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ABSTRACT. For a € (—00,0), let Q4 (R™) be the space of all measurable
functions with

suple(n)* " [

1Jr
where the supremum is taken over all cubes I with the edge length ¢(I)
and the edges parellel to the coordinate axes in R*. If a € (—00,0), then
Qq«(R") = BMO(R"), and if a € [1,00), then Q,(R™) = {constants}.
In the present paper, we discuss the case a € [0,1). These spaces are
new subspaces of BMO(R") containing some special Besov spaces. We
characterize functions in @Q,(R™) by means of the Poisson extension, p-
Carleson measures, mean oscillation and wavelet coefficients, and give a
dyadic counterpart. Finally, we pose some open problems.

[f(x) — fW)I?

o — y|rie dz dy < oo,
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1. INTRODUCTION

For each p € (0, 1), the space ), was introduced in [3] as the Banach space
of all analytic functions f in the unit disk A satisfying

sup //A | (2))[g(z, w)]Pdm(z) < oo, (1.1)
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where g(z,w) = log|(1 —wz)/(w — z)| is the Green function of A and m is the
Lebesgue measure. As in [3], @, is a proper subspace of BMOA (obtained by
taking p =11in (1.1)) and Q,, € @), if 0 <p; <pe < 1.

Essén and Xiao [5] showed that an analytic function f in the Hardy space
H? on the unit disk belongs to @, if and only if its boundary values on the
unit circle 0A satisfy

17" 'f € g9y < (1.2)
sup |el9 e“P|2P P < 00, .

where the supremum is taken over all subarcs I C JA. Janson [9] used (1.2)
to define a dyadic analogue Qg of @), and to prove that (), is the intersection
of Q4 and BMOA. Observe that (1.2) makes sense even if f is not analytic
and it becomes possible to consider an extension to Harmonic Analysis over
Euclidean spaces. This is our starting point.

Throughout this paper, we always let R be n-dimensional Euclidean space,
and let R’}r“ be the upper half space based on R". A cube means always a cube
in R” with edges parallel to the coordinate axes. We denote the edge length
of a cube I by /(I), and the Lebesgue measure of I by |I|; thus ¢(I) = |I|'/".
Also, for ¢ > 0, tI means the cube which has the same center as I and the
edge length t/(I). We let |z| denote the usual Euclidean norm for z € R™.

For @ € (—00, 00), in analogy with (1.2), we define Q,(R") to be the space
of all measurable functions on R” that satisfy

a—n |f(l') - f(y)|2
11 = SI}PV([)F /1 o=y

where I ranges over all cubes in R”. Note that we have changed the parameter
from p in (1.2) to ain (1.3); the relation between them is p = 1 —2« (forn =1
as in (1.2)). We will henceforth use Q,(R") as defined by (1.3) exclusively,
hopefully avoiding any possible confusion.

Note that [|f|lo.m®») = 0 if and only if f is constant a.e.; we thus regard
Q(R") as a Banach space of functions modulo constants. (It is immediate
that || f||g.(r) i @ norm; completeness also is easily verified, see Section 2.)

dx dy < 00, (1.3)

Remark 1.1. Since every cube I is contained in a cube J with dyadic edge
length (i.e. £(J) € {2% : k € Z}) such that ¢(.J) < 2{(I), it is obvious that we
obtain an equivalent definition, with an equivalent norm, if we consider only
cubes of dyadic edge lengths in (1.3).

Similarly, one can consider balls instead of cubes (with ¢(I) replaced by the
radius).

We first observe that if &« = —2, then Q,(R") = BMO(R™), which can be

defined for example as the space all functions in L (R™) satisfying

oy =suw 1 [ 1) = F(DPds <00, (1)
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where the supremum is taken over all cubes I in R” and

7y = 1! / f() da

stands for the mean value of f over the cube I, cf. [10]. In fact, we will prove
below that Q,(R") = BMO(R") for all a € (—00,0).

It is well known that the important space BMO(R") can be described by
Poisson integrals, Carleson measures, wavelet coefficients and dyadic cubes.
The purpose of this paper is to give analogues for Q,(R"), a € (0, 1), which
are given in Sections 2-4 and 6-7. In Section 7 we also consider a dyadic
version of Q,(R™). In Section 5, we will provide a local analysis of Q,(R")
which sheds further light on the relation between Q,(R") and BMO(R").
Finally, in Section 8 we will pose some open problems.

Remark 1.2. One can similarly define ), spaces of functions defined on a
cube in R” or a torus T". Many of the results below extend to these situations,
but we leave the details to the reader.

Remark 1.3. It is also possible to study (), spaces in several complex vari-
ables, see [2] and [15].

Some notations. Throughout the paper, « is a fixed number in (—o0, c0);
usually we assume a € (0,1). C and ¢ will denote unspecified positive con-
stants, possibly different at each occurence; the constants may depend on «
and the dimension n, but not on the functions or cubes involved. (They may
sometimes depend on other fixed parameters, for example, in Section 6, on the
choice of wavelets.) We write X =< Y, meaning cX <Y < CX.

We sometimes consider dyadic cubes: Let Dy = Dy(R") be the set of unit
cubes whose vertices have integer coordinates, and let, for any integer k € Z,
Dy = Di(R*) = {27%1 : T € Dy}; then the cubes in D = |J*_ Dy, are called
dyadic. Furthermore, if I is any cube, we let Dy (I), & > 0, denote the set of
the 25" subcubes of edge length 2-%¢(I) obtained by k successive bipartitions
of each edge of I. Moreover, put D(I) = Uy Di(I).

X is the characteristic function of the set E.

We let, for z € R, |x| be the (*®-norm on R™: |(x1,...,2Z,)|e0 = maxy |zk|.

2. BASIC PROPERTIES

This section is devoted to some simple properties of Q,(R"™) and to relations
between @Q,(R™) and the Besov spaces.

We first observe that, by simple changes of variables in (1.3), || f||g,(®=) is not
affected by translations or dilations of R™, i.e. by replacing f(x) by f(z — zo),
xo € R" or f(tx), t > 0; if we use the norm defined using balls, c¢f. Remark 1.1,
the same holds for rotations. Thus,

Theorem 2.1. Q,(R") is invariant under translations, rotations and dila-
tions, and thus under all similarities of R™; moreover, there exists an equiva-
lent norm on the space such that all similarities preserve the norm. ]

We note the following alternative characterization of Q,(R™).
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Lemma 2.2. Let —co < a < 00. Then f € Qu(R™) if and only if

d
sup (P n/ /|f r+y) — f(z)f dx n?im < o00. (2.1)
yl<et ]

Proof. If the double integrals in (1.3) and (2.1) are denoted by A(I) and B(I),
respectively, then by the change of variable y — x + y and simple geometry
one obtains A(I) < B(y/nI) and B(I) < A(3I). O

The following properties indicate that we only need to pay attention to the
case o € [0,1) for n > 1, and to the case o € [0,1/2] for n = 1.

Theorem 2.3.

(i) Qu(R™) is decreasing in o, i.e. Qo(R") D Qs(R") if a < f.

(i) Ifn>2and a>1, orifn=1 and a > 1/2, then Qu(R"™) contains only
functions that are a.e. constant, and thus Q(R") = {0} (as a Banach
space).

(iii) If o < 0, then Qu(R") = BMO(R™).
Remark 2.4. The inclusion in (i) is strict if &« < 3 except in the cases 1 < o <
f(n>2),1/2<a<f(n=1),and a < < 0, where equality holds by (ii) or
(iii); see Example 2.10 and Remarks 2.8 and 2.11 below. In particular, if n > 2
and 0 <a<lorn=1and 0<a<1/2 then {0} C Q.(R") C BMO(R").

