one point and at most C logn points. Then,conditionally on this event, the sphere of in
uence graph around a point is determined byonly a �nite number of the neighboring subcubes. Consequently, the number of edges inthe sphere of in
uence graph satis�es \m-dependence" and thus a central limit theorem,by the theory of dependency graphs (see Baldi and Rinott [2], Janson [9], Petrovskayaand Leontovich [11]). To formalize this discussion, let us recall that if V is a collectionof vertices (but not necessarily points in Rd) and fYig random variables, then the graphG = (V;E) is a dependency graph for the family fYig of random variables if the followingtwo conditions are satis�ed:(i) fYig are indexed by the vertex set V ,(ii) if V1 and V2 are two disjoint sets of vertices of G such that no edge E of G has oneendpoint in V1 and the other in V2, then the sets of random variables fYigi2V1 andfYigi2V2 are independent.We then haveTheorem 3. (Baldi and Rinott, [2]) Let fYni; i 2 Vng be random variables with adependency graph Gn = (Vn; En). Let Sn = Pi2Vn Yni; �2n := varSn < 1: Let Dndenote the maximum degree of Gn and suppose that jYnij � Bn a.s. for all i 2 Vn. Thenfor all x 2 R we have����P�Sn �ESn�n � x��P(N(0; 1) � x)���� � 32(1 + 61=2)(card(Vn)D2nB3n�3n )1=2:To apply Theorem 3 to the random variables eN(n) we subdivide [0; 1]d into m sub-cubes Q1; :::; Qm of edge length s � K(logn=n)1=d, where K is a large constant to bechosen later. For all 1 � i � m let Ni = 12e(Qi). This evidently yields the decompositioneN(n) = mXi=1Ni:Let ni, 1 � i � m, denote the number of points falling in subcube Qi. Since each ni,1 � i � m, is a Poisson random variable with parameter � Kd logn, it follows that ifAn := m\i=1f1 � ni � K 0 logng;then An is a high probability event, namely for every � > 0 there are K = K(�) andK 0 = K 0(�) such that P(An) � 1� n��:We now �x K := K(�) and K 0 := K 0(�) with � = 5, say.8



We next de�ne a distance function on sets of subcubes as follows: if A = Si2AQi andB = Si2B Qi for subsets A and B of f1; 2; :::;mg, thend(A;B) = dH(A;B)=s;where dH denotes the usual Hausdor� distance. (This distance essentially measures thewidth of the \moat" separating two collection of subcubes where the common unit ofmeasurement is the edge length of a subcube.) We now make the key observation thatconditionally on An, the sphere of in
uence around any point has radius at most pd+ 3s;hence neighbors in the sphere of in
uence graph have distance at most 2pd+ 3s, and thedegree of a site depends only on the location of the sites with a distance less than 3pd+ 3s.Thus, if A = Si2AQi and B = Si2B Qi satisfy d(A;B) > 6pd+ 3, then conditionally onAn the sets of random variablesfNi; i 2 Ag and fNi; i 2 Bgare independent.De�ne the random variable Yi to be Ni, conditioned on the event An. We nowde�ne a dependency graph Gn := (Vn; En) as follows. Let Vn consist of the m subcubesQ1; :::; Qm. Say that the edge E = (Vi; Vj); 1 � i; j � m; belongs to En if and onlyif d(Qi; Qj) � 6pd+ 3. By the argument above, Gn is a dependency graph for fYig(although not for the unconditioned variables Ni).The maximal degree Dn of Gn satis�es Dn � Kd. Moreover, given the event An wehave Ni � C logn; 1 � i � m;and thus Yn � Bn := C logn. Moreover, Theorem 1 and the identityvar(eN(n)) = var(E�(N(n))(eN(n))) + Evar�(N(n))(eN(n))imply that �2n = var(eN(n)) � cn;where �(N(n)) denotes the �-algebra generated by N(n). Since P(An) � 1�n�5, it followseasily that the variance of eN(n) conditioned on An equals var(eN(n)) + o(1) � cn. Thus,by Theorem 3 we have established that conditionally on the event An, Zn := (eN(n)n �EeN(n))=(var(eN(n)))1=2 converges to a normal N(0; 1) random variable. Finally, it followsthat Zn converges unconditionally to a N(0; 1) random variable by taking limits as n!1in the expressionPfZn � xg = PfZn � xjAngPfAng+ PfZn � xjAcngPfAcngand using the fact that PfAng ! 1 as n!1. This proves Theorem 2.(ii) Higher moments of degrees. Although it is not needed in this paper, it is perhapsworth recording that our method can be used to get bounds for higher moments of thedegrees of the vertices in the sphere of in
uence graph. Indeed, we have9



