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2 MATTS ESS�EN, SVANTE JANSON, LIZHONG PENG, AND JIE XIAOwhere g(z; w) = log j(1�wz)=(w� z)j is the Green function of 4 and m is theLebesgue measure. As in [3], Qp is a proper subspace of BMOA (obtained bytaking p = 1 in (1.1)) and Qp1 ( Qp2 if 0 < p1 < p2 < 1.Ess�en and Xiao [5] showed that an analytic function f in the Hardy spaceH2 on the unit disk belongs to Qp if and only if its boundary values on theunit circle @4 satisfysupI jIj�p ZI ZI jf(ei�)� f(ei')j2jei� � ei'j2�p d� d' <1; (1.2)where the supremum is taken over all subarcs I � @4. Janson [9] used (1.2)to de�ne a dyadic analogue Qdp of Qp and to prove that Qp is the intersectionof Qdp and BMOA. Observe that (1.2) makes sense even if f is not analyticand it becomes possible to consider an extension to Harmonic Analysis overEuclidean spaces. This is our starting point.Throughout this paper, we always let Rn be n-dimensional Euclidean space,and let Rn+1+ be the upper half space based on Rn . A cube means always a cubein Rn with edges parallel to the coordinate axes. We denote the edge lengthof a cube I by `(I), and the Lebesgue measure of I by jIj; thus `(I) = jIj1=n.Also, for t > 0, tI means the cube which has the same center as I and theedge length t`(I). We let jxj denote the usual Euclidean norm for x 2 Rn .For � 2 (�1;1), in analogy with (1.2), we de�ne Q�(Rn) to be the spaceof all measurable functions on Rn that satisfykfk2Q�(Rn) = supI [`(I)]2��n ZI ZI jf(x)� f(y)j2jx� yjn+2� dx dy <1; (1.3)where I ranges over all cubes in Rn . Note that we have changed the parameterfrom p in (1.2) to � in (1.3); the relation between them is p = 1�2� (for n = 1as in (1.2)). We will henceforth use Q�(Rn) as de�ned by (1.3) exclusively,hopefully avoiding any possible confusion.Note that kfkQ�(Rn) = 0 if and only if f is constant a.e.; we thus regardQ�(Rn) as a Banach space of functions modulo constants. (It is immediatethat kfkQ�(Rn) is a norm; completeness also is easily veri�ed, see Section 2.)Remark 1.1. Since every cube I is contained in a cube J with dyadic edgelength (i.e. `(J) 2 f2k : k 2 Zg) such that `(J) < 2`(I), it is obvious that weobtain an equivalent de�nition, with an equivalent norm, if we consider onlycubes of dyadic edge lengths in (1.3).Similarly, one can consider balls instead of cubes (with `(I) replaced by theradius).We �rst observe that if � = �n2 , then Q�(Rn) = BMO(Rn), which can bede�ned for example as the space all functions in L1loc(Rn) satisfyingkfk2BMO(Rn) = supI jIj�1 ZI jf(x)� f(I)j2 dx <1; (1.4)



Q SPACES OF SEVERAL REAL VARIABLES 3where the supremum is taken over all cubes I in Rn andf(I) = jIj�1 ZI f(x) dxstands for the mean value of f over the cube I, cf. [10]. In fact, we will provebelow that Q�(Rn) = BMO(Rn) for all � 2 (�1; 0).It is well known that the important space BMO(Rn) can be described byPoisson integrals, Carleson measures, wavelet coe�cients and dyadic cubes.The purpose of this paper is to give analogues for Q�(Rn), � 2 (0; 1), whichare given in Sections 2{4 and 6{7. In Section 7 we also consider a dyadicversion of Q�(Rn). In Section 5, we will provide a local analysis of Q�(Rn)which sheds further light on the relation between Q�(Rn) and BMO(Rn).Finally, in Section 8 we will pose some open problems.Remark 1.2. One can similarly de�ne Q� spaces of functions de�ned on acube in Rn or a torus Tn. Many of the results below extend to these situations,but we leave the details to the reader.Remark 1.3. It is also possible to study Qp spaces in several complex vari-ables, see [2] and [15].Some notations. Throughout the paper, � is a �xed number in (�1;1);usually we assume � 2 (0; 1). C and c will denote unspeci�ed positive con-stants, possibly di�erent at each occurence; the constants may depend on �and the dimension n, but not on the functions or cubes involved. (They maysometimes depend on other �xed parameters, for example, in Section 6, on thechoice of wavelets.) We write X � Y , meaning cX � Y � CX.We sometimes consider dyadic cubes: Let D0 = D0(Rn) be the set of unitcubes whose vertices have integer coordinates, and let, for any integer k 2 Z,Dk = Dk(Rn) = f2�kI : I 2 D0g; then the cubes in D = S1�1Dk are calleddyadic. Furthermore, if I is any cube, we let Dk(I), k � 0, denote the set ofthe 2kn subcubes of edge length 2�k`(I) obtained by k successive bipartitionsof each edge of I. Moreover, put D(I) = S10 Dk(I).�E is the characteristic function of the set E.We let, for x 2 Rn , jxj1 be the l1-norm on Rn : j(x1; : : : ; xn)j1 = maxk jxkj.2. Basic propertiesThis section is devoted to some simple properties of Q�(Rn) and to relationsbetween Q�(Rn) and the Besov spaces.We �rst observe that, by simple changes of variables in (1.3), kfkQ�(Rn) is nota�ected by translations or dilations of Rn , i.e. by replacing f(x) by f(x� x0),x0 2 Rn or f(tx), t > 0; if we use the norm de�ned using balls, cf. Remark 1.1,the same holds for rotations. Thus,Theorem 2.1. Q�(Rn) is invariant under translations, rotations and dila-tions, and thus under all similarities of Rn ; moreover, there exists an equiva-lent norm on the space such that all similarities preserve the norm.We note the following alternative characterization of Q�(Rn).



4 MATTS ESS�EN, SVANTE JANSON, LIZHONG PENG, AND JIE XIAOLemma 2.2. Let �1 < � <1. Then f 2 Q�(Rn) if and only ifsupI [`(I)]2��n Zjyj<`(I) ZI jf(x+ y)� f(x)j2 dx dyjyjn+2� <1: (2.1)Proof. If the double integrals in (1.3) and (2.1) are denoted by A(I) and B(I),respectively, then by the change of variable y ! x + y and simple geometryone obtains A(I) � B(pnI) and B(I) � A(3I).The following properties indicate that we only need to pay attention to thecase � 2 [0; 1) for n > 1, and to the case � 2 [0; 1=2] for n = 1.Theorem 2.3.(i) Q�(Rn) is decreasing in �, i.e. Q�(Rn) � Q�(Rn) if � � �.(ii) If n � 2 and � � 1, or if n = 1 and � > 1=2, then Q�(Rn) contains onlyfunctions that are a.e. constant, and thus Q�(Rn) = f0g (as a Banachspace).(iii) If � < 0, then Q�(Rn) = BMO(Rn).Remark 2.4. The inclusion in (i) is strict if � < � except in the cases 1 � � <� (n � 2), 1=2 < � < � (n = 1), and � < � < 0, where equality holds by (ii) or(iii); see Example 2.10 and Remarks 2.8 and 2.11 below. In particular, if n � 2and 0 � � < 1 or n = 1 and 0 � � � 1=2, then f0g ( Q�(Rn) ( BMO(Rn).Proof. (i). Suppose � < �. If f 2 Q�(Rn), then for any cube I in Rn , we haveZI ZI jf(x)� f(y)j2jx� yjn+2� dx dy= ZI ZI jf(x)� f(y)j2jx� yjn+2� jx� yj2(���) dx dy� C[`(I)]2(���) ZI ZI jf(x)� f(y)j2jx� yjn+2� dx dy� C[`(I)]n�2�kfk2Q�(Rn);that is to say, f 2 Q�(Rn). So, Q�(Rn) � Q�(Rn).(ii). First assume � > n=2. If f 2 Q�(Rn), then by (1.3), for any cube I inRn , ZI ZI jf(x)� f(y)j2jx� yjn+2� dx dy � [`(I)]n�2�kfk2Q�(Rn):Since n� 2� < 0, letting I grow to Rn in the last inequality producesZRn ZRn jf(x)� f(y)j2jx� yjn+2� dx dy = 0:So, f is constant a.e. on Rn .Secondly, assume � � 1 and assume f 2 Q�(Rn). Assume �rst that f 2C1(Rn), and that f is non-constant. By considering either the real or imaginarypart, we may further assume that f is real. Then there exists a point x0 withrf(x0) 6= 0, and by the rotation invariance (Theorem 2.1) we may assumethat rf(x0) is directed along the positive x1-axis. Then there exist � > 0 and