Proof. (i). Suppose a < (3. If f € Q3(R"), then for any cube I in R”, we have

[ [ttt ,,

|$ _ y|n+2a

. 2
A

< Cle(I)2e— /I 1 |f|—§:x)__y|‘:g;|2d:cdy

< CUDT | f 110y,

that is to say, f € Qa(R"). So, Q3(R") C Q.(R™).
(ii). First assume o > n/2. If f € Q,(R™), then by (1.3), for any cube I in

)

Rn
/I I B@) = FOE 100y < o= 113, 0.

|3? _ y|n+2a

Since n — 2« < 0, letting [ grow to R™ in the last inequality produces

|2
[ L s a0

So, f is constant a.e. on R".

Secondly, assume o > 1 and assume f € Q,(R"). Assume first that f €
C'(R"), and that f is non-constant. By considering either the real or imaginary
part, we may further assume that f is real. Then there exists a point zy with
Vf(xzy) # 0, and by the rotation invariance (Theorem 2.1) we may assume
that V f(xy) is directed along the positive zj-axis. Then there exist ¢ > 0 and
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a small cube I about xy on which df/0x;, > 26 and |0f/0xi| < 0, k > 2.
Let D be the cone {z : |xo| + -+ + |z,| < 21 < £(I)/2}; then if z,y € T and
x—y € D, by the mean value theorem, f(z)— f(y) > d(z1—y1). Consequently,

|f(x) — f(y)]?
— " dxdy
/I T |x_y|n+2a
2.9
2/ / 6?_12 dz dx
I/2JzeD |Z|n “

/2 2
= 052|I| / 1+2a le

a contradiction. Thus, if f € Q.(R") N C'(R"), then f is constant.

Now, Q.(R") is translatlon invariant by Theorem 2.1, and it follows by
Minkowski’s inequality that if f € Q(R") and ¢ € L*(R"), then f % g €
Qo (R™). In particular, if ¢ € C°(R"), then f * g € Q.(R") N CY(R™), and
thus (assuming o > 1) f * g is constant. Finally, choosing a sequence g, > 0
with [ g, = 1 and supp g, shrinking to 0, f x g, — f a.e., and it follows that
[ is a.e. constant, which completes the proof of (ii). (Note that the first case
uses large cubes and the second case small cubes to show that f has to be
constant.)

(iii). Case 1: —n/2 < a < 0. On the one hand, by (i), Q.(R") C
Q-n/;2(R*) = BMO(R"). On the other hand, if f € BMO(R") and I is a
cube, then for every y € R" with |y| < ¢(])

/|f z+y) — f(z)|”dr
< [2(fta+9) = NP +11) - D) ds

<4 / (@) - FEDPdr < O o)

and thus, since a < 0,

dy
_ 24
/|y » / o) = ) do e

dy
< ClII Iy pmogen |

wl<e(r) lyn e
= Ol 1 f I Baromn-

By Lemma 2.2, f € Q,(R") and hence Q,(R") = BMO(R") for o € [—n/2,0).

Case 2: a € (—oo,—n/2]. In this case, BMO(R") C Q.(R") is known
by (i). Now, let f € Q(R™) and let I be a cube. If z,y € I, then the set
{z € T:min(|z — 2|, |y — 2]) > §€(I)} has measure at least 1|I| and thus,
using —2a —n > 0,

/ min(jz — 22077 [y — 2|=20) dz > (1)~ 1| = cf()2
I
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Consequently,

12 [ [ 1@ = 1P s dy
<cuaye [ [ [min(le =720y = 2120 @) = £ )P o dy

S Cé([)2a2n///mln(|x — Z|*2C¥*TL, |y _ Z|72o¢7n)
I1JI1JI

< (If (@) = f()P + |f(y) = f(2)[P) dw dy dz
SC@([)Zan</ |f(l‘)—f(Z)|2 d:rdz—i—/ |f(y)_f(z)|2 dde)

FEF o
2
— U] 2a—n/ |f(l‘)_f(y)| de’dy
() rJr o |r =yt

(2.2)

Hence the left hand side of (2.2) is bounded as I ranges over all cubes, which
means that f € BMO(R™), cf. (5.2). Thus Q,(R") C BMO(R"), and we have
shown Q,(R") = BMO(R"). O

We may now easily verify that Q,(R™) is a Banach space.
Theorem 2.5. Q,(R"™) is complete, and thus a Banach space.

Proof. Let {f,} be a Cauchy sequence in Q,(R"). By Theorem 2.3 and its
proof, Q,(R") € BMO(R™) with the inclusion map bounded. Hence, {f,,} is
a Cauchy sequence in BMO(R") too, and f,, — f in BMO(R") for some f.
It follows easily, using Fatou’s lemma, that for every & > 1, || f — fillo. @) <
limsup,,_,o || fm — fellQ.®n), which implies that f; — f in Q.(R") too. O

The following result relates (), spaces defined in different dimensions.

and
<

Theorem 2.6. Let —oo < a < oo. Let f be a function on R*, n >
define F on R by F(x,t) = f(z), s € R*, t € R. Then F € Qu(R""!
f e Qa(R").

Proof. A cube in R*™! can be written I X [a,a + ¢(I)] for a cube I in R” and
a real number a. Thus,

1,
)

IF NG rr)

{I)+a  pl(I)+a |f(:1:) . f(y)|2
= sup|l([ 20‘_("“)/// / dt du dx dy.
I,a[ ( )] I1JIJa a |(l‘,t) - (y,u)|n+1+2a
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The multiple integral is independent of a, so we may take a = 0. Moreover,
letting s =t — u, and assuming a > —n/2, as we may by Theorem 2.3(iii),

dt du
y u)|n+1+2a

/ / dt du
|l‘ _ y|n+1+2a + |t _ u|n+1+2a

< Z(I) /oo |$ _ y|n+1+2a + |S|n+1+2a

= CUT)x—y| ",

while a similar opposite inequality follows by considering only ¢ and u with
|t — u| < |z — y|. Consequently,

|f(z) = f)P?

I ey = suple(e [ [l oy = 1 e

o lr—
]

Connection with Besov spaces. Denote the homogeneous Besov spaces on
R™ by AP4(R™). We refer to e.g. [16] for a general definition; if 0 < o < 1 and
1 <p,q < oo, then AP9(R"™) consists of all measurable functions f such that

o tn) - fopd] Y <o (23)
o | n Y|

and if 0 < @ <1 and 1 < p < g = oo, then A24(R"™) consists of the functions
f such that

1/p
e = sup bl | [ 1o+ - f@Pas] * <oe (20

yeR®
Theorem 2.7. Letn>2 and 0 <a<1,orn=1and0<a<1/2.
(i) If g < 2, then AY™(R") C Qu(R").
(ii) If B > « and q < oo, then AZ/B’q(R") C Qu(R™).

Remark 2.8. In the case n = 1 and a = 1/2, it is seen by (1.3) and (2.3)

that
Ql/Q(R):{f:/R/R%dxdy<oo} AT(R),

which coincides with the Sobolev space L%/Q (R). Thus (i) holds in this case
too, while (ii) holds only for ¢ < 2.

In particular, @;/2(R) contains non-constant functions, and it is thus clear
that the inclusion @Qq/2(R) D Q3(R), 3 > 1/2, is strict (cf. Theorem 2.3 and
Remark 2.4).
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Proof. (i). Since A%™(R") ¢ A/**(R") [16, Chapter 3, Theorem 4], we may
assume that ¢ = 2. Thus, assume that f € A%**(R"). By Hélder’s inequality
with exponents n/2a and n/(n — 2a) we get, for any cube I in R,

dy
_ 24
/|y » / ot 9) = @ do il

n—2a n/a Qa/n dy
<[] A If:c+y f(@)["* d e

which gives f € Q.(R") by (2.3) and Lemma 2.2.

