
Bounding the unsatisfiability threshold

of random 3-SAT

Svante Janson

Department of Mathematics, Uppsala University, PO Box 480, S-751 06 Uppsala,
Sweden. e-mail:svante.janson@math.uu.se

Yannis C. Stamatiou
∗

University of Patras, Department of Computer Engineering and Informatics, Rio
265 00, Patras, Greece and Computer Technology Institute, Kolokotroni 3, 263 21,
Patras, Greece. e-mail: stamatiu@ceid.upatras.gr

Malvina Vamvakari

University of Patras, Department of Computer Engineering and Informatics, Rio
265 00, Patras, Greece and Computer Technology Institute, Kolokotroni 3, 263 21,
Patras, Greece. e-mail: mvamv@ceid.upatras.gr

Keywords: Unsatisfiability threshold, Rogers–Szegö polynomials, Gaussian coefficients,

Generating functions, Spin system, Entropy, Statistical physics

ABSTRACT

We lower the upper bound for the threshold for random 3-SAT from 4.6011 to 4.596
through two different approaches, both giving the same result. (Assuming the threshold
exists, as is generally believed but still not rigorously shown.) In both approaches, we start
with a sum over all truth assignments that appears in an upper bound by Kirousis et al. to
the the probability that a random 3-SAT formula is satisfiable. In the first approach, this
sum is reformulated as the partition function of a spin system consisting of n sites each
of which may assume the values 0 or 1. We then obtain an asymptotic expression for this
function that results from the application of an optimization technique from statistical
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physics. In the second approach, we use a connection of the same sum with the Rogers–
Szegö polynomials. We apply a general technique that exploits a generating function of
these polynomials and provides upper bounds for each one of them. c© ??? John Wiley

& Sons, Inc.

1. INTRODUCTION

The random 3-SAT problem is the following: Let x1, . . . , xn be n Boolean variables
and consider the 8

(

n
3

)

clauses consisting of the disjunction of three literals xi or ¬xi

using three different variables. Construct a random formula ϕn,m as the conjunction
of m of these clauses, selected at random (with replacement, for definiteness; this
does not matter asymptotically). Now let n,m→ ∞. Experiments suggest strongly
that there is a threshold γ ≈ 4.2 such that if m/n ≤ γ − ε for any ε > 0, then
Pr(ϕn,m is satisfiable) → 1, and if m/n ≥ γ + ε, then Pr(ϕn,m is satisfiable) → 0.

This is not yet proven, but Friedgut [4] has shown that there exists a sequence
γn such that if m/n ≤ γn − ε, then Pr(ϕn,m is satisfiable) → 1, and if m/n ≥
γn + ε, then Pr(ϕn,m is satisfiable) → 0. It is still not known, however, if these
γn converge (or, equivalently, can be taken as a constant γ). We therefore define
γ∗ = limn→∞γn = sup{c : Pr(ϕn,⌊cn⌋ is satisfiable) → 1} and γ∗ = limn→∞γn =
inf{c : Pr(ϕn,⌊cn⌋ is satisfiable) → 0}. Hence γ∗ ≤ γ∗ (and presumably equality
holds).

Many authors have given numerical bounds for γ∗ or γ∗ using various techniques.
The best bounds that have been published so far to our knowledge are

3.003 < γ∗ ≤ γ∗ < 4.601+,

where the lower bound is due to Frieze and Suen [5] and the upper to Kirousis,
Kranakis, Krizanc and Stamatiou [8].

In this paper, we show that γ∗ < 4.596, drawing on the results presented in [8]
where a technique is given that provides an improved upper bound for the proba-
bility that a random 3-SAT formula generated with clauses to variables ratio r is
satisfiable (see next section for a more detailed exposition). Part of the argument
is the estimation of a certain sum over all truth assignments (see (2.2) below). As
indicated in [8], this sum can be expressed as a Rogers–Szegö polynomial. These
polynomials are defined as follows:

Fn,q(z) =

n
∑

k=0

(

n

k

)

q

zk, (1.1)

where
(

n
k

)

q
denotes the Gaussian or q-nomial coefficients [9], for 0 ≤ k ≤ n and

q 6= 1:
(

n

k

)

q

=
(qn − 1)(qn − q) · · · (qn − qk−1)

(qk − 1)(qk − q) · · · (qk − qk−1)
.