Proposition 4. For some constants Cd, cd we have for all k � 1,(a) kD(X1)kk � Cdk,(b) EecdD(X1) � 2 and thus P(D(X1) � k) � 2e�cdk.Proof: (a) We haveEDk(X1) = E8<: X2�i1;:::;ik�n I1;i1 � : : : � I1;ik9=; = kXj=1Kn�1;jP(I1;2 \ : : : \ I1;j+1);where Kn�1;j is the number of terms I1;i1 � : : : � I1;ik such that exactly j of the im's aredistinct. It can, of course, be computed exactly, but for our purposes it is enough to knowthat Kn�1;j � �n�1j �jk. (This is, in fact, the correct order.) So we getEDk(X1) � kXj=1�n� 1j �jkP(I1;2 \ : : : \ I1;j+1):With analogous notation as before we have, for n � 2j + 2 and G = f0 < t2 < : : : <tj+1g,P(I1;2 \ : : : \ I1;j+1)� j! ZGPt2;:::;tj+1 ��Btj+1=2(X1) = ;	 [ �Btj+1=2(Xj+1) = ;	� ft2;:::;tj+1dt2 : : : dtj+1� 2j! ZG(1� cd(tj+1=2)d)n�(j+1)ft2;:::;tj+1dt2 : : : dtj+1� j!cjd ZG expn� (n� j � 1)cdj � 2d �td2 + : : :+ tdj+1�otd�12 : : : td�1j+1dt2 : : : dtj+1= � cdjn� j � 1�j � �cdjn �j :For n � 2j + 1 we have the same estimate, since triviallyP(I1;2 \ : : : \ I1;j+1) � 1 � �3jn �j :These give, since j! > jje�j by Stirling's formula,EDk(X1) � kXj=1�n� 1j �jk (cj)jnj � kXj=1 kk cjjjj! � ckkk;which completes the proof of part (a).(b) By (a), EetD(X1) = 1Xk=0 tkk!EDk(X1) � 1Xk=0 tkCkdkkk! � 1Xk=0(tCde)k � 2;10



provided t � 1=2eCd. The second inequality follows by Chebyshev's inequality.(iii) Proximity graphs. The methods used for the sphere of in
uence graph can beapplied with minor changes to other constructions that are of interest in computationalgeometry. We will discuss brie
y what have been labeled proximity graphs by Devroye[4]. Given n points, x1; : : : ; xn, one draws an edge between xi and xj if and only ifa certain region S(xi; xj) contains xi; xj and no other sites. Typical examples are therelative neighbor graph (RNG) and the Gabriel graph (GG). In the �rst one, S(xi; xj) isa lens which is the intersection of two balls centered and xi and xj , respectively, havingradius equal to jxi � xj j, while in GG S(xi; xj) is a ball centered at (xi + xj)=2 withradius jxi � xj j=2. Our terminology follows Preparata and Shamos [12], which providesmore information on these constructions as well as on their applications. We will mentionhere only that since SGG(xi; xj) � SRNG(xi; xj), RNG is a subgraph of GG, and thuseRNG � eGG (and both are of order n). Here, and throughout the rest of this section,e with a corresponding subscript denotes the number of edges in a graph whose name isindicated in the subscript. Occasionally, when the argument applies in general, we will omitthe subscript. It is known that RNG is a supergraph of the MST and GG is a subgraphof the DT, where MST and DT represent the minimum spanning tree and the Delaunaytriangulation, respectively, of n points (although neither MST nor DT is a proximity graphin the sense described above). Let us recall that in DT, there is an edge between xi and xjif and only if there is a ball which has both of these two points on the surface and whichcontains no other points.In order to bound the variance via the Efron { Stein inequality note that e � e�i �deg(Xi), and e�i � e � Ji, whereJi = cardf(j; k) : Xi 2 Sj;k; Xm =2 Sj;k; m 6= i; j; kg;where for simplicity of notation we write Si;j = S(Xi; Xj). Hence,(e� e�i )2 � deg2(Xi) + J2iand we need to show E deg2(X1) � C and EJ21 � C:Since degRNG(X1) � degGG(X1), we will show that E deg2GG(X1) � C. (Note, thatdegRNG � C, but this is not necessarily true for GG). By the same argument as for SIG,we need to bound Ps;t(I1;2\ I1;3), for t > s > 0. But, if jX1�X2j = s, jX1�X3j = t, ands < t thenPs;t(I1;2 \ I1;3) � �1� vol(Bt=2((X1 +X3)=2) \ [0; 1]d)�n�3 � �1� cd(t=2)d�n�3 ;and the bound on ED2(X1) follows by the same integration. To bound EJ21 let Jj;k denotethe event fX1 2 Sj;k; Xm =2 Sj;k; m 6= 1; j; kg as well as its indicator. ThenEJ21 = X(j;k);(`;m)P(Jj;k \ J`;m) = �n� 12 �P(J2;3) + 2�n� 12 �(n� 3)P(J2;3 \ J2;4)+ �n� 12 ��n� 32 �P(J2;3 \ J4;5);11