(ii). Since Ag/ﬁ’q(R") c AR for 8 > ~ [16, Chapter 3, Theorem 5],
we may assume that « < § < 1, and in the case n = 1 further g < 1/2. If
fe Ag/ﬂ’q(R”) C Ag/ﬂ’oo(R"), then for any cube I in R" we apply Holder’s
inequality with exponents n/23 and n/(n — 23) together with (2.4) to get

dy
_ 2d
/y o / @) = S et

26/n
—28 dy
" f(x+y) — f(2)|"P dx
/|;;<£(I) [/f |y |2

Sé(l)“ﬁ/ Y1222 dy || £ im0
lyl<e(7) AR

< CUIY | f o

(Rm)”
So, [ € Q. (R™) and the result follows. O

Remark 2.9. The inclusions in Theorem 2.7 are the only possible for these
a. First, if AF/(R") € Q.(R"), then the inclusion mapping is bounded by the
closed graph theorem, and since for any ¢ > 0, the norm of the dilation f;(z) =
f(tx) satisfies || fillga®rr) = ||fllQarr) by Theorem 2.1, while ||ft||A§,q(Rn) =
tﬁfn/”||f||A§,q(Rn) (for a suitable choice of norm), we see that necessarily § —
n/p =0 and thus p = n/j.

Secondly, the following example shows that, AZ/ PURY) € Qu(R™) for 5 < a
or =« and q > 2.

Example 2.10. Let ¢ € S(R™) be a fixed function such that ¢ has support
in the unit ball and ¢ # 0 on the cube [—3m, 37]|". (Such functions are easily
constructed, for example as a dilation ¢;(dx) with ¢; € C§°, ¢; > 0 and
small.)

Let (ay)° be a sequence real numbers with Y7, a2 < oo, and define

o0

5 ag exp(2 xlz

k=1
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where x; is the first coordinate of x. Let f = g. It is then easily seen, by the
definition [16, p. 51], that for every p, ¢ and «

oo

1/q
1 llagageny = a0l = (3 2%Jael?)

k=1
(with the usual modification if ¢ = oo).
In particular, if 3, 2%°|a;|2 < oo, then f € AX**(R"), and thus f €
Qo (R™) by Theorem 2.7, provided n > 2 and 0 < @ < 1 or n = 1 and

0<a<l1/2
Conversely, if f € Q,(R"), then, choosing I = [—m, 7|" in Lemma 2.2,

dy
[ [y - repd 2 <.
ly|<2m J T | |

Since

flx+y) = f@) =@ +y)(9(z + 1) — g9(x) + 9(z) (ol + y) — ¢(2)),

and |p(z +y)| > ¢ >0 for z € I and |y| < 2,

lg(z +y) — g(z)”
< Cly(z +y)(g(x +y) — (@)’
< C|f(z+y)— f(@)]?+ Clg(z)Plo(z +y) — (z) .

Moreover,
lp(z +y) — o(x)] < Clyl,
and thus
2 2 dy
9(2)[*le(z +y) — ¢(@)|" do =
ly|<2m J T ly|
<C [ |g(a) ly[> 2" dy < oo.

R™ |ly|<2m

Consequently, using Parseval’s formula and writing y = (y1,v'), v’ € R*™!,
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oo>/ / gz +y) —g@)?dr —- —
i<t Joer |y| ”
= (2m)" / ak(e2 vt

ly |<1Z‘ ‘ |y|"+20‘

k=1

= 2 ko2 dy
- 1

We have thus shown that, for o as in Theorem 2.7,

[ €QuR") <—= 22%0‘|ak|2 < o0.
k=1
Choosing e.g. ay = 27%*k~' we obtain a function f € Q,(R")\ Qz(R") for
every 3 > «, justifying the claim in Remark 2.4. Similarly, if < aor f = «
and ¢ > 2, suitable choices of a;, yields f € Ag/ﬂ’q(R”) \ Qo (R") as asserted in
Remark 2.9.

Remark 2.11. For o < 0, it may be shown that if f is as in Example 2.10,
then

S ak* < o0,  a <0,
ST klag? < o0, a=0.

In particular, this shows that Qy(R") € Q. (R") = BMO(R"), a < 0.

fEQ.R") = {

3. POISSON EXTENSION

In this section, we discuss differences and similarities between Q,(R"), o €
(0,1), and BMO(R") with respect to Poisson extensions to R’
Let f be any measurable function on R” that satisfies

/ @] dr < 00. (3.1)

n 1+ |z|ntt

Its Poisson integral is defined by

fot) = [ Plo-)f)dy, 3.2)
where »
Pt(x) - Lrﬁla Cp = F(Z)
@+ lap)E e
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Define the gradient of f(z,t) by

2 n

>3

Jj=1

2

of (z,1)
ot

Of (z,1)
al’j

wmmwz\

and the Carleson box based on a cube I by
S(I)=1x (0,(I)]={(x,t) e R 1z € I,t € (0,0}

We extend a lemma of Stegenga [18] from one dimension to higher dimen-
sions.

Lemma 3.1. Let I and J be cubes in R™ centered at xq with £(J) > 3¢(I) and
let f € Ll (R"). For a € (0,1), there is a constant C independent of f,I and

loc

J such that
/ IV £, ) 2412 s dt
S(I)

cof [UEIOE,,

|l‘ _ y|n+2a

+ Cle(n)pret=) ( /R e |f(z) — fﬂ#) : (3.3)

Proof. Without loss of generality, we assume that xg is the origin. Also, let ¢
be a function with 0 < ¢ < 1 such that ¢ =1 on %J, supp ¢ C %J, and

o(@) — o) < CUN Tz —yl, =,y R (3.4)
Write ¢ =1 — . Then we have

f=f+(f-fMet(f-fNe=FH+f+]s
We also have
f(xa t) = fl(xa t) + f2(x7 t) + f3(xa t)
for the corresponding Poisson integrals. In the integral with the gradient
square, f; contributes nothing since it is constant.

We have 0f (z.5) OP.(y)
z,8) s (y B
o= [ w4 y) — Sy
and therefore by the elementary estimates
0P, (y) a1 |9P(y) -1
—— < " —— < "
2 < esn, |20 < g
we see that
H af(a 8)
05 |lpa@n)

sowH/}nm+m—mmm@
y|<s

dy
+C/ ||f('+y)_f||L2(Rn)T+l-
ly|>s Y|
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Next set y = r£ € R*, with r = |y|, and |£| = 1. Then with

Q(r) = / 1FC+7E) — Fllusndé
|€]=1

we write

of (x,s
A= 22D

< C’s"l/ Q(r)r”ldr+0/ Q(r)r 2dr.
0 s
Therefore, by Hardy’s inequalities [19, p. 272],

/ st2 A% ds < C/ [Q(r)]?rt2dr.
0 0

Note that by Holder’s inequality,

Q)] <C 1£ (- +7€) = fll7omdé.

gl=1

Substituting this in the above leads to the bound

C/g/ 17+ 7€) = FllZagunyr ™t 2drde

dy
=C { fx+y—fx2da:}7.
L et - s |
In the same way we can prove
Of (1) 1o
tl 2a . dt
[ e 1 e
d
<o [ [ e -rep ]
Re [JRr i

Now, we obtain

/ IV fol, £)[261=20 da dt
S(1)

</°° U IV fol, )24 2ad:1:}d
<C/n/n ol _y|£12a)| dz dy

|z
_// +// +//
zyet agyelJ ygJaeds

- Bl + BQ + B3.
As to By, we have using (3.4)

[fo(z) = L) < | (@) = fF)| + CLUCT)] Mz =yl f(y) = fal.
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Thus, we need only estimate

0 [ e e
[ =gt | [ 1o = oPras] ay
‘“/V@—ﬁ?@

—cteny > [ [ 1@ = s P e dy

SC/ (@) - UPM@,

|l‘ _ y|n+2a

cf. (5.2), which gives the estimate for B;. The B, and Bj terms are handled
similarly as the last estimate, using fo(z) =0 for z ¢ J.
Moreover,

IV f3(x,1)]|
RJVB@—ﬂHﬁ@ﬁw
|f(y) - fJ|

r\27 (0 + [z —y[)*!
If (z,t) € S(I) then for y € R" \ 2J,
1 C
n+1 < n+1’
(t+ Jz = y))m*+ — Jy|

<C

and hence

/ IV fo(, )220 da dt

S(1)
2
— s re\2y [T
2

<cumpoo ([ D2,

B r\27 |z
Combining the above inequalities, we obtain (3.3). O

With Lemma 3.1, we can characterize functions of Q,(R") in terms of the
Poisson integral. Note that setting o = 0 in (3.5) yields a characterization of
BMO(R™) [6].