Q SPACES OF SEVERAL REAL VARIABLES 5a small cube I about x0 on which @f=@x1 > 2� and j@f=@xkj < �, k � 2.Let D be the cone fx : jx2j + � � � + jxnj < x1 < `(I)=2g; then if x; y 2 I andx�y 2 D, by the mean value theorem, f(x)�f(y) > �(x1�y1). Consequently,ZI ZI jf(x)� f(y)j2jx� yjn+2� dx dy� ZI=2 Zz2D �2z21jzjn+2� dz dx= c�2jIj Z `(I)=20 z21z1+2�1 dz1 =1;a contradiction. Thus, if f 2 Q�(Rn) \ C1(Rn), then f is constant.Now, Q�(Rn) is translation invariant by Theorem 2.1, and it follows byMinkowski's inequality that if f 2 Q�(Rn) and g 2 L1(Rn), then f � g 2Q�(Rn). In particular, if g 2 C10 (Rn), then f � g 2 Q�(Rn) \ C1(Rn), andthus (assuming � � 1) f � g is constant. Finally, choosing a sequence gn � 0with R gn = 1 and supp gn shrinking to 0, f � gn ! f a.e., and it follows thatf is a.e. constant, which completes the proof of (ii). (Note that the �rst caseuses large cubes and the second case small cubes to show that f has to beconstant.)(iii). Case 1: �n=2 � � < 0. On the one hand, by (i), Q�(Rn) �Q�n=2(Rn) = BMO(Rn). On the other hand, if f 2 BMO(Rn) and I is acube, then for every y 2 Rn with jyj < `(I)ZI jf(x+ y)� f(x)j2 dx� ZI 2�jf(x+ y)� f(2I)j2 + jf(x)� f(2I)j2� dx� 4 Z2I jf(x)� f(2I)j2 dx � CjIjkfk2BMO(Rn)and thus, since � < 0,Zjyj<`(I) ZI jf(x+ y)� f(x)j2 dx dyjyjn+2�� CjIjkfk2BMO(Rn) Zjyj<`(I) dyjyjn+2�= C[`(I)]n�2�kfk2BMO(Rn):By Lemma 2.2, f 2 Q�(Rn) and hence Q�(Rn) = BMO(Rn) for � 2 [�n=2; 0).Case 2: � 2 (�1;�n=2]. In this case, BMO(Rn) � Q�(Rn) is knownby (i). Now, let f 2 Q�(Rn) and let I be a cube. If x; y 2 I, then the setfz 2 I : min(jx � zj; jy � zj) > 18`(I)g has measure at least 12 jIj, and thus,using �2�� n � 0,ZI min(jx� zj�2��n; jy � zj�2��n) dz > c`(I)�2��njIj = c`(I)�2�:



6 MATTS ESS�EN, SVANTE JANSON, LIZHONG PENG, AND JIE XIAOConsequently,jIj�2 ZI ZI jf(x)� f(y)j2 dx dy� C`(I)2��2n ZI ZI ZI min�jx� zj�2��n; jy � zj�2��n�jf(x)� f(y)j2 dx dy dz� C`(I)2��2n ZI ZI ZI min�jx� zj�2��n; jy � zj�2��n�� �jf(x)� f(z)j2 + jf(y)� f(z)j2� dx dy dz� C`(I)2��n�ZI ZI jf(x)� f(z)j2jx� zj2�+n dx dz + ZI ZI jf(y)� f(z)j2jy � zj2�+n dy dz�= C`(I)2��n ZI ZI jf(x)� f(y)j2jx� yj2�+n dx dy (2.2)Hence the left hand side of (2.2) is bounded as I ranges over all cubes, whichmeans that f 2 BMO(Rn), cf. (5.2). Thus Q�(Rn) � BMO(Rn), and we haveshown Q�(Rn) = BMO(Rn).We may now easily verify that Q�(Rn) is a Banach space.Theorem 2.5. Q�(Rn) is complete, and thus a Banach space.Proof. Let ffmg be a Cauchy sequence in Q�(Rn). By Theorem 2.3 and itsproof, Q�(Rn) � BMO(Rn) with the inclusion map bounded. Hence, ffmg isa Cauchy sequence in BMO(Rn) too, and fm ! f in BMO(Rn) for some f .It follows easily, using Fatou's lemma, that for every k � 1, kf � fkkQ�(Rn) �lim supm!1 kfm � fkkQ�(Rn), which implies that fk ! f in Q�(Rn) too.The following result relates Q� spaces de�ned in di�erent dimensions.Theorem 2.6. Let �1 < � < 1. Let f be a function on Rn , n � 1, andde�ne F on Rn+1 by F (x; t) = f(x), x 2 Rn , t 2 R. Then F 2 Q�(Rn+1) ()f 2 Q�(Rn).Proof. A cube in Rn+1 can be written I � [a; a+ `(I)] for a cube I in Rn anda real number a. Thus,kFk2Q�(Rn+1)= supI;a [`(I)]2��(n+1) ZI ZI Z `(I)+aa Z `(I)+aa jf(x)� f(y)j2j(x; t)� (y; u)jn+1+2� dt du dx dy:



Q SPACES OF SEVERAL REAL VARIABLES 7The multiple integral is independent of a, so we may take a = 0. Moreover,letting s = t� u, and assuming � > �n=2, as we may by Theorem 2.3(iii),Z `(I)0 Z `(I)0 dt duj(x; t)� (y; u)jn+1+2�� Z `(I)0 Z `(I)0 dt dujx� yjn+1+2� + jt� ujn+1+2�� `(I) Z 1�1 dsjx� yjn+1+2� + jsjn+1+2�= C`(I)jx� yj�n�2�;while a similar opposite inequality follows by considering only t and u withjt� uj < jx� yj. Consequently,kFk2Q�(Rn+1) � supI [`(I)]2��n ZI ZI jf(x)� f(y)j2jx� yjn+2� dx dy = kfk2Q�(Rn):Connection with Besov spaces. Denote the homogeneous Besov spaces onRn by �p;q� (Rn). We refer to e.g. [16] for a general de�nition; if 0 < � < 1 and1 � p; q <1, then �p;q� (Rn) consists of all measurable functions f such thatZRn �ZRn jf(x+ y)� f(x)jp dx�q=p dyjyjn+q� <1; (2.3)and if 0 < � < 1 and 1 � p < q =1, then �p;q� (Rn) consists of the functionsf such thatkfk�p;1� (Rn) = supy2Rn jyj�� �ZRn jf(x+ y)� f(x)jp dx�1=p <1: (2.4)Theorem 2.7. Let n � 2 and 0 < � < 1, or n = 1 and 0 < � < 1=2.(i) If q � 2, then �n=�;q� (Rn) � Q�(Rn).(ii) If � > � and q � 1, then �n=�;q� (Rn) � Q�(Rn).Remark 2.8. In the case n = 1 and � = 1=2, it is seen by (1.3) and (2.3)that Q1=2(R) = �f : ZR ZR jf(x)� f(y)j2jx� yj2 dx dy <1� = �2;21=2(R);which coincides with the Sobolev space L21=2(R). Thus (i) holds in this casetoo, while (ii) holds only for q � 2.In particular, Q1=2(R) contains non-constant functions, and it is thus clearthat the inclusion Q1=2(R) � Q�(R), � > 1=2, is strict (cf. Theorem 2.3 andRemark 2.4).



8 MATTS ESS�EN, SVANTE JANSON, LIZHONG PENG, AND JIE XIAOProof. (i). Since �n=�;q� (Rn) � �n=�;2� (Rn) [16, Chapter 3, Theorem 4], we mayassume that q = 2. Thus, assume that f 2 �n=�;2� (Rn). By H�older's inequalitywith exponents n=2� and n=(n� 2�) we get, for any cube I in Rn ,Zjyj<`(I) ZI jf(x+ y)� f(x)j2 dx dyjyjn+2�� jIjn�2�n ZRn �ZI jf(x+ y)� f(x)jn=� dx�2�=n dyjyjn+2� ;which gives f 2 Q�(Rn) by (2.3) and Lemma 2.2.(ii). Since �n=�;q� (Rn) � �n=
;q
 (Rn) for � > 
 [16, Chapter 3, Theorem 5],we may assume that � < � < 1, and in the case n = 1 further � � 1=2. Iff 2 �n=�;q� (Rn) � �n=�;1� (Rn), then for any cube I in Rn we apply H�older'sinequality with exponents n=2� and n=(n� 2�) together with (2.4) to getZjyj<`(I) ZI jf(x+ y)� f(y)j2 dx dyjyjn+2�� jIjn�2�n Zjyj<`(I) �ZI jf(x+ y)� f(x)jn=� dx�2�=n dyjyjn+2�� `(I)n�2� Zjyj<`(I) jyj2��n�2� dy kfk2�n=�;1� (Rn)� C`(I)n�2�kfk2�n=�;1� (Rn):So, f 2 Q�(Rn) and the result follows.Remark 2.9. The inclusions in Theorem 2.7 are the only possible for these�. First, if �p;q� (Rn) � Q�(Rn), then the inclusion mapping is bounded by theclosed graph theorem, and since for any t > 0, the norm of the dilation ft(x) =f(tx) satis�es kftkQ�(Rn) = kfkQ�(Rn) by Theorem 2.1, while kftk�p;q� (Rn) =t��n=pkfk�p;q� (Rn) (for a suitable choice of norm), we see that necessarily � �n=p = 0 and thus p = n=�.Secondly, the following example shows that �n=�;q� (Rn) 6� Q�(Rn) for � < �or � = � and q > 2.Example 2.10. Let ' 2 S(Rn) be a �xed function such that '̂ has supportin the unit ball and ' 6= 0 on the cube [�3�; 3�]n. (Such functions are easilyconstructed, for example as a dilation '1(�x) with '̂1 2 C10 , '̂1 � 0 and �small.)Let (ak)11 be a sequence real numbers with P1k=1 a2k <1, and de�neg(x) = 1Xk=1 ak exp(2kx1i);