An upper bound for Rogers–Szegö polynomials was given in [7], resulting in the
conclusion of [8] that γ∗ < 4.6011. In this paper, we prove that γ∗ < 4.596, by
providing better estimates for this sum through two different approaches.
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In one approach (our second below), we derive a better estimate of the sum in
(2.2) by first establishing an improved upper bound for the Rogers–Szegö polyno-
mials.

In our first approach we instead rewrite the sum in (2.2) in the form

Sn =
∑

ε1,...,εn∈{0,1}

exp
(

a

n
∑

i=1

εi +
b

n

∑ ∑

1≤i<j≤n

εi(1 − εj)
)

, (1.2)

summing over the 2n sequences ε1, . . . , εn of 0’s and 1’s, and establish an asymptotic
formula for Sn.

We will see that, interestingly, these two different ways of expressing the same
quantity turn out to favor the application of different techniques that, however,
lead to the same result.

The two approaches, which originally were developed independently by two sub-
sets of the authors, are described separately in Sections 3 and 4, and then compared
in Section 5, while Section 2 describes the links to the random 3-SAT problem.

Before presenting the technical details, we would like to comment on what, we
believe, should be the focal point of our work, besides the minor improvement on
the upper bound of the unsatisfiability threshold. Modelling a random formula as a
physical spin system and then using various characteristics of the system, such as the
energy function, in order to draw some conclusion for the unsatisfiability threshold,
is in the spirit of a line of research that attracts a fast-growing number of scientists
from both theoretical computer science and physics. This line of research attacks
the problem of proving that the unsatisfiability threshold indeed exists, by reducing
it, albeit not completely rigorously, to the study of threshold phenomena in spin
systems and, in particular, spin glasses. Our proof, using the spin system analogy,
is an example where this analogy leads to rigorous resuls revealing, at the same
time, some interesting relationship between a mathematical idea (the local maxima
technique proposed in [?]) and physics. Moreover, the spin system analogy helped
us establish an asymptotic expression for an important and frequently appearing
in applications expression, the Rogers-Szegö polynomials, that may prove useful in
a broader class of problems, than the one considered in this paper.

Note. We have been informed that better bounds recently have been proved
by other methods by Zito [14] (4.579) and by Dubois, Boufkhad and Mandler [3]
(4.506).

2. THE TWO APPROACHES

In this section, we will sketch the argument in [8], omitting most details. At the
same time we will provide the connection of this argument with our approaches for
improving the upper bound.

First, an old observation is that a given truth assignment A to x1, . . . , xn sat-
isfies 7

(

n
3

)

of the 8
(

n
3

)

considered clauses with three literals, and hence the prob-
ability that ϕn,m is satisfied by A equals (7/8)m. Since there are 2n different
truth assignments, the expected number of truth assignments that satisfy ϕn,m is



4 S. JANSON, Y.C STAMATIOU, AND M. VAMVAKARI

2n(7/8)m, and if m/n ≥ log 2/ log(8/7) + ε (with ε > 0), this tends to 0 and thus
Pr(ϕn,m is satisfiable) → 0. Consequently γ∗ ≤ log 2/ log(8/7) ≈ 5.191.

This bound is not sharp, and the reason is that a satisfiable formula usually
has many satisfying truth assignments, and thus it is possible that the expected
number tends to infinity even when the probability of having any satisfying truth
assignment tends to 0. The method used in [8] to obtain better estimates is to
count only a subset of all satisfying truth assignments; they choose the set A2♯

defined as follows.

A change of a truth assignment to another is called a single flip if the value
of exactly one variable xi is changed and this change is from FALSE to TRUE; a
change is called a double flip if the values of exactly two variables xi and xj (with
i < j) are changed and further xi is changed from FALSE to TRUE and xj from
TRUE to FALSE. Then A2♯ is defined as the set of all truth assignments A such
that A satisfies ϕn,m but no single or double flip of A does. (It is easily seen that
A2♯ is non-empty if ϕn,m is satisfiable.)

Let r > 0 and define the following functions of r: (all logarithms in this paper
are natural)

u = e−r/7,

x = 1 − u3 + o(1), (2.1)

z = −
6u6 log(1/u)

1 − u3
+

18u9 log2(1/u)

(1 − u3)2
ϕ2

(6u6 log(1/u)

1 − u3

)

,

where ϕ2(t) is the smallest root of ϕ2(t) = etϕ2(t). (ϕ2 is defined on [0, e−1] only,
but it is easily verified that the argument to ϕ2 in (2.1) lies in this interval for any
r ≥ 0.) This function comes from an application of a version of Suen’s inequality
[6]. It is almost certainly not the best possible, but no better results are known at
present.