Theorem 3.2. Let a € (0,1) and let f € L} (R") satisfy (3.1). Then f €
Qo (R™) if and only if

/ IV f (o, 8)[26=20 da dt < Me(D)]"2 (3.5)
(1)
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for some M < oo and all cubes I C R™.
Proof. First, suppose that f € Q,(R™). Then, by Theorem 2.3, f € BMO(R")

with || f||smo@ry < C||f||lg.mn). For convenience, we may assume that the
cube I has the origin as its center. Now, let J = 3/. Then we have

dz
L, 110 = 15

- d
< 2/3 |f(:v)—fJ||x|Tx+1

=0 kJ\gk—lJ

<03 B / (@) - fgwldfr+023’“4 s — 1
=0 3kJ

g() 1| Brrogn) +Z ||f||BMORn)]

< CleD] M fllprron)-

So,

2

()0 ( / (@) = fol dar/ |z - |)
R\ 2T

< ClD 1 g @en)-

This inequality, the definition of Q,(R") and Lemma 3.1 imply (3.5), which
proves one implication.

Conversely, suppose that (3.5) holds for f. We claim that then

/ wi<etr [/ fla+y) = f@)ldo w%sowmlw (3.6)

First, by the triangle inequality,

|f(z+y) — f(2)]
<|flx+y)— fl@+y,ly)l
+1f(x+y,lyl) — fz, |y])]

+ 1/ (@ lyl) = f(2)]
- Al + AQ +A3
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For As, we employ Minkowski’s inequality to get

(s
§/0y| /I of (z,1) | dl_rdt

ot
vl T ) r
S/o _/I|Vf(x,t)| dz| dt.

By Hardy’s inequality [19, p. 272], we further have

2
/y|<€ |"+2“ </|A3| dx) W
2
{ /|Vf z, 1)’ da:] dt} s 172

<C/ { IV f(z, 1) d:v]tl 2t
<CM ]n Qa

Since, for [y| < (1), [;|AiPPdz = [, |As]?dz <[5, |As]? dz, we similarly

obtain
1
/ L < / |A1|2dx> dy < CM{U(D)] 2.
wi<eny [y1"2 \J;

It remains to handle A,. It is clear that

|
Ay < / Ve tey, yDldt, ey = y/lyl.

If |y| < ¢(I), then an application of Minkowski’s inequality gives

(o)

</ ' 195t e dx] a
<o ["[[ s ir ] @
=l | [ 195 i dx]%

Hence,
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/W |y|n+2a (/ A2l d‘””) 4y

< / IV f(z, )|t dx dt
S(31)
< CMI)]" 2.

Putting these estimates on A;, Ay and Az together, we see that (3.6) holds,
and thus, by Lemma 2.2, f belongs to Q,(R"). O

4. GENERALIZED CARLESON MEASURES

Theorem 3.2 shows that it is natural to introduce a generalized Carleson
measure. Let S(I) = I x (0,¢(I)] be the Carleson box based on the cube
I C R*. Given p > 0 and a positive Borel measure 4 on ]R’}fl, we say that pu
is a p-Carleson measure if

p(S(I)) < M)

for some M < oo and all cubes I C R". Of course, the case p = 1 gives
the classical Carleson measures. It follows from Theorem 3.2 that whenever

€ (0,1), f € Qu(R™) if and only if |V f(x,t)|*t' 2 dzdt is a (1 — 2a/n)-
Carleson measure. In fact, the second half of the proof of Theorem 3.2 shows
more generally that if there exists a differentiable extension F(z,t) of f to RZ*!
which satisfies the condition that |V F(x, t)|*#'~2* dxdt is a (1—2a/n)-Carleson
measure, then f is in Q,(R").

We next want to give a characterization of @), (R") by means of an integral
on R*™'. From now on, denote by §(z) the distance of the point z € R to
the boundary R’"'. Also, § stands for the symmetric point of y € R}*! with
respect to R™, that is to say, if y = (y1, ..., Ynt1), then § = (y1,. .., —Yni1)-

Lemma 4.1. Let yu be a Borel measure on R and p € (0,00). Then p is a
p-Carleson measure if and only if

) p
sup / (%) dp(z) < oo. (4.1)
yerrtt Jroet \ |z — g[F

Proof. Sufficiency. Take y to be the center of the Carleson box S(I). If z €
S(I), then |z — g| < C¢(I) and hence

5 p
e
R |z — 9|

p
Z/ (75(%) 1) du
sy \ |z — g™t

(S(D))
= mp

Thus, if (4.1) holds, then p is a p-Carleson measure.
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Necessity. Fix y = (v, yn11) € RET'. Let I C R" be the cube with center ¢/
and edge length §(y), and for each positive integer m = 1,2, ..., define E,, to
be the Carleson box S(2™I). When x € Ey, we have |z — g| > d(y). Also, if
T € Epy1\ En, then c2™(y) < |z —7g] < C2™%1§5(y). Thus, if 4 is a p-Carleson

measure,
oy) "
— ) d
/ () o
S o)
= + / (7~ dp(x
(/El mz_l Em+1\Em> |z — g+ @)
(E1) — UBpn)
<C—7—=%+C
<Oty + 2 et
<C.
The last constant C' is independent of y. We are done. O

For convenience, we will from now on use the same notation to denote f on
R™ and its Poisson extension to the upper half space ]R’}fl. So, we have

Theorem 4.2. Let a € (0,1) and let f € L} (R") satisfy (3.1). Then f €

loc

Qo(R) if and only if its Poisson integral f(z) = f(2,t) on RI™ satisfies

sup /R (W) s ) @) 2 d < 0o, (4.2)

yomes S o — g

Proof. If 1 — 2a/n > 0, then the proof is immediate by Theorem 3.2 and
Lemma 4.1.

[t remains only to treat the (less interesting) case n = 1 and o > 1/2. First,
if n =1 and a = 1/2, then the integral in (4.2) is independent of y and equals
fR1+1 |V f(x)|* dz, which is finite if and only if f € Q1/2(R), cf. Remark 2.8.

Finally, the case n = 1 and « > 1/2 is trivial. Then f € Q,(R) only if
[ is a.e. constant by Theorem 2.3(ii). Similarly, if (4.2) holds, it follows by
using Fatou’s lemma as y — 0 that Vf(z) = 0 in R} and thus f is a.e.
constant. U

Green potential. Observe that (), was first defined by the Green potential.
Can we characterize Q,(R") in terms of the Green function for a half space?
When n = 1, the Green function of the upper half plane is

|z — 9]

G(z,y) = log . 4.3
(r.0) = log [, (43)
When n > 1, the Green function of the upper half space R’}r“ is given by
1 1
G(r,y) = (4.4)

o=yt =gt

(cf. [1, p. 65]). Indeed, this function is related to the quantity introduced in
Lemma 4.1.
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Lemma 4.3. Let 7,y € R™™'. Then
(i) Gz, y) > 2@ > 1,

lz—g|"
(i) G(z,y) < Ol 0 >2,
(i) G(r,y) < ety =g < 28 p—1.
Proof. See [1, p. 68] and [7, p. 289]. O

Remark 4.4. It was proved in [12] that f € BMO(R") if and only if
sup G(z,y)|Vf(z)]?dr < 0. (4.5)

yer ! R+

The following characterization of Q,(R™) by means of the Green potential
will employ Lemma 4.3 and Remark 4.4.

Theorem 4.5. Let o € (0,1) and let f € L} (R") satisfy (3.1). Then f €
Qo (R™) if and only if its Poisson integral f(x) = f(z,t) satisfies

sup /1Rn+1[5(x)]2(%—1)a[G(l‘,y)]l—Qa/n|vf(l‘)|2 dr < o. (46)

n+1
y€R+

Proof. If (4.6) holds and 1 — 2a;/n > 0, then Lemma 4.3(i) and Theorem 4.2
imply f € Q.(R™). The exceptional case n = 1 and « > 1/2 follows as in the
proof of Theorem 4.2.