Q SPACES OF SEVERAL REAL VARIABLES 9where x1 is the �rst coordinate of x. Let f = 'g. It is then easily seen, by thede�nition [16, p. 51], that for every p, q and �kfk�p;q� (Rn) � k(2k�ak)11 k`q = � 1Xk=1 2qk�jakjq�1=q(with the usual modi�cation if q =1).In particular, if Pk 22k�jakj2 < 1, then f 2 �n=�;2� (Rn), and thus f 2Q�(Rn) by Theorem 2.7, provided n � 2 and 0 < � < 1 or n = 1 and0 < � � 1=2.Conversely, if f 2 Q�(Rn), then, choosing I = [��; �]n in Lemma 2.2,Zjyj<2� ZI jf(x+ y)� f(x)j2 dx dyjyjn+2� <1:Sincef(x + y)� f(x) = '(x+ y)�g(x+ y)� g(x)�+ g(x)�'(x + y)� '(x)�;and j'(x+ y)j � c > 0 for x 2 I and jyj < 2�,jg(x+ y)� g(x)j2� C��'(x + y)�g(x+ y)� g(x)���2� Cjf(x+ y)� f(x)j2 + Cjg(x)j2j'(x+ y)� '(x)j2:Moreover, j'(x+ y)� '(x)j � Cjyj;and thus Zjyj<2� ZI jg(x)j2j'(x + y)� '(x)j2 dx dyjyjn+2�� C ZRn jg(x)j2 Zjyj<2� jyj2�2��n dy <1:Consequently, using Parseval's formula and writing y = (y1; y0), y0 2 Rn�1 ,



10 MATTS ESS�EN, SVANTE JANSON, LIZHONG PENG, AND JIE XIAO1 > Zjyj<1 Zx2I jg(x+ y)� g(x)j2 dx dyjyjn+2�= (2�)n Zjyj<1 1Xk=1��ak(e2ky1i � 1)��2 dyjyjn+2�� c 1Xk=1 jakj2 Zjy0j<y1<2�k j2ky1j2 dyyn+2�1� c 1Xk=1 jakj2 Z 2�k0 22ky1�2�1 dy1= c 1Xk=1 22k�jakj2:We have thus shown that, for � as in Theorem 2.7,f 2 Q�(Rn) () 1Xk=1 22k�jakj2 <1:Choosing e.g. ak = 2�k�k�1, we obtain a function f 2 Q�(Rn) n Q�(Rn) forevery � > �, justifying the claim in Remark 2.4. Similarly, if � < � or � = �and q � 2, suitable choices of ak yields f 2 �n=�;q� (Rn) nQ�(Rn) as asserted inRemark 2.9.Remark 2.11. For � � 0, it may be shown that if f is as in Example 2.10,then f 2 Q�(Rn) () (P11 jakj2 <1; � < 0;P11 kjakj2 <1; � = 0:In particular, this shows that Q0(Rn) ( Q�(Rn) = BMO(Rn), � < 0.3. Poisson extensionIn this section, we discuss di�erences and similarities between Q�(Rn), � 2(0; 1), and BMO(Rn) with respect to Poisson extensions to Rn+1+ .Let f be any measurable function on Rn that satis�esZRn jf(x)j1 + jxjn+1 dx <1: (3.1)Its Poisson integral is de�ned byf(x; t) = ZRn Pt(x� y)f(y) dy; (3.2)where Pt(x) = cnt(t2 + jxj2)n+12 ; cn = �(n+12 )� n+12 :



Q SPACES OF SEVERAL REAL VARIABLES 11De�ne the gradient of f(x; t) byjrf(x; t)j2 = ����@f(x; t)@t ����2 + nXj=1 ����@f(x; t)@xj ����2 ;and the Carleson box based on a cube I byS(I) = I � (0; `(I)] = f(x; t) 2 Rn+1+ : x 2 I; t 2 (0; `(I)]g:We extend a lemma of Stegenga [18] from one dimension to higher dimen-sions.Lemma 3.1. Let I and J be cubes in Rn centered at x0 with `(J) � 3`(I) andlet f 2 L1loc(Rn). For � 2 (0; 1), there is a constant C independent of f; I andJ such that ZS(I) jrf(x; t)j2t1�2� dx dt� C ZJ ZJ jf(x)� f(y)j2jx� yjn+2� dx dy+ C[`(I)]n+2(1��) ZRnn 23J jf(x)� fJ j dxjx� x0jn+1!2 : (3.3)Proof. Without loss of generality, we assume that x0 is the origin. Also, let 'be a function with 0 � ' � 1 such that ' = 1 on 23J , supp' � 34J , andj'(x)� '(y)j � C[`(J)]�1jx� yj; x; y 2 Rn : (3.4)Write ~' = 1� '. Then we havef = fJ + (f � fJ)'+ (f � fJ) ~' = f1 + f2 + f3:We also have f(x; t) = f1(x; t) + f2(x; t) + f3(x; t)for the corresponding Poisson integrals. In the integral with the gradientsquare, f1 contributes nothing since it is constant.We have @f(x; s)@s = ZRn @Ps(y)@s [f(x+ y)� f(x)] dyand therefore by the elementary estimates����@Ps(y)@s ���� � cs�n�1; ����@Ps(y)@s ���� � cjyj�n�1;we see that 



@f(�; s)@s 



L2(Rn)� Cs�n�1 Zjyj�s kf(�+ y)� fkL2(Rn) dy+ C Zjyj>s kf(�+ y)� fkL2(Rn) dyjyjn+1 :



12 MATTS ESS�EN, SVANTE JANSON, LIZHONG PENG, AND JIE XIAONext set y = r� 2 Rn , with r = jyj, and j�j = 1. Then with
(r) = Zj�j=1 kf(�+ r�)� fkL2(Rn)d�we write A = k@f(x; s)@s kL2(Rn)� Cs�n�1 Z s0 
(r)rn�1dr + C Z 1s 
(r)r�2dr:Therefore, by Hardy's inequalities [19, p. 272],Z 10 s1�2�A2ds � C Z 10 [
(r)]2r�1�2�dr:Note that by H�older's inequality,[
(r)]2 � C Zj�j=1 kf(�+ r�)� fk2L2(Rn)d�:Substituting this in the above leads to the boundC Zj�j=1 Z 10 kf(�+ r�)� fk2L2(Rn)r�1�2�drd�= C ZRn �ZRn jf(x+ y)� f(x)j2 dx� dyjyjn+2� :In the same way we can proveZ 10 t1�2�k@f(�; t)@xj k2L2(Rn)dt� C ZRn �ZRn jf(x+ y)� f(x)j2 dx� dyjyjn+2� :Now, we obtainZS(I) jrf2(x; t)j2t1�2� dx dt� Z 10 �ZRn jrf2(x; t)j2t1�2� dx� dt� C ZRn ZRn jf2(x)� f2(y)j2jx� yjn+2� dx dy= ZZ x;y2J � � �+ ZZ x=2J;y2 34J � � �+ ZZ y=2J;x2 34J � � �= B1 +B2 +B3:As to B1, we have using (3.4)jf2(x)� f2(y)j � jf(x)� f(y)j+ C[`(J)]�1jx� yjjf(y)� fJ j:



Q SPACES OF SEVERAL REAL VARIABLES 13Thus, we need only estimate[`(J)]�2 ZJ ZJ jf(y)� fJ j2jx� yjn+2��2 dx dy= [`(J)]�2 ZJ jf(y)� fJ j2 �ZJ jx� yj2�n�2� dx� dy� C[`(J)]�2� ZJ jf(y)� fJ j2 dy= C[`(J)]�2��n ZJ ZJ jf(x)� f(y)j2 dx dy� C ZJ ZJ jf(x)� f(y)j2jx� yjn+2� dx dy;cf. (5.2), which gives the estimate for B1. The B2 and B3 terms are handledsimilarly as the last estimate, using f2(x) = 0 for x =2 J .Moreover, jrf3(x; t)j� ZRn jrPt(x� y)jf3(y) dy� C ZRnn 23J jf(y)� fJ j(t + jx� yj)n+1 dy:If (x; t) 2 S(I) then for y 2 Rn n 23J ,1(t+ jx� yj)n+1 � Cjyjn+1 ;and hence ZS(I) jrf3(x; t)j2t1�2� dx dt� �ZS(I) t1�2� dx dt� ZRnn 23J jf(x)� fJ jjxjn+1 dx!2
� C[`(I)]n+2(1��) ZRnn 23J jf(x)� fJ jjxjn+1 dx!2 :Combining the above inequalities, we obtain (3.3).With Lemma 3.1, we can characterize functions of Q�(Rn) in terms of thePoisson integral. Note that setting � = 0 in (3.5) yields a characterization ofBMO(Rn) [6].Theorem 3.2. Let � 2 (0; 1) and let f 2 L2loc(Rn) satisfy (3.1). Then f 2Q�(Rn) if and only ifZS(I) jrf(x; t)j2t1�2� dx dt �M [`(I)]n�2� (3.5)