A long probabilistic argument in [8], shows that if r > 0 is fixed and m,n→ ∞
with m/n → r, then for any truth assignment A with sf(A) possible single flips
and df(A) possible double flips,

Pr(A ∈ A2♯) ≤ 3m1/2
(7

8

)m
Xsf(A)Y df(A),

where

X = x+ o(1)

Y = 1 + z
1

n
+ o

(

1

n

)

,

and thus [8, equation (20)]

E|A2♯| ≤ 3m1/2
(7

8

)m ∑

A

Xsf(A)Y df(A). (2.2)
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Let us denote by Σn the sum over all truth assignments that appears in (2.2). We
observe that if r is such that

r log
7

8
+ lim sup

n→∞

1

n
log Σn < 0, (2.3)

then the right-hand side of Equation (2.2) tends to 0 (by taking the nth root and
then the logarithm), and thus Pr(ϕn,m is satisfiable) ≤ E|A2♯| → 0 and γ∗ ≤ r.

Therefore, in order to improve the estimate for γ∗, it suffices to find an as good
as possible closed form upper bound for Σn or, at best, an asymptotic expression.
In [8], the following expression was used as an upper bound for Σn (for a proof
see [7]):

Σn ≤
n−1
∏

k=0

(1 +XY i/2), 0 ≤ X2 ≤ Y ≤ 1,

giving γ∗ < 4.6011.

In our first approach, coding the truth assignments A as sequences ε1, . . . , εn,
where (unconventionally) 0 represents TRUE and 1 FALSE, we see that the sum
Σn in (2.2) equals Sn as defined in (1.2), with a = log(X) = log x + o(1) and
b = n log(Y ) = z + o(1). We then obtain an asymptotic expression for Σn using an
optimization technique commonly employed in statistical physics.

In the second approach, we use the fact that, using the notation (1.1),

Σn = Fn,Y (X) (2.4)

(see [8]). We then derive an upper bound for the Rogers–Szegö polynomials using
a generating functions technique described in [10].

The exact value and the upper bound to lim supn→∞
1
n log Σn given by these two

approaches are expressed by quite different formulas, but when inserted in (2.3),
both formulas yield the same numerical result γ∗ < 4.596. We show in Section 5
that the two formulas indeed are equivalent.

3. THE FIRST APPROACH: AN ASYMPTOTIC

FORMULA FOR ΣN USING STATISTICAL

PHYSICS METHODS

We will prove the following asymptotic formula for Sn.

Theorem 3.1. Let a and b be two fixed real numbers, and define Sn by (1.2).
Then, as n→ ∞,

1

n
log Sn → ψ(a, b),

where ψ(a, 0) = log(1 + ea) and for b 6= 0

ψ(a, b) =
(h− a)2

2b
+

1

b

∫ h+b

h

log(1 + ex) dx
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=
(h− a)2

2b
+

1

b

(

dilog(1 + eh) − dilog(1 + eh+b)
)

, (3.1)

with h = h(a, b) given by

h = log

(

ea − 1 +
√

(ea − 1)2 + 4ea+b

)

− log 2 − b. (3.2)

Remark 3.2. The dilogarithm is defined by dilog(x) = −
∫ x

1
log t
t−1 dt [1], and the

second equality in (3.1) follows by a simple change of variables.

Remark 3.3. It is easily shown that ψ is continuous, also at b = 0.

Remark 3.4. In statistical physics terminology, Sn is the partition function for
a system with n sites, each of which has a spin εi which may take the values 0
and 1, and with an energy function H = −a

∑n
i=1 εi −

b
n

∑∑

1≤i<j≤n εi(1 − εj).
The first term in H corresponds to an external field acting on all spins, and the
second to a peculiar interaction which acts only between pairs of sites (of arbitrary
distance) where the left site has spin 1 and the right site has spin 0. This energy
function can easily be rewritten into a more conventional form. In fact, H =
∑n

i=1( − a − b + b i
n )εi + b

n

∑∑

i<j εiεj, or, substituting εi = (1 + si)/2 to have

more traditional (and symmetrical) spins with values ±1, H = −a
2n− b

8 (n − 1) +
∑n

i=1(−
a
2 + b i−(n+1)/2

2n )si + b
4n

∑ ∑

i<j sisj , which shows that the system can be
interpreted as a mean-field Ising model with an inhomogeneous (linear) external
field.