Conversely, suppose f € Q,(R"). We have

[ PG G )29 ) da

= {/ _ +/ ) 1} [5(x)]2(%—1)a[G($,y)]l—Qa/n|vf(x)|2dx
lz—y|/lz—gl<3 |lz—yl/|z—g|>1

2

= I (y) + L(y).

Since |z — y| < i|z — g| implies |z — y| < 26(x) and, by (4.3) or (4.4),
G(z,y) z ¢/le —y|" ",

Li(y)

|z —y|™ = ,
=C — may G@ )V d
N /|;1; yl/|z 1 [6(1,)]M (x y)| f(x)| x

-j|<3 n

IN

C/va—ylsw(x) [|f5(_36)y|} N G(z,y)|V f(2)[" dx
= C/Rnﬂ Gz, )|V f ()| da.

We know that Q,(R") C BMO(R"), and it follows from the last estimate
and Remark 4.4 that sup, g+ Iy (y) < oo.
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As to Ir(y), we apply Lemma 4.3(ii) or (iii) to derive

Ir(y)
s@s) 1T
= ja—yl/le—g1>4 viEr {va = §[?|lz — ylnl] [0(z)** %V da
sy [ B@)ay) 1"
C V£ (2) 2[5 ()2 [7} ;
S e ooy VIO = — gt v

5(@/) :| 1-2a/n .

<o [ wrepse [

With the help of Theorem 4.2, we deduce that SUDy et I (y) < oo. O

5. MEAN OSCILLATION

In this section we give an alternative characterization of Q,(R") in terms of
the (square) mean oscillation over cubes. We follow the one-dimensional case
given in [9].

We define, for any cube I and an integrable function f on I,

1
I:—/f:rd:r
AR
the mean of f on I, and

55(1) = 7 [ 1) = f(1)

the square mean oscillation of f on I. Obviously, ®;(I) < co & f € L*(I);
we may extend the definition to all measurable functions f on I by letting
®;(I) = oo when f ¢ L*(I). Recall that f € BMO(R") if and only if
sup; ®¢(/) < oo [10]. Note the well-known identities

i [ @) = afde = &5(0) + £(1) — of (5.1
for any complex number a, and
|I|2//|f (y)|? dx dy = 2® (). (5.2)
Furthermore, if I C J, then by (5.1),
05(0) < 1y [ 1) = )P < (), (5.3)
and, similarly,
70 - e < ey, (4)
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We define, for any cube I and a measurable function f on I, recalling the
notation Dy (I) for the successive dyadic partitions of I,

Upoll Z Z 2a=mkg(J). (5.5)

k=0 JGDk
We will prove below that Q,(R™) can be characterlzed by sup; U0 (1) < oo.
We begin with some simple preliminary lemmas.

Lemma 5.1. Let —0o < a < oco. For any cube I and f € L*(I), with J
ranging over the 2" subcubes in D (I),

Sp(l)=27" ) &) +27" Y |f(D) - fU)P (5.6)

JeD1 (1) JeD(T)
and
Vol Z Vol D)+ > 1) = FDP. (5.7)
JeDL(T JeDL(T)
Proof. By (5.1),
Dy(1)
=1 Y [ If-fa
JEDI /
=2 ) (<I>f(J>+|f(J)—f(I>|2),
JeD(I)

which is (5.6).
Next, this and the definition (5.5) yield, since Dy(I) = U;cp, sy Pr-1(J) for
k>,
Vya(l)

GRS S SIS SEE TS

k=1 JeDi(I) KEDy_1(J)

Z 220y, ()

JeDi(I

= ) (\Iff,awwf( )+ 1f () = F(DP),

JED(I)
which yields (5.7), since Wy o(J) + ®;(J) < Wro(J). O
Lemma 5.2. If a <0, then Wy, (1) < ®s(I).
Proof. By Lemma 5.1 and induction, Y- ;cp 2~ "k, (J) < ®4(I), and hence

D(1) < Uy o(I) < szq)
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Lemma 5.3. Let —oo < a < oo. Then, for any cube I and f € L*(I),

U, (1) < ClUDPe™ / @) = FWE

rJr |z =yt

Urall)
:Z Z 9(2a=n) FLTMI) T //|f (y)|* dz dy
- / / e )| (@) — F(y)]? dedy, (5.8)
where
ki(,y) =3 20T T2y s () X (). (5.9)

First assume that o > —n/2. Since z,y € J € Di(I) implies |z — y|oo <
0(J) =27%0(I), and thus 2¥ < (1) /|2 — y|oeo < CU(I)/|z — y|, we then have

/ﬁ[(xay)

< Z 2(2a+n)k |I|_2

28 <U(1)/lz=Yloo

SC( () )M"W_z

lz —y|
= ClU(I)P* "z — y| 7™

b

furthermore k;(z,y) = 0 unless x,y € I. Consequently, by (5.8), the inequality
holds.

The case o < —n/2 follows by Lemma 5.2 and (2.2).
U

We will prove the converse inequality for & < 1/2 in Lemma 5.8 below, but
first we give a slightly weaker, but also more general, converse.

Lemma 5.4. Let —00 < a < 0. For any cube I and f € L (R"),

[Z(I)]2an/l I |f(:L‘) B f(y)|2 dr dy

|z — y|rtee
C
< —

= Sy <oy

<C sup Yy (I+1).
[t]oo<€(I)

Uiol+1)dt+CUyqo(1)
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Proof. By (5.8) and Fubini’s theorem,
1

171 it <t

/Rn /Rn 1| Sy <er "‘51+t($ y)dt|f(x) = f(y)|* dz dy.

This and (5.8) show that it suffices to verify

1
kre(T,y) dt + £1(2,y)
|I| |t]00 <£(T)
> cl(I)** "Ma —y| 2", z,y € 1. (5.10)

First, suppose that z,y € I with |z —y|o < 3¢(I) and let [ > 0 be such that
27172 < |7 — yleo < 271H(T).

Then, by (5.9), and noting that © ¢ I 4+ t and thus kr.4(z,y) = 0 when
[tloo > £(1),

1
Kre(z,y) dt
7] \t|oo<z )
> / S 2L (o) (o)
"7 Jeny(1+t)
2a+n
Z / X7+t() X 74e(y) dt
Jepy (1) 7"
> clz —y| 2T Z / X7+t(2)x744(y) di.
JeD(

Now, X74+¢(2)Xs+¢(y) = X7—2(—t)xs—y(—t). Thus the final integral equals the
volume of (J —xz)N(J —y), which for each J is a rectangular box with edges at
least ((.J) — |z — yleo > $¢(J), and thus volume at least 27"|.J|. Consequently,
the sum over J is at least 27"|I|, and (5.10) holds for |z —y| < 24(1).
Finally, if z,y € I with |z — y| > 1¢(I), then, taking k = 0 in (5.9),

kr(e,y) = 172 = el(1)** "o —y| 72"
and (5.10) holds in this case too. O

As an immediate consequence of Lemmas 5.3 and 5.4, we obtain our alter-
native characterization of Q,(R™).

Theorem 5.5. Let —0o < a < 0o. Then Q(R™) equals the space of all
measurable functions f on R™ such that sup; Wy (1) is finite, where I ranges

over all cubes in R™. Moreover, the square root of this supremum is a norm
on Qo (R™), equivalent to || fl|g.mn) as defined above. O
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In order to prove a full converse to the inequality in Lemma 5.3, we be-
gin with two further preliminary lemmas, which also may have independent
interest,.

Lemma 5.6. Let « < 1/2. Let I, I' and I" be three cubes of equal size,
|I| = |I'| = |I"|, such that I' and I" are adjacent and I C I' UI". Then, for
any f € L'(I'UI"),

Os(I) < (L) + O (I") + |f(I) = fFUP, (5.11)
Upa(l) < O(Trall) +PpalI") +[f(I) = FUI")P). (5.12)
Proof. Tt follows from (5.1) that
®(I)
< (17 = (1) + 1) 2 ds

<[ @) = G+ F) 2R

= p(I') + @4 (I") + 51£(I') = FUI")%,
proving (5.11).