14 MATTS ESS�EN, SVANTE JANSON, LIZHONG PENG, AND JIE XIAOfor some M <1 and all cubes I � Rn .Proof. First, suppose that f 2 Q�(Rn). Then, by Theorem 2.3, f 2 BMO(Rn)with kfkBMO(Rn) � CkfkQ�(Rn). For convenience, we may assume that thecube I has the origin as its center. Now, let J = 3I. Then we haveZRnn 23J jf(x)� fJ j dxjxjn+1� 1Xk=0 Z3kJn3k�1J jf(x)� fJ j dxjxjn+1� C 1Xk=0[3k`(J)]�(n+1) Z3kJ jf(x)� f3kJ j dx+ C 1Xk=0(3k`(J))�1jf3kJ � fJ j� C`(I) "kfkBMO(Rn) + 1Xk=1 k3kkfkBMO(Rn)#� C[`(I)]�1kfkBMO(Rn):So, [`(I)]n+2(1��) ZRnn 23J jf(x)� fJ j dx=jx� x0jn+1!2� C[`(I)]n�2�kfk2Q�(Rn):This inequality, the de�nition of Q�(Rn) and Lemma 3.1 imply (3.5), whichproves one implication.Conversely, suppose that (3.5) holds for f . We claim that thenZjyj<`(I) �ZI jf(x+ y)� f(x)j2 dx� dyjyjn+2� � CM [`(I)]n�2�: (3.6)First, by the triangle inequality,jf(x+ y)� f(x)j� jf(x+ y)� f(x+ y; jyj)j+ jf(x+ y; jyj))� f(x; jyj)j+ jf(x; jyj)� f(x)j= A1 + A2 + A3:



Q SPACES OF SEVERAL REAL VARIABLES 15For A3, we employ Minkowski's inequality to get�ZI jA3j2 dx� 12� Z jyj0 "ZI ����@f(x; t)@t ����2 dx# 12 dt� Z jyj0 �ZI jrf(x; t)j2 dx� 12 dt:By Hardy's inequality [19, p. 272], we further haveZjyj<`(I) 1jyjn+2� �ZI jA3j2 dx� dy� C Z `(I)0 (Z s0 �ZI jrf(x; t)j2 dx� 12 dt)2 s�1�2�ds� C Z `(I)0 �ZI jrf(x; t)j2 dx� t1�2�dt� CM [`(I)]n�2�:Since, for jyj < `(I), RI jA1j2 dx = RI+y jA3j2 dx � R3I jA3j2 dx, we similarlyobtain Zjyj<`(I) 1jyjn+2� �ZI jA1j2 dx� dy � CM [`(I)]n�2�:It remains to handle A2. It is clear thatjA2j � Z jyj0 jrf(x+ tey; jyj)jdt; ey = y=jyj:If jyj � `(I), then an application of Minkowski's inequality gives�ZI jA2j2 dx� 12� Z jyj0 �ZI jrf(x+ tey; jyj)j2 dx� 12 dt� C Z jyj0 �Z3I jrf(x; jyj)j2 dx� 12 dt= Cjyj �Z3I jrf(x; jyj)j2 dx� 12 :Hence,



16 MATTS ESS�EN, SVANTE JANSON, LIZHONG PENG, AND JIE XIAOZjyj�`(I) 1jyjn+2� �ZI jA2j2 dx� dy� ZS(3I) jrf(x; t)j2t1�2� dx dt� CM [`(I)]n�2�:Putting these estimates on A1, A2 and A3 together, we see that (3.6) holds,and thus, by Lemma 2.2, f belongs to Q�(Rn).4. Generalized Carleson measuresTheorem 3.2 shows that it is natural to introduce a generalized Carlesonmeasure. Let S(I) = I � (0; `(I)] be the Carleson box based on the cubeI � Rn . Given p > 0 and a positive Borel measure � on Rn+1+ , we say that �is a p-Carleson measure if �(S(I)) �M [`(I)]pn;for some M < 1 and all cubes I � Rn . Of course, the case p = 1 givesthe classical Carleson measures. It follows from Theorem 3.2 that whenever� 2 (0; 1), f 2 Q�(Rn) if and only if jrf(x; t)j2t1�2� dxdt is a (1 � 2�=n)-Carleson measure. In fact, the second half of the proof of Theorem 3.2 showsmore generally that if there exists a di�erentiable extension F (x; t) of f to Rn+1+which satis�es the condition that jrF (x; t)j2t1�2� dxdt is a (1�2�=n)-Carlesonmeasure, then f is in Q�(Rn).We next want to give a characterization of Q�(Rn) by means of an integralon Rn+1+ . From now on, denote by �(x) the distance of the point x 2 Rn+1+ tothe boundary @Rn+1+ . Also, ~y stands for the symmetric point of y 2 Rn+1+ withrespect to Rn , that is to say, if y = (y1; : : : ; yn+1), then ~y = (y1; : : : ;�yn+1).Lemma 4.1. Let � be a Borel measure on Rn+1+ and p 2 (0;1). Then � is ap-Carleson measure if and only ifsupy2Rn+1+ ZRn+1+ � �(y)jx� ~yjn+1�p d�(x) <1: (4.1)Proof. Su�ciency. Take y to be the center of the Carleson box S(I). If x 2S(I), then jx� ~yj < C`(I) and henceZRn+1+ � �(y)jx� ~yjn+1�p d�� ZS(I)� �(y)jx� ~yjn+1�p d�� c�(S(I))[`(I)]pn :Thus, if (4.1) holds, then � is a p-Carleson measure.



Q SPACES OF SEVERAL REAL VARIABLES 17Necessity. Fix y = (y0; yn+1) 2 Rn+1+ . Let I � Rn be the cube with center y0and edge length �(y), and for each positive integer m = 1; 2; : : : , de�ne Em tobe the Carleson box S(2mI). When x 2 E1, we have jx � ~yj � �(y). Also, ifx 2 Em+1nEm, then c2m�(y) � jx�~yj � C2m+1�(y). Thus, if � is a p-Carlesonmeasure, ZRn+1+ � �(y)jx� ~yjn+1�p d�(x)=  ZE1 + 1Xm=1ZEm+1nEm!� �(y)jx� ~yjn+1�p d�(x)� C �(E1)�(y)np + C 1Xm=1 �(Em+1)2mp(n+1)[�(y)]np� C:The last constant C is independent of y. We are done.For convenience, we will from now on use the same notation to denote f onRn and its Poisson extension to the upper half space Rn+1+ . So, we haveTheorem 4.2. Let � 2 (0; 1) and let f 2 L2loc(Rn) satisfy (3.1). Then f 2Q�(Rn) if and only if its Poisson integral f(x) = f(z; t) on Rn+1+ satis�essupy2Rn+1+ ZRn+1+ ( �(y)jx� ~yjn+1 )1�2�=njrf(x)j2[�(x)]1�2� dx <1: (4.2)Proof. If 1 � 2�=n > 0, then the proof is immediate by Theorem 3.2 andLemma 4.1.It remains only to treat the (less interesting) case n = 1 and � � 1=2. First,if n = 1 and � = 1=2, then the integral in (4.2) is independent of y and equalsRRn+1+ jrf(x)j2 dx, which is �nite if and only if f 2 Q1=2(R), cf. Remark 2.8.Finally, the case n = 1 and � > 1=2 is trivial. Then f 2 Q�(R) only iff is a.e. constant by Theorem 2.3(ii). Similarly, if (4.2) holds, it follows byusing Fatou's lemma as y ! 0 that rf(x) = 0 in Rn+1+ , and thus f is a.e.constant.Green potential. Observe that Qp was �rst de�ned by the Green potential.Can we characterize Q�(Rn) in terms of the Green function for a half space?When n = 1, the Green function of the upper half plane isG(x; y) = log jx� ~yjjx� yj : (4.3)When n > 1, the Green function of the upper half space Rn+1+ is given byG(x; y) = 1jx� yjn�1 � 1jx� ~yjn�1 : (4.4)(cf. [1, p. 65]). Indeed, this function is related to the quantity introduced inLemma 4.1.



18 MATTS ESS�EN, SVANTE JANSON, LIZHONG PENG, AND JIE XIAOLemma 4.3. Let x; y 2 Rn+1+ . Then(i) G(x; y) � 2�(x)�(y)jx�~yjn+1 ; n � 1.(ii) G(x; y) � C �(x)�(y)jx�~yj2jx�yjn�1 ; n � 2.(iii) G(x; y) � �4 log a1�a2 �(x)�(y)jx�~yj2 ; a � jx�yjjx�~yj ; n = 1.Proof. See [1, p. 68] and [7, p. 289].Remark 4.4. It was proved in [12] that f 2 BMO(Rn) if and only ifsupy2Rn+1+ ZRn+1+ G(x; y)jrf(x)j2 dx <1: (4.5)The following characterization of Q�(Rn) by means of the Green potentialwill employ Lemma 4.3 and Remark 4.4.Theorem 4.5. Let � 2 (0; 1) and let f 2 L2loc(Rn) satisfy (3.1). Then f 2Q�(Rn) if and only if its Poisson integral f(x) = f(z; t) satis�essupy2Rn+1+ ZRn+1+ [�(x)]2( 1n�1)�[G(x; y)]1�2�=njrf(x)j2 dx <1: (4.6)Proof. If (4.6) holds and 1 � 2�=n � 0, then Lemma 4.3(i) and Theorem 4.2imply f 2 Q�(Rn). The exceptional case n = 1 and � > 1=2 follows as in theproof of Theorem 4.2.Conversely, suppose f 2 Q�(Rn). We haveZRn+1+ [�(x)]2( 1n�1)�[G(x; y)]1�2�=njrf(x)j2 dx= (Zjx�yj=jx�~yj� 12 + Zjx�yj=jx�~yj> 12) [�(x)]2( 1n�1)�[G(x; y)]1�2�=njrf(x)j2 dx= I1(y) + I2(y):Since jx � yj � 12 jx � ~yj implies jx � yj � 2�(x) and, by (4.3) or (4.4),G(x; y) � c=jx� yjn�1,I1(y)� C Zjx�yj=jx�~yj� 12 jx� yj 2(n�1)�n[�(x)] 2�(n�1)n G(x; y)jrf(x)j2 dx� C Zjx�yj�2�(x) � jx� yj�(x) �2�(n�1)n G(x; y)jrf(x)j2 dx� C ZRn+1+ G(x; y)jrf(x)j2 dx:We know that Q�(Rn) � BMO(Rn), and it follows from the last estimateand Remark 4.4 that supy2Rn+1+ I1(y) <1.