Proof. The theorem is proved by a fairly straightforward optimization of the type
common in statistical physics. For later notational convenience we rewrite (1.2) in
the equivalent form (reversing the order of ε1, . . . , εn)

Sn =
∑

ε1,...,εn∈{0,1}

exp
(

a
n

∑

i=1

εi +
b

n

∑ ∑

1≤i<j≤n

(1 − εi)εj

)

. (3.3)

We begin by discretizing in order to obtain a finite-dimensional optimization prob-
lem also asymptotically. Fix a large integer N and partition {1, . . . , n} into N
intervals I1, . . . , IN of lengths ⌊n/N⌋ or ⌈n/N⌉; let nk = |Ik| = n/N + O(1). We
group the terms in (1.2) according to mk =

∑

i∈Ik
εi, k = 1, . . . , N , and obtain,

observing that the sum of all (1 − εi)εj with i and j in the same interval Ik is less
than N(n/N)2,

Sn =
∑

m1,...,mk

N
∏

k=1

(

nk

mk

)

exp
(

a

N
∑

k=1

mk +
b

n

∑ ∑

1≤k<l≤N

(nk −mk)nl +O(n/N)
)

.
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(The implicit constants in the O terms here and below may depend on a and b but
not on n or N .) By Stirling’s formula,

log

(

M

m

)

= M logM −m logm− (M −m) log(M −m) +O(logM)

= M
(

−
m

M
log

m

M
−

(

1 −
m

M

)

log
(

1 −
m

M

)

)

+O(logM)

and thus, with yk = mk/nk and summing over the grid ΛNn = {(y1, . . . , yN) ∈
[0, 1]N : nkyk is an integer for every k}

Sn =
∑

ΛNn

exp
(

N
∑

k=1

n

N

(

−yk log yk − (1 − yk) log(1 − yk)
)

+O(N logn)

+ a

N
∑

k=1

n

N
yk +

bn

N2

∑ ∑

1≤k<l≤N

(1 − yk)yl +O(N) +O(n/N)
)

.

Define, for y = (y1, . . . , yN ) ∈ [0, 1]N ,

FN (y) =
1

N

N
∑

k=1

(

−yk log yk − (1 − yk) log(1 − yk) + ayk

)

+
b

N2

∑ ∑

1≤k<l≤N

(1 − yk)yl +
b

N2

N
∑

k=1

(yk − y2
k/2) (3.4)

(the last term, which is O(1/N), will be convenient below). Then,

Sn =
∑

y∈ΛNn

exp
(

nFN (y) +O
( n

N
+N logn

))

.

The number of terms in this sum is
∏N

1 (1 + nk) ≤ nN , and thus

Sn = max
y∈ΛNn

exp
(

nFN (y) +O
( n

N
+N logn

))

and

1

n
logSn = max

y∈ΛNn

FN (y) +O
( 1

N
+N

logn

n

)

. (3.5)

Since FN is continuous on [0, 1]N , maxy∈ΛNn
FN (y) tends to the global maximum

of FN on [0, 1]N as n→ ∞, and (3.5) implies

lim inf
n→∞

1

n
logSn, lim sup

n→∞

1

n
logSn = max

y
FN (y) +O

( 1

N

)

. (3.6)
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It follows easily that both limn→∞
1
n logSn and limN→∞ maxy FN (y) exist and are

equal, but it remains to find this limit.

The function FN is continuous on the closed cube [0, 1]N and differentiable in
its interior with

N
∂FN

∂yk
= − log yk + log(1 − yk) + a+

b

N

(

−
∑

l>k

yl +
∑

j<k

(1 − yj) + 1 − yk

)

= − log yk + log(1 − yk) + a+
b

N
k −

b

N

N
∑

l=1

yl. (3.7)

Since this derivative tends to +∞ as yk ↓ 0, and to −∞ as yk ↑ 1, the maximum
of FN cannot be attained for yk = 0 or yk = 1; thus the maximum is attained at
an interior point y∗ where all ∂FN/∂yk = 0.

We define

hN = a−
b

N

N
∑

k=1

y∗k, (3.8)

and obtain by (3.7)

log
y∗k

1 − y∗k
= hN + b

k

N
.