For (5.12), we assume for simplicity that I' = [0,1)" and [”" = I' + ey, where
e; is the unit vector (1,0,...,0); this is no loss of generality by homogeneity.
Note that by assumption then I = I' + te; for some ¢ € [0,1]. For each j > 0,
let D = D;(I') UD;(I") be the set of the 2"*! dyadic cubes with side 277
contained in I'UI". If I; € D;(I), then I; C JU (J 427 7e;) for some .J € D},
and thus by (5.11) applied to J,

(L) < Bp(J) +Op(J+27er) + |f(T) — f(J +27e)) %

The 2" different choices of I; € D;(I) yield different J € D}, and summing
over all 7 and I; we thus obtain,

‘I’fa(f)

:Z Z 22a ngq) )
:O )

<2 iZ?Qa Wy (1)+ 30 30 2N = f(T+ 2T, (13)
j=0 JED; J=0 J€DY

where D) = {J € D} : J +277e, € D;}.

The first double sum on the right hand side of (5.13) is just Wy, (I') +
Wyo(I"). In order to estimate the final sum, consider a cube .J € D} for some
4 > 0. Let I* be the smallest dyadic cube that contains JU(J+2 7e;), and let
the edge length of I* be 277%™ where m > 1. Moreover, for 0 < [ < m, let J,
and K be the dyadic cubes of edge length 277+ that contain J and J +2 Je;,
respectively; thus J =Jy,C J, C---CJ,=I"and J+2 e, = K, C --- C
K,, = I*. Using the Cauchy-Schwarz inequality and (5.6), we obtain
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[f(T) = F(T+27eq)|?

(i (Jia) — F(R) |+Z|f (K — 7K )
<(2 Zl ’) (me () - (Jz1)|2+2_312|f(Kz)—f(Kz1)|2)

< CZF(cpf(JZ) +34(K)). (5.14)
=1
If JU(J+27¢;) C I'"or I", then |[I*] < 1 and m < j. If J C I' and
J +277e; C I", however, then I* = [0,2)" and m = j + 1; in this case we
modify (5.14) by observing that J; = I' and K; = I"” which by the same
argument yields

[F(T) = f(T +27er)?

< CN P(D(R) + Bp(Ky) + CIA(I) = I (5.15)

=1

We now keep j > 0 fixed and sum (5.14) or (5.15) for J € D?. We observe
that the cubes .J; and K that appear belong to D;_;, with 1 <1 < j. Moreover,

each dyadic cube J' = []][a;, b;) in D;_, appears as a J; or a K; only for the
J € Dj that are adjacent to either the face 1 = a1, the face x; = by or the

mid plane z; = (a; + b;)/2, and there are thus at most 3 - 2D such .J.
Consequently, since (5.15) is used for 2"~17 cubes .J,

Z|f FT+277¢))?

j
<CY YT 2R () + C2 VI F(I) — (I,

I=1 JED;_,

Summing over 7 we finally obtain, substituting j = k£ + [ and observing that
Zfil l22(2a—1)l < 00,

ZZW" IF(T) = F(T+27e)|?

Jj=0 JE'DO

<C Z Z Z 2(2a—n)k+(2a—n)l2(n—1)ll2q)f(J)

I=1 k=0 JeD,(I')\UD,(I")

+0222a Wi (1)~ F(1") P

= C\Iff,a( )+ CUpa(I") + CIAI) = £,
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which by (5.13) completes the proof of (5.12). O

Lemma 5.7. Let —oo < o < 1/2. If I and J are any cubes with I C J and
oI) = %K(J), then Wy (I) < CUy,(J).

Proof. Suppose, for notational convenience, that J = [0,2)" and that [ =
[T [ai,ai + 1), with 0 < a; < 1. Let w(I) = Card{q; : 0 < a; < 1}; we prove
the result by induction on w(I).

If w(I) = 0, then I is one of the subcubes in D;(.J), and the result follows by
Lemma 5.1. Otherwise, choose i such that 0 < a; < 1 and let I' and I” be the
cubes obtained from I by replacing [a;, a; + 1) by [0, 1) and [1, 2), respectively,
keeping the other coordinates unchanged. Then I’ and I"” are adjacent, I C
I'gvr" c Jand w(I') = w(I") = w(l) — 1. By Lemma 5.6, U;,(/) <
C( 1)+ W (1) | (') = F(I")P). Sitce Wy oI, W0 (I") < Cy ()
by the induction hypothesis and |f(I") — f(I")]? < C®(J) < CU;4(J) by
(5.4), the result follows. O

Lemma 5.8. If —co < a < 1/2, then, for any cube I and f € L*(I),

Upa(l) < [E([)]%én/l I % dx dy.

Proof. One inequality is shown in Lemma 5.3.

To show the other, we may assume that f is extended to R” with f constant
= f(I) outside I. If t € R” with |t|o, < ¢(I), then I+ is contained in a cube
J with ¢(J) = 2¢(I) such that I € Dy(J). Since the extended f is constant on
the 2" — 1 other cubes in D;(J), Lemma 5.1 yields ¥;,(J) < CU;,4(I), and
then Lemma 5.7 yields

VoI +1) <CUpo(J) < CUpu(T).
Finally, Lemma 5.4 yields

[6(1)12“/1 I @) = TWIF 4, 4 < 0wy,

|x _ y|n+2a
]

Remark 5.9. We do not know whether any of Lemmas 5.6, 5.7 and 5.8 holds
for a > 1/2.

6. WAVELETS

The purpose of this section is to observe that the well known characterization
of BMO(R™) in terms of an orthonormal wavelet basis, see Meyer [13, p. 154],
extends to Q. (R™). In the sequel, we let

V(@) =22 (e — k),  jeZ kemrl=1,...,2"—1

be a 1-regular orthonormal wavelet basis as in [13, Chapter 3]. We adopt the
shorter notation ¢, ;, = ¢y, with A € A = Z x Z" x {1,...,2" — 1}. For
simplicity we consider only the case of wavelets of compact support, and as-
sume thus that the wavelets satisfy the conditions in [13, p. 108]; in particular
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supp ¥ € mI(A), where m is a constant (fixed throughout this section) and
for every A\ = (j, k,1) € A we use I()\) to denote the dyadic cube

I\ ={z: 2z —kel0,1)"}. (6.1)

We write ((N\) = ((I(N)).
Recall that D is the set of all dyadic cubes in R”. For I € D and a sequence
a= (a()\))/\eA, let

_ g([) 2a
TaalD) =173 (555) " laVI2
((A)
I(\CT
Lemma 6.1. If o > 0, then for every dyadic cube I and sequence a,

= i2(2a ") Z Ta[]
k=0

JE'Dk

Proof. The right hand side equals

Z Z( ) 1 a2

JeD(I

_g 2a n Z |(Z Z (J)f2a
JeD(I)
JDI(N)

0»@ ™ 3" Ja(A\) PN
I(\)CI

U
Observe that the wavelet coefficients of functions in BMO(R") are charac-
terized by

sup Too(I) < 00
TeD(R™)

[13]. This extends to Q,(R") as follows.
Theorem 6.2. Let0 < a < 1. If f € Qu(R™), then the sequence of its wavelet

coefficients
a(A) = (f, ) = . f(@)hx(z) d
satisfies
sup Tgq(1) < oo (6.2)
IeD

Conversely, every sequence a()\) satisfying (6.2) is the sequence of wavelet
coefficients of a unique f € Qq(R™); moreover, || f|lg.mn) = supep Tan(1)'/2.