Q SPACES OF SEVERAL REAL VARIABLES 19As to I2(y), we apply Lemma 4.3(ii) or (iii) to deriveI2(y)� C Zjx�yj=jx�~yj� 12 jrf(x)j2 � �(x)�(y)jx� ~yj2jx� yjn�1�1�2�=n [�(x)]2�( 1n�1)dx� C Zjx�yj=jx�~yj� 12 jrf(x)j2[�(x)]2�( 1n�1) � �(x)�(y)jx� ~yjn+1�1�2�=n dx� C ZRn+1+ jrf(x)j2[�(x)]1�2� � �(y)jx� ~yjn+1�1�2�=n dx:With the help of Theorem 4.2, we deduce that supy2Rn+1+ I2(y) <1.5. Mean oscillationIn this section we give an alternative characterization of Q�(Rn) in terms ofthe (square) mean oscillation over cubes. We follow the one-dimensional casegiven in [9].We de�ne, for any cube I and an integrable function f on I,f(I) = 1jIj ZI f(x)dx;the mean of f on I, and�f(I) = 1jIj ZI jf(x)� f(I)j2dx;the square mean oscillation of f on I. Obviously, �f (I) < 1 , f 2 L2(I);we may extend the de�nition to all measurable functions f on I by letting�f (I) = 1 when f =2 L2(I). Recall that f 2 BMO(Rn) if and only ifsupI �f (I) <1 [10]. Note the well-known identities1jIj ZI jf(x)� aj2dx = �f (I) + jf(I)� aj2 (5.1)for any complex number a, and1jIj2 ZI ZI jf(x)� f(y)j2 dx dy = 2�f(I): (5.2)Furthermore, if I � J , then by (5.1),�f (I) � 1jIj ZI jf(x)� f(J)j2dx � jJ jjIj�f (J); (5.3)and, similarly, jf(I)� f(J)j2 � jJ jjIj�f (J): (5.4)



20 MATTS ESS�EN, SVANTE JANSON, LIZHONG PENG, AND JIE XIAOWe de�ne, for any cube I and a measurable function f on I, recalling thenotation Dk(I) for the successive dyadic partitions of I,	f;�(I) = 1Xk=0 XJ2Dk(I) 2(2��n)k�f (J): (5.5)We will prove below that Q�(Rn) can be characterized by supI 	f;�(I) <1.We begin with some simple preliminary lemmas.Lemma 5.1. Let �1 < � < 1. For any cube I and f 2 L2(I), with Jranging over the 2n subcubes in D1(I),�f (I) = 2�n XJ2D1(I)�f (J) + 2�n XJ2D1(I) jf(J)� f(I)j2 (5.6)and 	f;�(I) � XJ2D1(I)	f;�(J) + XJ2D1(I) jf(J)� f(I)j2: (5.7)Proof. By (5.1), �f (I)= jIj�1 XJ2D1(I) ZJ jf � f(I)j2= 2�n XJ2D1(I)��f(J) + jf(J)� f(I)j2�;which is (5.6).Next, this and the de�nition (5.5) yield, since Dk(I) = SJ2D1(I)Dk�1(J) fork � 1, 	f;�(I)= �f (I) + 1Xk=1 XJ2D1(I) XK2Dk�1(J) 2(2��n)k�f(K)= �f (I) + XJ2D1(I) 22��n	f;�(J)� XJ2D1(I)�	f;�(J) + �f (J) + jf(J)� f(I)j2�;which yields (5.7), since 	f;�(J) + �f (J) � 	f;�(J).Lemma 5.2. If � < 0, then 	f;�(I) � �f (I).Proof. By Lemma 5.1 and induction,PJ2Dk(I) 2�nk�f (J) � �f (I), and hence�f (I) � 	f;�(I) � 1Xk=0 22�k�f(I):



Q SPACES OF SEVERAL REAL VARIABLES 21Lemma 5.3. Let �1 < � <1. Then, for any cube I and f 2 L2(I),	f;�(I) � C[`(I)]2��n ZI ZI jf(x)� f(y)j2jx� yjn+2� dx dy:Proof. By (5.5) and (5.2),	f;�(I)= 1Xk=0 XJ2Dk(I) 2(2��n)k 12�2�nkjIj��2 ZJ ZJ jf(x)� f(y)j2 dx dy= ZRn ZRn �I(x; y)jf(x)� f(y)j2 dx dy; (5.8)where �I(x; y) = 12 1Xk=0 XJ2Dk(I) 2(2�+n)kjIj�2�J(x)�J(y): (5.9)First assume that � > �n=2. Since x; y 2 J 2 Dk(I) implies jx � yj1 �`(J) = 2�k`(I), and thus 2k � `(I)=jx� yj1 � C`(I)=jx� yj, we then have�I(x; y)� X2k�`(I)=jx�yj1 2(2�+n)kjIj�2� C� `(I)jx� yj�2�+njIj�2= C[`(I)]2��njx� yj�2��n;furthermore �I(x; y) = 0 unless x; y 2 I. Consequently, by (5.8), the inequalityholds.The case � � �n=2 follows by Lemma 5.2 and (2.2).We will prove the converse inequality for � < 1=2 in Lemma 5.8 below, but�rst we give a slightly weaker, but also more general, converse.Lemma 5.4. Let �1 < � <1. For any cube I and f 2 L2loc(Rn),[`(I)]2��n ZI ZI jf(x)� f(y)j2jx� yjn+2� dx dy� CjIj Zjtj1<`(I)	f;�(I + t) dt+ C	f;�(I)� C supjtj1<`(I)	f;�(I + t):



22 MATTS ESS�EN, SVANTE JANSON, LIZHONG PENG, AND JIE XIAOProof. By (5.8) and Fubini's theorem,1jIj Zjtj1<`(I)	f;�(I + t) dt= ZRn ZRn 1jIj Zjtj1<`(I) �I+t(x; y) dt jf(x)� f(y)j2 dx dy:This and (5.8) show that it su�ces to verify1jIj Zjtj1<`(I) �I+t(x; y) dt+ �I(x; y)� c`(I)2��njx� yj�2��n; x; y 2 I: (5.10)First, suppose that x; y 2 I with jx�yj1 � 12`(I) and let l � 0 be such that2�l�2`(I) < jx� yj1 � 2�l�1`(I):Then, by (5.9), and noting that x =2 I + t and thus �I+t(x; y) = 0 whenjtj1 > `(I),1jIj Zjtj1<`(I) �I+t(x; y) dt� 1jIj ZRn 12 XJ2Dl(I+t) 2(2�+n)ljIj�2�J(x)�J(y) dt= 2(2�+n)l2jIj3 XJ2Dl(I) ZRn �J+t(x)�J+t(y) dt� cjx� yj�2��n`(I)2��2n XJ2Dl(I) ZRn �J+t(x)�J+t(y) dt:Now, �J+t(x)�J+t(y) = �J�x(�t)�J�y(�t). Thus the �nal integral equals thevolume of (J�x)\(J�y), which for each J is a rectangular box with edges atleast `(J)� jx� yj1 � 12`(J), and thus volume at least 2�njJ j. Consequently,the sum over J is at least 2�njIj, and (5.10) holds for jx� yj � 12`(I).Finally, if x; y 2 I with jx� yj > 12`(I), then, taking k = 0 in (5.9),�I(x; y) � 12 jIj�2 � c`(I)2��njx� yj�2��nand (5.10) holds in this case too.As an immediate consequence of Lemmas 5.3 and 5.4, we obtain our alter-native characterization of Q�(Rn).Theorem 5.5. Let �1 < � < 1. Then Q�(Rn) equals the space of allmeasurable functions f on Rn such that supI 	f;�(I) is �nite, where I rangesover all cubes in Rn . Moreover, the square root of this supremum is a normon Q�(Rn), equivalent to kfkQ�(Rn) as de�ned above.