Hence,

y∗k =
ehN+bk/N

1 + ehN+bk/N
. (3.9)

Here hN should be such that (3.8) holds. We observe that b
N

∑

y∗k is a Riemann
sum of

∫ 1

0

b
ehN+bt

1 + ehN+bt
=

[

log(1 + ehN+bt)
]1

0
= log(1 + ehN+b) − log(1 + ehN ).

Since (3.8) implies |hN | ≤ |a|+ |b| and the Riemann sums of this integral converge
uniformly for hN in a compact set,

hN = a− log(1 + ehN+b) + log(1 + ehN ) + o(1). (3.10)

The function ϕ(h) = h− log(1+eh)+log(1+eh+b) = log(1+eh+b)− log(1+e−h) is
strictly increasing on (−∞,+∞), and limh→±∞ ϕ(h) = ±∞. Consequently, there
exists a unique h = h(a, b) such that ϕ(h) = a, and (3.10) implies that hN → h as
N → ∞. Moreover, the definition of h is

h− log(1 + eh) + log(1 + eh+b) = a, (3.11)

which can be rewritten as eh(1+eh+b) = a(1+eh). Solving this quadratic equation
in eh, we easily find (3.2).
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Let gN(t) = ehN+bt/(1 + ehN+bt) and g(t) = eh+bt/(1 + eh+bt). Thus, by (3.9),
y∗k = gN(k/N). Now let N → ∞; then gN → g uniformly on [0, 1], and it follows
from the definition (3.4) of FN that

maxFN = FN (y∗) →

∫ 1

0

(

−g(t) log g(t) −
(

1 − g(t)
)

log
(

1 − g(t)
)

+ ag(t)
)

dt

+ b

∫ ∫

0≤s<t≤1

(

1 − g(s)
)

g(t) ds dt. (3.12)

Denoting the right-hand side by ψ(a, b), this together with (3.6) shows that
lim inf 1

n logSn = lim sup 1
n log Sn = ψ(a, b), as asserted.

It remains to derive the more explicit expressions given for ψ(a, b). The case
b = 0 is trivial, with Sn = (1 + ea)n, so we assume b 6= 0. Integrating first over s,
we obtain

ψ(a, b) =

∫ 1

0

(

−g(t)(h+ bt) + log(1 + eh+bt) + ag(t)

+
(

bt− log(1 + eh+bt) + log(1 + eh)
)

g(t)
)

dt

=
1

b

[

(a− h) log(1 + eh+bt) −
1

2

(

log(1 + eh+bt) − log(1 + eh)
)2]1

0

+

∫ 1

0

log(1 + eh+bt) dt,

which, using log(1 + eh+b) − log(1 + eh) = a − h from (3.11), easily is shown to
equal the expressions given in (3.1).

Remark 3.5. The proof demonstrates the usual conflict between energy and
entropy; the largest term in (1.2) is obtained for a sequence of 0’s followed by 1’s
or conversely (depending on the sign of b), while most terms have about n/2 0’s
and 1’s rather uniformly distributed; neither of these cases contribute significantly
to the sum (unless a = b = 0). The proof shows that the main contribution comes
from terms where the density of 1’s among the εi with i/n ≈ t is about g(1 − t);
these are thus the typical states in the statistical physics interpretation.

We have assumed in Theorem 3.1 that a and b are fixed, but it is easily seen
that the result remains valid if Sn is defined using an and bn, where an → a and
bn → b as n → ∞. (Cf. Remark 3.2.) In particular, with notation as in Section 2,
taking an = logX → log x and bn = n logY → z, Sn = Σn =

∑

AX
sf(A)Y df(A) as

in (2.2), and it follows that

lim
n→∞

1

n
log Σn = ψ(log x, z). (3.13)

Consequently (see (2.3)), if r is such that

r log(7/8) + ψ(log x, z) < 0, (3.14)
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then Pr(ϕn,m is satisfiable) ≤ E|A2♯| → 0 as n → ∞, and thus γ∗ ≤ r. (By
continuity of the left-hand side of (3.14) in r, in fact γ∗ < r.) A numerical calcu-
lation (performed with a small Pascal progam) shows that (3.14) indeed holds for
r = 4.596.

4. THE SECOND APPROACH: BOUNDING ΣN

USING AN UPPER BOUND FOR THE

ROGERS–SZEGÖ POLYNOMIALS

In order to establish an upper bound for the Rogers–Szegö polynomials, we will
make use of the following lemma, that appears as Lemma 8.1 in [10]:

Lemma 4.1. Let f(z) =
∑∞

i=0 fiz
i be the generating function for the sequence

fi, i ≥ 0. Then if f(z) is analytic in |z| < R and if fi ≥ 0 for all i ≥ 0, then for
any t, 0 < t < R, and any n ≥ 0, it holds that

fn ≤ t−nf(t).