Proof. First, let f € Qo(R") and I € D. For J € Dy(I), we write
= for+ (f = fod)Xms + (f = fma)Xxee\ms = f1 + f2 + [
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Since supp ¥ € mI(A), (fs,¢n) = 0if I(\) € J. On the other hand, the
integral of each wavelet ¢, is zero. So (f,¥n) = (f2,%,), and, using (5.2),

Z |(f7 w/\)|2
(\CT
< Z |(fas )2
y

= ||f2||%2 Rn)

)% da dy.
2|mJ| /mJ/mJ 2

This gives that for .J € Dy (1)
Tao(J)

:ﬁ 3 o

)% d dy.
|J||mJ| . /m 2

Using Lemma 6.1, we obtain in the same manner as for Lemma 5.3

Tao(I)

S C i 2(2a—n)k Z Ta,O(J)
k=0

JED(I)
<c / WIS Z 20| 712 () o () dir dy
ml k= OJeDk
1? |2
< CUIy= n/ / dr d
mlI Jml |‘T - |n+2a Y
< Ol f 5 rny-

Thus (6.2) follows.

Conversely, suppose that (6.2) holds; multiplying f by a constant, we may
assume that T, (I) < 1 for every dyadic cube I. In particular, T, (1) <
Tao(I) <1 for every dyadic cube I, and thus, by [13, Section 5.6],

f=> a(\)¥y € BMOR"),

with the sum converging e.g. in the weak* topology on BMO(R"). We will
show that f € Q4 (R"), with || f||o, @) < C.

Fix a (not necessarily dyadic) cube I of dyadic edge length and consider a
subcube J € D(I). Let Ag(J) = {A € A: mI(\) N .J # 0} and partition this
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set into
A =M() ={r e A(J) : (V)] < [J]},
Ay = No(J) ={X € No(J) « [J| < [I(N)] < 1]},
Az = A3(J) = {X € Ao(J) : [T] < [T(N)]}.

Since ¢ = 0 on J unless A € Ay we have, on J, f = fi + fo + f3, where

fi= Z a(A)x.

AEA;
Hence, using the Cauchy-Schwarz inequality,
04 (J) <3(24,(J) + @, () + g (). (6.3)
We treat the three terms separately. First,
Op (J) < ||f1|| > = | (6.4)
P ;A

Secondly, |V, | < CL(A)"HI(N)|~'/2, and thus

[fa(@) = ()] £ C Y laN)lE) N2z —yl.

AEA,

Consequently, letting ¢ = 1 — « (for example) and using the Cauchy-Schwarz
inequality,

(I)f2(‘])
SC’E <Z |a 1|[( )|—1/2)2
<cug >;A2|a NI )|_1(%)§(%)

If A € Ay, then I()) is a dyadic cube contained in a cube with the same center
as J and edge length (m+1)¢(\) +£(J) < (m+2)¢(J). Hence, for each k& > 1,
there are at most (m + 2)" such cubes I(\) with ¢(\) = 2¥/(J). Moreover,
there is constant (viz. 2" — 1) number of different A for each such cube, and
thus Card{\ € Ay : £(\) = 2¥¢(J)} < C for each k > 1. Consequently,

AEAS

and thus

() <C Y |a(>\)|2(m>28|1()\)|‘1. (6.5)
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Thirdly, we similarly have

o) — <y>|
<Y Ja)len) I e~y
<Cla—y| Y (!

using
a7 < TRE(I(V) <1
Again, there is a bounded number of terms for each ¢()\), and now 4(\) =
2k((I), k > 1; hence

|f3(z) = f3(y)| < Clz —yle(I)™!

and thus
D, (J) < CUI)U(I)7? (6.6)
Consequently, by (6.3), (6.4), (6.5) and (6.6),
Or(J)
<O S P
| |)\EA1
0(J)\2- _
2 £\J) 1
+C Y fa()] (M) 70V
AEAS
+ CU(J)*(1)~?
Summing over .J € D(I) we obtain, cf. (5.5),
Urall)
n—2o
E ()
JED(I)
< C Z Z Qag(l)—n—l—Qa
JED AEAl
+C Z Z n 2a+2—££()\)a—2—n€(l)2a—n
JED( ))\EAz
n—2a+2
+c Y ( ))) . (6.7)
JeD(I
The final sum equals
ZQnJ n 2a+42 Z —(2—2a)j _
=0 =0

In the two double sums, we interchange the order of summation. If A occurs
there, then ¢(\) < ¢(I) and mI(\) N1 # 0; thus, if we let £(I) be the set
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of dyadic dubes I" of the same size as I with mI' N T # (), it follows that
I(\) € D(I') for some I' € £(I).

Fix one such )\, with (\) = 27%/((I). For each j < k, there are at most C
cubes J € D;(I) with A € A;(J), each contributing 22*7|T|~"|a(A)|? to the first
double sum in (6.7). Similarly, for each j > &, there are at most C2U=%)" cubes
J € D;(I) with A € Ay(J), each contributing 277(r=2a+2=¢)=k(e=2-n)| 1| =1|(})|2
to the second double sum. Together these yield at most

k

C|[|_1|a()\)|2(z22aj+ Z 2—(2—2a—8)(j—k)+2ak)

=0 j=k+1
< C2H |11 a(N)P.

As a consequence, (6.7) yields

Uya(l)

<C >N Y 22M a(W))P+C
I'e&(I) k=0 I(\)eD;(I')
=C Y T..(I+C<C.

I'e&(I)

We have proved that ¥, (I) < C for every cube I of dyadic edge length. Since
the same estimate applies to every translate I 4+ ¢, Lemma 5.4 shows that for
every cube I of dyadic edge length,

[Z(I)]Qa—n\/l I |f(l‘) - f(y)|2 dr dy < C,

|z —y|rF2e

finally, Remark 1.1 yields f € Q,(R") and || f||g,®~) < C.

Uniqueness of f follows from the uniqueness in BMO(R"); if f,g € Q.(R™) C
BMO(R™) have the same wavelet coefficients, then they define the same linear
functional on H'(R") and thus f = g as elements of BMO(R") (i.e. modulo
constants), see again [13, Section 5.6]. O

7. THE DYADIC COUNTERPART

We define a dyadic analogue of @Q,(R") and give some results relating the

two spaces.
Once again, recall that D is the set of all dyadic cubes in R”, and define the

dyadic distance 0(z,y) between two points in R by
d(z,y) =inf{l(I) : z,y € I € D}.
(The dyadic distance is infinite between points in different octants.) Note that

|z — y| < Vdi(z,y). (7.1)
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The space Q%(R") is defined as the space of all (measurable) functions f on
R™ such that

ot [ V@)= S0P
gy = suplecrype [ [ DL

Note that || | garn) = 0 if and only if f is a.e. constant in each octant. Q%(R")
is a Banach space if we regard it as a space of functions modulo such functions.
We have analogues of Lemma 5.8 and Theorem 5.5.

dx dy < oo. (7.2)

Lemma 7.1. Let —co < a < oo. Then, for any cube I € D and f € L*(I),

L R

Proof. Suppose first « > —n/2. If I is a dyadic cube and z,y € I, then
x,y € J for some J € Dy(I) if and only if §(x,y) < 27%¢(I), and thus, by
(5.9),

/ﬁ[(xay)

% Z 2(2a+n)k |I|72

= (1) §(z, y) 20", (7.3)

The result follows by (5.8).
If < —n/2, this argument yields the inequality

2
w1 > clnper [ [YS=SOF
oty = clnp [ [ ey

The opposite inequality follows by Lemma 5.3 and (7.1). O

Theorem 7.2. Let —0o < a < 0co. Then f € Q%(R™) if and only if
sup ¥ (1) < oc.
1eD

Moreover, supep[Us.o(I)]'/? is a norm on Q%(R™), equivalent to || f||ga ) as
defined above.

Proof. Immediate by Lemma 7.1. O

We have also an analogue of Theorem 2.3. Let BMO%(R") be the dyadic
BMO space defined by {f € L2 (R") : sup;ep Pf(I) < 00}

loc
Theorem 7.3.
(i) QL(R™) is decreasing in a, i.e. QL(R") 2 QE(R™) if ar < B.
(ii) If o > n/2, then QL(R™) contains only functions that are a.e. constant

in each octant, i.e. Q%L(R™) = {0} (as a Banach space).
(iii) If @ < 0, then Q%(R") = BMO®(R").
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Proof. (i) follows directly by 6(x,y) < ¢(I) for z,y € [ € D.