and we need to show that each of those terms is bounded. If Ps( � ) is the conditionalprobability given that jX2 �X3j = s, thenPs(J2;3) = vol(S2;3)(1� vol(S2;3 \ [0; 1]d))n�3 � Ksd(1�Ksd)n�3;and integrating against the density of the distance between X2 and X3 we see that the�rst term is bounded. A proof of the second bound is similar; with obvious notation wehave Ps;t(J2;3 \ J2;4) = vol(S2;3 \ S2;4) �1� vol(S2;4 \ [0; 1]d)�n�4� Ksd �1�K(td + sd)=2�n�4 ;if t > s. The computation for the third probability is essentially the same, except thatX1 2 S2;3 \ S4;5 entails that jX2 � X4j � diam(S2;3) + diam(S4;5), and if jX2 � X3j = sand jX4 �X5j = t, then diam(S2;3) + diam(S4;5) � K(s+ t). ThusPs;t(J2;3 \ J4;5) = Ps;t �J2;3 \ J4;5)���jX2 �X4j � K(s+ t)�Ps;t(jX2 �X4j � K(s+ t))� Ksd(sd + td) �1�Ktd�n�5 ;andthe last estimate follows.As for the lower bound, the basic principle is the same as for the sphere of in
uencegraph: we subdivide the unit cube into small cubes, and consider those cubes for whichthere is a boundary behavior that isolates the behavior inside the cube from the develop-ments outside that cube and for which there is a �xed number of points near the centerof the cube. A variability in the placements of those central points will cause variabilityin the number of edges within that cube, and since the average number of cubes for whichthat happens is of order n, and di�erent cubes behave independently, superlinearity of thevariance follows. For example, for GG, assuming d = 2 for simplicity, after subdividing theunit square into Qi's as before, consider the event Ai that the square Qi contains exactly5 points located as follows. Assuming Qi = [a�h; a+h]� [b�h; b+h], let x0 be its center(a; b) and let y01; : : : ; y04 be the four points (a� 12h; b), (a; b� 12h); Ai then is the event thatQi contains exactly �ve points x; y1; : : : ; y4 with jx� x0j < "h and jyj � y0j j < �h, where "and � are some �xed small numbers.It is easily seen that if �rst " and then � are chosen small enough, then Ai implies thefollowing, denoting the points outside Qi by fzjg:(i) If a Gabriel sphere S(zj ; zk) or S(zj ; yk) contains x, then it also contains some yl inits interior.(ii) A Gabriel sphere S(zj ; x) always contains some yk.(iii) A Gabriel sphere S(yj ; x) never contains any other point.(iv) A Gabriel sphere S(yj ; yk) contains no other point except possibly x; moreover, if yjand yk do not lie opposite each other, both S(yj; yk) and its complement intersectfx : jx� x0j < "hg.It follows that conditioned on Ai, moving around the central point x may only a�ectthe edges between the yj 's, and the number of such edges will vary and has a non-zerovariance. Consequently, conditioning as before on everything except the location of the12



central point for those Qi's for which Ai occurs, we obtain a lower bound of order n onthe variance of NGG. For RNG the construction is similar.It should be noted that this approach for a lower bound does not work for DT. Infact, the result is not true for DT. For example, if d = 2 and Xi's are uniformly distributedon the unit square then the variance of the number of edges in DT is of order logn ratherthan n. This is perhaps a bit surprising, especially if one takes into account the fact thatthe total length of the edges in DT has variance of order n (see [1]). To see that varianceof the number of edges in DT (or any other triangulation, for that matter) is of order lognone just notes that eDT is linked to the number of extreme points of the convex hull ofXi's by the formula eDT = 3(n � 1) � cardfext(conv(fXig))g, so that var(eDT ) is equalto the variance of the number of extreme points in the sample X1; : : : ; Xn. But the lattervariance is of order logn if the Xi's are i.i.d. uniform on the unit square [8]. This meansthat the behavior of DT is not really \local" which is perhaps a bit counterintuitive.Acknowledgment.The �rst author would like to thank Rex Dwyer from the Department of Computer Scienceat North Carolina State University for several useful conversations.References.1. Avram, F. and Bertsimas, D. (1993) On central limit theorems in geometric probabil-ity, Ann. Appl. Probab. 3, 1033 { 1046.2. Baldi, P. and Rinott, Y. (1989) On normal approximations of distributions in termsof dependency graphs, Ann. Probab. 17, 1646-1650.3. Chalker, T. K., Godbole, A. P., Hitczenko, P., Radcli�, J. and Ruehr, O. G. (1997)On the size of a random sphere of in
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