In the following theorem, we prove an upper bound for Fn,q(x) which improves
upon the one used in [8].

Theorem 4.2. Let Fn,q(x) =
∑n

i=0

(

n
i

)

q
xi be the Rogers–Szegö polynomials. If

0 < x <∞, 0 < q < 1 and n ≥ 0, then for any t, 0 < t < min(1, 1/x),

Fn,q(x) ≤ t−n exp

[

−
1

log q

(

Li2(tx) + Li2(t) + Li2(q
n) − Li2(q)

)

]

1

(1 − t)(1 − tx)

where

Li2(y) = dilog(1 − y) = Polylog(2, y) =
∑

k≥1

yk

k2
,

is the polylogarithm (or logarithmic integral) of index 2 at point y.

Proof. Let

G(z, x) =
∞
∑

n=0

Fn,q(x)
n

∏

j=1

(1 − qj)−1zn,

be the Eulerian generating function of Fn,q(x) (see [12]). Then (see [2])

G(z, x) =

∞
∏

j=0

(1 − qjzx)−1(1 − qjz)−1.
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For 0 < z < min(1, 1/x), the double generating function G(z, x) can be bounded
from above as follows:

G(z, x) = exp





∞
∑

j=0

− log(1 − qjzx) +

∞
∑

j=0

− log(1 − qjz)





= exp





∞
∑

j=1

− log(1 − qjzx) +

∞
∑

j=1

− log(1 − qjz)





· exp
[

− log(1 − zx) − log(1 − z)
]

≤ exp

[

−

∫ ∞

0

log(1 − quzx) du−

∫ ∞

0

log(1 − quz) du

]

·
1

(1 − z)(1 − zx)

= exp

[

−
dilog(1 − zx)

log(q)
−

dilog(1 − z)

log(q)

]

1

(1 − z)(1 − zx)

= exp

[

−
1

log(q)

(

Li2(zx) + Li2(z)
)

]

·
1

(1 − z)(1 − zx)
. (4.1)

Therefore, applying Lemma 4.1, we have that for any t, 0 < t < min(1, 1/x), and
any n ≥ 0 it holds that

Fn,q(x) ≤ t−n exp

[

−
1

log(q)

(

Li2(tx) + Li2(t)
)

]

1

(1 − t)(1 − tx)

n
∏

j=1

(1 − qj).(4.2)

But

n
∏

j=1

(1 − qj) = exp



log





∞
∏

j=1

(1 − qj)
/

∞
∏

j=n+1

(1 − qj)









= exp





∞
∑

j=1

log(1 − qj) −

∞
∑

j=n+1

log(1 − qj)





≤ exp

(∫ ∞

1

log(1 − qj) dj −

∫ ∞

n

log(1 − qj) dj

)

= exp

[

1

log q

(

Li2(q) − Li2(q
n)

)

]

and, thus, Equation (4.2) completes the proof of the theorem.

Since the inequality of Theorem 4.2 holds for any t ∈ (0, 1), we may optimize
it by choosing t so that the right-hand side attains its minimum value. Since it
is rather difficult to minimize this expression, we will instead choose t such as to
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minimize the factor

G∗(t) = t−n exp

[

−
1

log(q)

(

Li2(tx) + Li2(t)
)

]

.

We compute the first derivative of logG∗(t) and set it equal to 0:

−
n

t
+

1

t log q
log [(1 − tx)(1 − t)] = 0.

Solving for t, and selecting the unique solution for which the second derivative of
logG∗(t) is positive, we obtain the optimal value t = t0(x, q

n), where

t0(x, y) =
x+ 1 −

√

(x − 1)2 + 4xy

2x
. (4.3)

It is easily verified that 0 < t0(x, q
n) < min(1, 1/x), so we may use t = t0 in

Theorem 4.2. Notice, that then the factor 1/((1 − tx)(1 − x)) becomes q−n.

In particular, this yields the following asymptotic result.