For (ii), suppose that f € Q%(R"), with a > n/2. If .J is a dyadic cube,
and Ji the dyadic cube containing .J with £(.J;) = 2F/(J), then W, ,(J;) >
22e=n)k@ . (]), and by letting k — oo we obtain ®;(J) =0, J € D.

Finally, (iii) follows by Lemmas 7.1 and 5.2. O

Remark 7.4. The inclusion in (i) is strict unless n/2 < a < for a < 3 < 0,
as can be seen by the following example.

Example 7.5. For a cube I, let I and I, denote its left and right halves,
separated by a hyperplane x; = a through the center of I. Let {a;}° be a

sequence with 277 |ax|* < oo and define f =372, 37, p oy ar(Xs, — X ),
where I is any fixed cube. It is then easily seen (cf. Theorem 7.11 below) that

Sl <oo.  a<,
00 2
d (on > klag]* < oo, a=0,
€ R") <—
f e QuR") Y022 g2 < 0o, 0<a<n/2,
every a; = 0, n/2 <a.

In particular, 2/2(R") # {0}, so there is no cut-off at & = 1 as for the
non-dyadic spaces (Theorem 2.3).
Remark 7.6. If one instead considers Q% defined on a cube, cf. Remark 1.2,

then the cut-off at & = n/2 in Theorem 7.3(ii) disappears, and the space is
non-trivial for arbitrarily large .

Relations between @, (R") and Q% (R™). We first observe that if we consider
all cubes I with dyadic edge lengths in Theorem 7.2, instead of just dyadic
cubes, we obtain instead @, (R").

Lemma 7.7. Let —oo < a < 00. Then Q4(R™) equals the space of all func-
tions f on R™ such that sup; Vs, (I) < oo, where I ranges over the set of all
cubes in R" with dyadic edge lengths. Moreover, || f|lg.@n) < sup; ¥y (I)Y2.

Proof. Immediate by Remark 1.1 and Lemmas 5.3 and 5.4. O
Let 7; denote the translation operator 7.f(z) = f(z — t).

Theorem 7.8. Let —00 < a < 0. Then [ € Qn(R™) if and only if 1.f €
QL(R™) for all t € R and sup, ||7f||girny < 00. Moreover, || fllg,@n) =
sup, [|7¢f || gz o) -

Proof. Since every cube of dyadic edge length is the translate of a dyadic cube,
Lemma 7.7 and Theorem 7.2 show that

£ 110 )

< sup sup Wy, (Il — 1)
teR™ I€D

= sup sup ¥, (I)
teR® 1€D

o 2
= f&g 172f 15 ey

and the result follows. O
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Theorem 7.9. Let —co < o < 1/2. Then Q,(R") = Q4(R") N BMO(R").

Proof. The inclusion Q,(R") C Q%(R") N BMO(R") follows directly from the
definitions, (7.1) and Theorem 2.3(iii).

Conversely, suppose that f € Q4(R*)NBMO(R™). Let I be a cube of dyadic
edge length. Then there exist a family of 2" dyadic cubes I; of the same size
as I, such that the union | J; I; is a cube J with ¢(J) =2¢(I) and I C J. (J is
not necessarily a dyadic cube.) By Lemma 5.7 and (5.5),

\ij,a(l) < C\I]f,a(J)
2n

=CY Upo(L) + Cy(J)
=1

< O flIgany + Cll f I Bromn-

Hence U, (I) is bounded uniformly for all cubes I of dyadic edge length, and
the result follows by Lemma 7.7. O

Remark 7.10. We do not know whether the condition v < 1/2 in Theo-
rem 7.9 is necessary. The theorem fails at least for 1 < o < n/2, since
then, cf. Example 7.5, x;, — x7_ € Q%4(R") N BMO(R") for any cube I, while
Qa(R") = {0} by Theorem 2.3.

The Haar system. Let hy, A € A, be the n-dimensional Haar system. Func-
tions in BMOd(R") can be described by the Haar system, and the characteri-
zation coincides with one given above of BMO(R"™) using a wavelet basis [13,
p. 157]. Similarly, for Q¢ (R") we have

Theorem 7.11. Let a > 0. If f € Q%(R™), then the sequence of its Haar
coefficients a(X) = (f, hy), A € A, satisfies

sup Ty.o (1) < 0. (7.4)
IeD

Conversely, every sequence a(\) satisfying (7.4) is the sequence of Haar coef-
ficients of a unique f € Q4(R™).
Proof. If a(\) = (f, hy) and [ is a dyadic cube, then

(f=FD)xr= > a(Mhy

I(NCI
and thus
Sp(1) =111 Y [a(N)P = Tap(D).
I\CI

It follows by the definition (5.5) and Lemma 6.1 that
qlfyo‘(l-) = Ta’a(]-),
and the result follows by Theorem 7.2. O

Let U be the isometry of L?*(R") given by U(t¢y) = hy. Then Theorems
6.2 and 7.11 show that the operator U can be extended to an isomorphism
between Q,(R") and Q4 (R").
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Corollary 7.12. Let0 < a < 1. Then the Banach spaces Q. (R™) and Q% (R™)
are isomorphic; more precisely, the map U(Z a()\)w)\) =Y _a(N)hy is an iso-
morphism (with the sums interpreted formally or as converging in suitable weak
topologies). O

8. SOME PROBLEMS
In this section, we would like to mention some open problems.

John—Nirenberg type inequality. The John-Nirenberg distribution inequal-
ity [10] says that if f € BMO(R™) then for any cube I and any ¢ > 0,

L S

mi(t) = Ko € T+ 1 () = f(D] > 8} < Ol exp(qr—ros

We hope to explore the following

Problem 8.1. Let a« € (0,1). Give a John-Nirenberg type inequality for
Qa(R™).

With (8.1) and the local behaviour of Q,(R"), we may conjecture that if
[ € Qa(R™) then

yogeeme 3 0 g =) (8.2)
k=0

Y e

Duality. Corresponding to the important result BMO(R")=[H'(R")]*, a prob
lem of Q(R™)-type is

Problem 8.2. Let o € (0,1). Find a predual of Q.(R™).

Fefferman—Stein type decomposition. Fefferman and Stein [6] proved that
f € BMO(R") if and only if there are ¢; € L>°(R") such that

f=v0+> Rilgy),
=1

where Rjp = ¢ (z;/|z|"*") are the Riesz transforms. So, we naturally pose

Problem 8.3. Let a € (0,1). Give a Fefferman—Stein type decomposition of
Qa(R™).

Note that the space @,(0A) has a decomposition of Fefferman-Stein type
[14, Theorem 1.2].

Quasiconformal homeomorphism. Reimann [17] proved that if ¢ is an
ACL-homeomorphism from R"”, n > 2, to itself, then the composition operator
C,, defined by C,f = f o ¢, is bounded on BMO(R") if and only if ¢ is
quasiconformal. On the line, it was noted by P. Jones that the quasi-conformal
ACL-homeomorphisms ¢ are those which satisfy the A-condition for log ¢’
(cf. p.15 in [4]). With Theorem 2.1, we therefore have the following

Problem 8.4. Let o € (0,1). Prove or disprove C,, is bounded on Q,(R").
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Quasiconformal extension. We can introduce the concept of Q,(Q2)—a
(@ space on a general domain ) C R”, by considering only cubes [ Q
in (1.3). Jones’s theorem [11] tells us that for a Jordan domain Q C R?
BMO(Q)) = BMO(R?)|q (the restriction of BMO(R") to Q) if and only if 9
(the boundary of Q) is a quasi-circle. So, our question is

Problem 8.5. Let o € (0,1). Find a geometric property of 02 such that
Qa(2) = Qa(R2)|Q-

Further problems can be posed via [4].
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