Q SPACES OF SEVERAL REAL VARIABLES 23In order to prove a full converse to the inequality in Lemma 5.3, we be-gin with two further preliminary lemmas, which also may have independentinterest.Lemma 5.6. Let � < 1=2. Let I, I 0 and I 00 be three cubes of equal size,jIj = jI 0j = jI 00j, such that I 0 and I 00 are adjacent and I � I 0 [ I 00. Then, forany f 2 L1(I 0 [ I 00),�f (I) � �f (I 0) + �f (I 00) + jf(I 0)� f(I 00)j2; (5.11)	f;�(I) � C�	f;�(I 0) + 	f;�(I 00) + jf(I 0)� f(I 00)j2�: (5.12)Proof. It follows from (5.1) that�f (I)� jIj�1 ZI jf(x)� (f(I 0) + f(I 00))=2j2 dx� jIj�1 ZI0[I00 jf(x)� (f(I 0) + f(I 00))=2j2 dx= �f (I 0) + �f (I 00) + 12 jf(I 0)� f(I 00)j2;proving (5.11).For (5.12), we assume for simplicity that I 0 = [0; 1)n and I 00 = I 0+ e1, wheree1 is the unit vector (1; 0; : : : ; 0); this is no loss of generality by homogeneity.Note that by assumption then I = I 0 + te1 for some t 2 [0; 1]. For each j � 0,let D�j = Dj(I 0) [ Dj(I 00) be the set of the 2nj+1 dyadic cubes with side 2�jcontained in I 0 [ I 00. If Ij 2 Dj(I), then Ij � J [ (J +2�je1) for some J 2 D�j ,and thus by (5.11) applied to J ,�f (Ij) � �f (J) + �f (J + 2�je1) + jf(J)� f(J + 2�je1)j2:The 2nj di�erent choices of Ij 2 Dj(I) yield di�erent J 2 D�j , and summingover all j and Ij we thus obtain,	f;�(I)= 1Xj=0 XIj2Dj(I) 2(2��n)j�f(Ij)� 2 1Xj=0 XJ2D�j 2(2��n)j�f (J) + 1Xj=0 XJ2D0j 2(2��n)j jf(J)� f(J + 2�je1)j2; (5.13)where D0j = fJ 2 D�j : J + 2�je1 2 D�jg.The �rst double sum on the right hand side of (5.13) is just 	f;�(I 0) +	f;�(I 00). In order to estimate the �nal sum, consider a cube J 2 D0j for somej � 0. Let I� be the smallest dyadic cube that contains J[(J+2�je1), and letthe edge length of I� be 2�j+m, where m � 1. Moreover, for 0 � l � m, let Jland Kl be the dyadic cubes of edge length 2�j+l that contain J and J +2�je1,respectively; thus J = J0 � J1 � � � � � Jm = I� and J + 2�je1 = K0 � � � � �Km = I�. Using the Cauchy{Schwarz inequality and (5.6), we obtain



24 MATTS ESS�EN, SVANTE JANSON, LIZHONG PENG, AND JIE XIAOjf(J)� f(J + 2�je1)j2� � mXl=1 jf(Jl�1)� f(Jl)j+ mXl=1 jf(Kl)� f(Kl�1)j�2� �2 1Xl=1 l�2�� mXl=1 l2jf(Jl)� f(Jl�1)j2 + mXl=1 l2jf(Kl)� f(Kl�1)j2�� C mXl=1 l2��f (Jl) + �f(Kl)�: (5.14)If J [ (J + 2�je1) � I 0 or I 00, then jI�j � 1 and m � j. If J � I 0 andJ + 2�je1 � I 00, however, then I� = [0; 2)n and m = j + 1; in this case wemodify (5.14) by observing that Jj = I 0 and Kj = I 00 which by the sameargument yieldsjf(J)� f(J + 2�je1)j2� C jXl=1 l2��f (Jl) + �f (Kl)�+ Cjf(I 0)� f(I 00)j2: (5.15)We now keep j � 0 �xed and sum (5.14) or (5.15) for J 2 D0j . We observethat the cubes Jl andKl that appear belong to D�j�l, with 1 � l � j. Moreover,each dyadic cube J 0 = Qn1 [ai; bi) in D�j�l appears as a Jl or a Kl only for theJ 2 D�j that are adjacent to either the face x1 = a1, the face x1 = b1 or themid plane x1 = (a1 + b1)=2, and there are thus at most 3 � 2(n�1)l such J .Consequently, since (5.15) is used for 2(n�1)j cubes J ,XD0j jf(J)� f(J + 2�je1)j2� C jXl=1 XJ2D�j�l 2(n�1)ll2�f (J) + C2(n�1)jjf(I 0)� f(I 00)j2:Summing over j we �nally obtain, substituting j = k + l and observing thatP1l=1 l22(2��1)l <1,1Xj=0 XJ2D0j 2(2��n)jjf(J)� f(J + 2�je1)j2� C 1Xl=1 1Xk=0 XJ2Dk(I0)[Dk(I00) 2(2��n)k+(2��n)l2(n�1)ll2�f(J)+ C 1Xj=0 2(2��n)j2(n�1)jjf(I 0)� f(I 00)j2= C	f;�(I 0) + C	f;�(I 00) + Cjf(I 0)� f(I 00)j2;



Q SPACES OF SEVERAL REAL VARIABLES 25which by (5.13) completes the proof of (5.12).Lemma 5.7. Let �1 < � < 1=2. If I and J are any cubes with I � J and`(I) = 12`(J), then 	f;�(I) � C	f;�(J).Proof. Suppose, for notational convenience, that J = [0; 2)n and that I =Qn1 [ai; ai + 1), with 0 � ai � 1. Let w(I) = Cardfai : 0 < ai < 1g; we provethe result by induction on w(I).If w(I) = 0, then I is one of the subcubes in D1(J), and the result follows byLemma 5.1. Otherwise, choose i such that 0 < ai < 1 and let I 0 and I 00 be thecubes obtained from I by replacing [ai; ai+1) by [0; 1) and [1; 2), respectively,keeping the other coordinates unchanged. Then I 0 and I 00 are adjacent, I �I 0 [ I 00 � J and w(I 0) = w(I 00) = w(I) � 1. By Lemma 5.6, 	f;�(I) �C�	f;�(I 0) +	f;�(I 00) + jf(I 0)� f(I 00)j2�. Since 	f;�(I 0);	f;�(I 00) � C	f;�(J)by the induction hypothesis and jf(I 0) � f(I 00)j2 � C�f (J) � C	f;�(J) by(5.4), the result follows.Lemma 5.8. If �1 < � < 1=2, then, for any cube I and f 2 L2(I),	f;�(I) � [`(I)]2��n ZI ZI jf(x)� f(y)j2jx� yjn+2� dx dy:Proof. One inequality is shown in Lemma 5.3.To show the other, we may assume that f is extended to Rn with f constant= f(I) outside I. If t 2 Rn with jtj1 < `(I), then I + t is contained in a cubeJ with `(J) = 2`(I) such that I 2 D1(J). Since the extended f is constant onthe 2n � 1 other cubes in D1(J), Lemma 5.1 yields 	f;�(J) � C	f;�(I), andthen Lemma 5.7 yields	f;�(I + t) � C	f;�(J) � C	f;�(I):Finally, Lemma 5.4 yields[`(I)]2��n ZI ZI jf(x)� f(y)j2jx� yjn+2� dx dy � C	f;�(I):Remark 5.9. We do not know whether any of Lemmas 5.6, 5.7 and 5.8 holdsfor � � 1=2. 6. WaveletsThe purpose of this section is to observe that the well known characterizationof BMO(Rn) in terms of an orthonormal wavelet basis, see Meyer [13, p. 154],extends to Q�(Rn). In the sequel, we let j;k̂;l(x) = 2jn=2 l(2jx� k̂); j 2 Z; k̂ 2 Zn; l = 1; : : : ; 2n � 1:be a 1-regular orthonormal wavelet basis as in [13, Chapter 3]. We adopt theshorter notation  j;k̂;l =  �, with � 2 � = Z � Zn � f1; : : : ; 2n � 1g. Forsimplicity we consider only the case of wavelets of compact support, and as-sume thus that the wavelets satisfy the conditions in [13, p. 108]; in particular



26 MATTS ESS�EN, SVANTE JANSON, LIZHONG PENG, AND JIE XIAOsupp � � mI(�), where m is a constant (�xed throughout this section) andfor every � = (j; k̂; l) 2 � we use I(�) to denote the dyadic cubeI(�) = fx : 2jx� k̂ 2 [0; 1)ng: (6.1)We write `(�) = `(I(�)).Recall that D is the set of all dyadic cubes in Rn . For I 2 D and a sequencea = �a(�)��2�, let Ta;�(I) = jIj�1 XI(�)�I� `(I)`(�)�2�ja(�)j2:Lemma 6.1. If � > 0, then for every dyadic cube I and sequence a,Ta;�(I) � 1Xk=0 2(2��n)k XJ2Dk(I)Ta;0(J):Proof. The right hand side equalsXJ2D(I) XI(�)�J�`(J)`(I)�n�2�jJ j�1ja(�)j2= `(I)2��n XI(�)�I ja(�)j2 XJ2D(I)J�I(�) `(J)�2�� `(I)2��n XI(�)�I ja(�)j2`(�)�2�:Observe that the wavelet coe�cients of functions in BMO(Rn) are charac-terized by supI2D(Rn)Ta;0(I) <1[13]. This extends to Q�(Rn) as follows.Theorem 6.2. Let 0 < � < 1. If f 2 Q�(Rn), then the sequence of its waveletcoe�cients a(�) = (f;  �) = ZRn f(x) �(x) dx;satis�es supI2D Ta;�(I) <1: (6.2)Conversely, every sequence a(�) satisfying (6.2) is the sequence of waveletcoe�cients of a unique f 2 Q�(Rn); moreover, kfkQ�(Rn) � supI2D Ta;�(I)1=2:Proof. First, let f 2 Q�(Rn) and I 2 D. For J 2 Dk(I), we writef = fmJ + (f � fmJ)�mJ + (f � fmJ)�RnnmJ = f1 + f2 + f3:



Q SPACES OF SEVERAL REAL VARIABLES 27Since supp � � mI(�), (f3;  �) = 0 if I(�) � J . On the other hand, theintegral of each wavelet  � is zero. So (f;  �) = (f2;  �), and, using (5.2),XI(�)�J j(f;  �)j2�X� j(f2;  �)j2= kf2k2L2(Rn)= jmJ j�f (mJ)= 12jmJ j ZmJ ZmJ jf(x)� f(y)j2 dx dy:This gives that for J 2 Dk(I),Ta;0(J)= 1jJ j XI(�)�J ja(�)j2� 1jJ jjmJ j ZmJ ZmJ jf(x)� f(y)j2 dx dy:Using Lemma 6.1, we obtain in the same manner as for Lemma 5.3Ta;�(I)� C 1Xk=0 2(2��n)k XJ2Dk(I)Ta;0(J)� C ZmI ZmI jf(x)� f(y)j2 1Xk=0 XJ2Dk(I) 2(2��n)kjJ j�2�mJ(x)�mJ(y) dx dy� C`(I)2��n ZmI ZmI jf(x)� f(y)j2jx� yjn+2� dx dy� Ckfk2Q�(Rn):Thus (6.2) follows.Conversely, suppose that (6.2) holds; multiplying f by a constant, we mayassume that Ta;�(I) � 1 for every dyadic cube I. In particular, Ta;0(I) �Ta;�(I) � 1 for every dyadic cube I, and thus, by [13, Section 5.6],f =X� a(�) � 2 BMO(Rn);with the sum converging e.g. in the weak� topology on BMO(Rn). We willshow that f 2 Q�(Rn), with kfkQ�(Rn) � C.Fix a (not necessarily dyadic) cube I of dyadic edge length and consider asubcube J 2 D(I). Let �0(J) = f� 2 � : mI(�) \ J 6= ;g and partition this



28 MATTS ESS�EN, SVANTE JANSON, LIZHONG PENG, AND JIE XIAOset into �1 = �1(J) = f� 2 �0(J) : jI(�)j � jJ jg;�2 = �2(J) = f� 2 �0(J) : jJ j < jI(�)j � jIjg;�3 = �3(J) = f� 2 �0(J) : jIj < jI(�)jg:Since  � = 0 on J unless � 2 �0 we have, on J , f = f1 + f2 + f3, wherefi = X�2�i a(�) �:Hence, using the Cauchy{Schwarz inequality,�f (J) � 3��f1(J) + �f2(J) + �f3(J)�: (6.3)We treat the three terms separately. First,�f1(J) � 1jJ jkf1k2L2 = 1jJ j X�2�1 ja(�)j2: (6.4)Secondly, jr �j � C`(�)�1jI(�)j�1=2, and thusjf2(x)� f2(y)j � C X�2�2 ja(�)j`(�)�1jI(�)j�1=2jx� yj:Consequently, letting " = 1� � (for example) and using the Cauchy{Schwarzinequality,�f2(J)� C`(J)2�X�2�2 ja(�)j`(�)�1jI(�)j�1=2�2� C`(J)2 X�2�2 ja(�)j2`(�)�2jI(�)j�1� `(�)`(J)�" X�2�2�`(J)`(�)�":If � 2 �2, then I(�) is a dyadic cube contained in a cube with the same centeras J and edge length (m+1)`(�)+ `(J) � (m+2)`(J). Hence, for each k � 1,there are at most (m + 2)n such cubes I(�) with `(�) = 2k`(J). Moreover,there is constant (viz. 2n � 1) number of di�erent � for each such cube, andthus Cardf� 2 �2 : `(�) = 2k`(J)g � C for each k � 1. Consequently,X�2�2�`(J)`(�)�" � 1Xk=1 C2�k" � C;and thus �f2(J) � C X�2�2 ja(�)j2�`(J)`(�)�2�"jI(�)j�1: (6.5)



Q SPACES OF SEVERAL REAL VARIABLES 29Thirdly, we similarly havejf3(x)� f3(y)j� C X�2�3 ja(�)j`(�)�1jI(�)j�1=2jx� yj� Cjx� yjX�2�3 `(�)�1using ja(�)jjI(�)j�1=2 � T 1=2a;� �I(�)� � 1:Again, there is a bounded number of terms for each `(�), and now `(�) =2k`(I), k � 1; hence jf3(x)� f3(y)j � Cjx� yj`(I)�1and thus �f3(J) � C`(J)2`(I)�2: (6.6)Consequently, by (6.3), (6.4), (6.5) and (6.6),�f(J)� C 1jJ j X�2�1 ja(�)j2+ C X�2�2 ja(�)j2�`(J)`(�)�2�"jI(�)j�1+ C`(J)2`(I)�2:Summing over J 2 D(I) we obtain, cf. (5.5),	f;�(I)= XJ2D(I)�`(J)`(I)�n�2��f (J)� C XJ2D(I) X�2�1(J) ja(�)j2`(J)�2�`(I)�n+2�+ C XJ2D(I) X�2�2(J) ja(�)j2`(J)n�2�+2�"`(�)"�2�n`(I)2��n+ C XJ2D(I)�`(J)`(I)�n�2�+2: (6.7)The �nal sum equals1Xj=0 2nj�2�j�n�2�+2 = 1Xj=0 2�(2�2�)j = C:In the two double sums, we interchange the order of summation. If � occursthere, then `(�) � `(I) and mI(�) \ I 6= ;; thus, if we let E(I) be the set



30 MATTS ESS�EN, SVANTE JANSON, LIZHONG PENG, AND JIE XIAOof dyadic dubes I 0 of the same size as I with mI 0 \ I 6= ;, it follows thatI(�) 2 D(I 0) for some I 0 2 E(I).Fix one such �, with `(�) = 2�k`(I). For each j � k, there are at most Ccubes J 2 Dj(I) with � 2 �1(J), each contributing 22�jjIj�1ja(�)j2 to the �rstdouble sum in (6.7). Similarly, for each j > k, there are at most C2(j�k)n cubesJ 2 Dj(I) with � 2 �2(J), each contributing 2�j(n�2�+2�")�k("�2�n)jIj�1ja(�)j2to the second double sum. Together these yield at mostCjIj�1ja(�)j2� kXj=0 22�j + 1Xj=k+1 2�(2�2��")(j�k)+2�k�� C22�kjIj�1ja(�)j2:As a consequence, (6.7) yields	f;�(I)� C XI02E(I) 1Xk=0 XI(�)2Dk(I0) 22�kjIj�1ja(�)j2 + C= C XI02E(I) Ta;�(I 0) + C � C:We have proved that 	f;�(I) � C for every cube I of dyadic edge length. Sincethe same estimate applies to every translate I + t, Lemma 5.4 shows that forevery cube I of dyadic edge length,[`(I)]2��n ZI ZI jf(x)� f(y)j2jx� yjn+2� dx dy � C;�nally, Remark 1.1 yields f 2 Q�(Rn) and kfkQ�(Rn) � C.Uniqueness of f follows from the uniqueness inBMO(Rn); if f; g 2 Q�(Rn) �BMO(Rn) have the same wavelet coe�cients, then they de�ne the same linearfunctional on H1(Rn) and thus f = g as elements of BMO(Rn) (i.e. moduloconstants), see again [13, Section 5.6].7. The dyadic counterpartWe de�ne a dyadic analogue of Q�(Rn) and give some results relating thetwo spaces.Once again, recall that D is the set of all dyadic cubes in Rn , and de�ne thedyadic distance �(x; y) between two points in Rn by�(x; y) = inff`(I) : x; y 2 I 2 Dg:(The dyadic distance is in�nite between points in di�erent octants.) Note thatjx� yj � pd �(x; y): (7.1)



Q SPACES OF SEVERAL REAL VARIABLES 31The space Qd�(Rn) is de�ned as the space of all (measurable) functions f onRn such thatkfk2Qd�(Rn) = supI2D[`(I)]2��n ZI ZI jf(x)� f(y)j2�(x; y)n+2� dx dy <1: (7.2)Note that kfkQd�(Rn) = 0 if and only if f is a.e. constant in each octant. Qd�(Rn)is a Banach space if we regard it as a space of functions modulo such functions.We have analogues of Lemma 5.8 and Theorem 5.5.Lemma 7.1. Let �1 < � <1. Then, for any cube I 2 D and f 2 L2(I),	f;�(I) � [`(I)]2��n ZI ZI jf(x)� f(y)j2�(x; y)n+2� dx dy:Proof. Suppose �rst � > �n=2. If I is a dyadic cube and x; y 2 I, thenx; y 2 J for some J 2 Dk(I) if and only if �(x; y) � 2�k`(I), and thus, by(5.9), �I(x; y)= 12 X2k�`(I)=�(x;y) 2(2�+n)kjIj�2� � `(I)�(x; y)�2�+njIj�2= `(I)2��n�(x; y)�2��n: (7.3)The result follows by (5.8).If � � �n=2, this argument yields the inequality	f;�(I) � C[`(I)]2��n ZI ZI jf(x)� f(y)j2�(x; y)n+2� dx dy:The opposite inequality follows by Lemma 5.3 and (7.1).Theorem 7.2. Let �1 < � <1. Then f 2 Qd�(Rn) if and only ifsupI2D	f;�(I) <1:Moreover, supI2D[	f;�(I)]1=2 is a norm on Qd�(Rn), equivalent to kfkQd�(Rn) asde�ned above.Proof. Immediate by Lemma 7.1.We have also an analogue of Theorem 2.3. Let BMOd(Rn) be the dyadicBMO space de�ned by ff 2 L2loc(Rn) : supI2D �f (I) <1g.Theorem 7.3.(i) Qd�(Rn) is decreasing in �, i.e. Qd�(Rn) � Qd�(Rn) if � < �.(ii) If � > n=2, then Qd�(Rn) contains only functions that are a.e. constantin each octant, i.e. Qd�(Rn) = f0g (as a Banach space).(iii) If � < 0, then Qd�(Rn) = BMOd(Rn).



32 MATTS ESS�EN, SVANTE JANSON, LIZHONG PENG, AND JIE XIAOProof. (i) follows directly by �(x; y) � `(I) for x; y 2 I 2 D.For (ii), suppose that f 2 Qd�(Rn), with � > n=2. If J is a dyadic cube,and Jk the dyadic cube containing J with `(Jk) = 2k`(J), then 	f;�(Jk) �2(2��n)k�f(J), and by letting k !1 we obtain �f (J) = 0, J 2 D.Finally, (iii) follows by Lemmas 7.1 and 5.2.Remark 7.4. The inclusion in (i) is strict unless n=2 < � < � or � < � < 0,as can be seen by the following example.Example 7.5. For a cube I, let I� and I+ denote its left and right halves,separated by a hyperplane x1 = a through the center of I. Let fakg11 be asequence with P11 jakj2 < 1 and de�ne f = P1k=1PJ2Dk(I0) ak(�J+ � �J�),where I0 is any �xed cube. It is then easily seen (cf. Theorem 7.11 below) thatf 2 Qd�(Rn) () 8>>><>>>:P11 jakj2 <1; � < 0;P11 kjakj2 <1; � = 0;P11 22�kjakj2 <1; 0 < � � n=2;every ak = 0; n=2 < �:In particular, Qdn=2(Rn) 6= f0g, so there is no cut-o� at � = 1 as for thenon-dyadic spaces (Theorem 2.3).Remark 7.6. If one instead considers Qd� de�ned on a cube, cf. Remark 1.2,then the cut-o� at � = n=2 in Theorem 7.3(ii) disappears, and the space isnon-trivial for arbitrarily large �.Relations between Q�(Rn) and Qd�(Rn). We �rst observe that if we considerall cubes I with dyadic edge lengths in Theorem 7.2, instead of just dyadiccubes, we obtain instead Q�(Rn).Lemma 7.7. Let �1 < � < 1. Then Q�(Rn) equals the space of all func-tions f on Rn such that supI 	f;�(I) < 1, where I ranges over the set of allcubes in Rn with dyadic edge lengths. Moreover, kfkQ�(Rn) � supI 	f;�(I)1=2.Proof. Immediate by Remark 1.1 and Lemmas 5.3 and 5.4.Let �t denote the translation operator �tf(x) = f(x� t).Theorem 7.8. Let �1 < � < 1. Then f 2 Q�(Rn) if and only if �tf 2Qd�(Rn) for all t 2 Rn and supt k�tfkQd�(Rn) < 1. Moreover, kfkQ�(Rn) �supt k�tfkQd�(Rn).Proof. Since every cube of dyadic edge length is the translate of a dyadic cube,Lemma 7.7 and Theorem 7.2 show thatkfk2Q�(Rn)� supt2Rn supI2D	f;�(I � t)= supt2Rn supI2D	�tf;�(I)� supt2Rn k�tfk2Qd�(Rn);and the result follows.



Q SPACES OF SEVERAL REAL VARIABLES 33Theorem 7.9. Let �1 < � < 1=2. Then Q�(Rn) = Qd�(Rn) \ BMO(Rn).Proof. The inclusion Q�(Rn) � Qd�(Rn)\BMO(Rn) follows directly from thede�nitions, (7.1) and Theorem 2.3(iii).Conversely, suppose that f 2 Qd�(Rn)\BMO(Rn). Let I be a cube of dyadicedge length. Then there exist a family of 2n dyadic cubes Ii of the same sizeas I, such that the union Si Ii is a cube J with `(J) = 2`(I) and I � J . (J isnot necessarily a dyadic cube.) By Lemma 5.7 and (5.5),	f;�(I) � C	f;�(J)= C 2nXi=1 	f;�(Ii) + C�f (J)� Ckfk2Qd�(Rn) + Ckfk2BMO(Rn):Hence 	f;�(I) is bounded uniformly for all cubes I of dyadic edge length, andthe result follows by Lemma 7.7.Remark 7.10. We do not know whether the condition � < 1=2 in Theo-rem 7.9 is necessary. The theorem fails at least for 1 � � � n=2, sincethen, cf. Example 7.5, �I+ � �I� 2 Qd�(Rn) \BMO(Rn) for any cube I, whileQ�(Rn) = f0g by Theorem 2.3.The Haar system. Let h�, � 2 �, be the n-dimensional Haar system. Func-tions in BMOd(Rn) can be described by the Haar system, and the characteri-zation coincides with one given above of BMO(Rn) using a wavelet basis [13,p. 157]. Similarly, for Qd�(Rn) we haveTheorem 7.11. Let � > 0. If f 2 Qd�(Rn), then the sequence of its Haarcoe�cients a(�) = (f; h�), � 2 �, satis�essupI2D Ta;�(I) <1: (7.4)Conversely, every sequence a(�) satisfying (7.4) is the sequence of Haar coef-�cients of a unique f 2 Qd�(Rn).Proof. If a(�) = (f; h�) and I is a dyadic cube, then(f � f(I))�I = XI(�)�I a(�)h�and thus �f (I) = jIj�1 XI(�)�I ja(�)j2 = Ta;0(I):It follows by the de�nition (5.5) and Lemma 6.1 that	f;�(I) � Ta;�(I);and the result follows by Theorem 7.2.Let U be the isometry of L2(Rn) given by U( �) = h�. Then Theorems6.2 and 7.11 show that the operator U can be extended to an isomorphismbetween Q�(Rn) and Qd�(Rn).



34 MATTS ESS�EN, SVANTE JANSON, LIZHONG PENG, AND JIE XIAOCorollary 7.12. Let 0 < � < 1. Then the Banach spaces Q�(Rn) and Qd�(Rn)are isomorphic; more precisely, the map U�P a(�) �� =P a(�)h� is an iso-morphism (with the sums interpreted formally or as converging in suitable weaktopologies). 8. Some problemsIn this section, we would like to mention some open problems.John{Nirenberg type inequality. The John{Nirenberg distribution inequal-ity [10] says that if f 2 BMO(Rn) then for any cube I and any t > 0,mI(t) = jfx 2 I : jf(x)� f(I)j > tgj � CjIj exp( �ctkfkBMO(Rn) ): (8.1)We hope to explore the followingProblem 8.1. Let � 2 (0; 1). Give a John{Nirenberg type inequality forQ�(Rn).With (8.1) and the local behaviour of Q�(Rn), we may conjecture that iff 2 Q�(Rn) then1Xk=0 2(2��n)k XJ2Dk(I) mJ(t)jJ j � Ct�1 exp( �ctkfkQ�(Rn) ): (8.2)Duality. Corresponding to the important resultBMO(Rn)=[H1(Rn)]�, a prob-lem of Q�(Rn)-type isProblem 8.2. Let � 2 (0; 1). Find a predual of Q�(Rn).Fe�erman{Stein type decomposition. Fe�erman and Stein [6] proved thatf 2 BMO(Rn) if and only if there are 'j 2 L1(Rn) such thatf = '0 + nXj=1 Rj('j);where Rj' = ' � (xj=jxjn+1) are the Riesz transforms. So, we naturally poseProblem 8.3. Let � 2 (0; 1). Give a Fe�erman{Stein type decomposition ofQ�(Rn).Note that the space Qp(@4) has a decomposition of Fe�erman{Stein type[14, Theorem 1.2].Quasiconformal homeomorphism. Reimann [17] proved that if ' is anACL-homeomorphism from Rn , n � 2, to itself, then the composition operatorC', de�ned by C'f = f � ', is bounded on BMO(Rn) if and only if ' isquasiconformal. On the line, it was noted by P. Jones that the quasi-conformalACL-homeomorphisms ' are those which satisfy the A1-condition for log'0(cf. p.15 in [4]). With Theorem 2.1, we therefore have the followingProblem 8.4. Let � 2 (0; 1). Prove or disprove C' is bounded on Q�(Rn).



Q SPACES OF SEVERAL REAL VARIABLES 35Quasiconformal extension. We can introduce the concept of Q�(
)|aQ space on a general domain 
 � Rn , by considering only cubes I � 
in (1.3). Jones's theorem [11] tells us that for a Jordan domain 
 � R2,BMO(
) = BMO(R2)j
 (the restriction of BMO(Rn) to 
) if and only if @
(the boundary of 
) is a quasi-circle. So, our question isProblem 8.5. Let � 2 (0; 1). Find a geometric property of @
 such thatQ�(
) = Q�(R2)j
.Further problems can be posed via [4].
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