Corollary 4.3. If X = x+ o(1) and q = 1+ z/n+ o(1/n), where 0 < x <∞ and
z < 0, then,

lim sup
n→∞

1

n
logFn,q(X) ≤ f(x, z), (4.4)

where, with t = t0(x, e
z) given by (4.3),

f(x, z) = − log t−
1

z

(

Li2(tx) + Li2(t) + Li2(e
z) − Li2(1)

)

. (4.5)

Consequently, from (2.4) in Section 2 and if x and z are given by (2.1), we get
that

lim sup
n→∞

log Σn ≤ f(x, z), (4.6)

which together with (2.3) shows that if

r log
7

8
+ f(x, z) < 0, (4.7)

then γ∗ < r. Solving the equation r log 7
8 + f(x, z) = 0 (e.g. using Maple [11]), the

upper bound γ∗ < 4.596 for the unsatisfiability threshold follows.

Remark 4.4. It follows from Theorem 5.1 below that the inequality (4.4) can be
sharpened to the equality limn→∞

1
n logFn,q(X) = f(x, z).
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5. DISCUSSION

In this paper we have presented two different methods that lead to the same im-
provement on the upper bound for the unsatisfiablity threshold. Rather than focus
on this minor improvement (4.596 versus 4.6011), we believe that it is more interest-
ing and rewarding to concentrate on the techniques employed and the implications
of the fact that they lead to exactly the same improvement.

The first interesting observation is that the two approaches consist of simply
rewriting the same expression, Σn, in two different forms. Then it turned out
that each of these forms facilitated the application of radically different techniques.
In the first approach we considered, Σn was formulated as the partition function
of a physical system of n spin sites, each assuming the values 0 or 1. Then an
optimization technique commonly used in physics was applied that resulted in an
asymptotic expression for the partition function and, thus, for Σn. On the other
hand, in the second approach we used the fact that Σn is an expression for the
Rogers–Szegö polynomials. We then used the Eulerian generating function of these
polynomials that resulted in an upper bound for them and, therefore, for Σn for
each finite n.

The fact that the two methods lead to the same numerical result is no coin-
cidence. In fact, as it is shown in the following theorem, the upper bound given
in (4.4) equals the limit given in Theorem 3.1. Hence (4.4) is, in fact, an equality,
which shows that Theorem 4.2 is, in one sense, asymptotically sharp.

Theorem 5.1. Let ψ and f be given by (3.1) and (4.5). Then, for any real a
and b with b < 0,

ψ(a, b) = f(ea, b).

Proof. Although both ψ(a, b) and f(ea, b) involve the dilogarithm, or logarithmic
integral, the two expressions look quite different and we do not know any simple
transformation of one into the other. Instead we proceed as follows.

We choose to parametrize by b and h, given by (3.2) or (3.11). Thus, for b < 0 and
−∞ < h <∞, define a by (3.11), x = ea = eh(1+eh+b)/(1+eh) and t = t0(x, e

b) by
(4.3); it is easily seen, using (3.2) and (3.11), that t = 1−eh+b−a = (1−eb)/(1+eh+b)
and thus tx = eh(1 − eb)/(1 + eh). Now express ψ(a, b) and f(x, b) as functions
ψ̃(b, h) and f̃(b, h) of b and h.

First consider the case h = −b/2, which yields a = 0, x = 1, t = 1 − eb/2. Then,
by straightforward calculations which we omit,

d

db
bψ̃(b,−b/2) = log(1 + eb/2) =

d

db
bf̃(b,−b/2),

and thus bψ̃(b,−b/2) = bf̃(b,−b/2)+C for some constant C and all b < 0. Letting
b→ 0 yields C = 0, and thus ψ̃(b,−b/2) = f̃(b,−b/2) for all b < 0.
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Next keep b < 0 fixed and vary h. Then, by further straightforward calculations
which we omit,

∂

∂h
ψ̃(b, h) =

1

b

(

1

1 + eh
+

eh+b

1 + eh+b

)

log
1 + eh+b

1 + eh
=

∂

∂h
f̃(b, h),

and the identity follows.
The implications of the above discussion, can be summarized as follows:

• The fact that the first approach gave an asymptotic expression for Sn leads
us to the conclusion that reducing the upper bound further using the double
flips idea, will require the discovery of better correlation inequalities than the
ones that resulted in the sum Σn. We believe that such a task is achievable.

• The fact that the upper bound for Sn that was obtained from the second
approach using the very simple technique of Lemma 4.1 gives the same value
as the asymptotic expression of the first approach, is an example that justifies
the belief (see page 1122 in [10]) that such techniques, despite their simplicity,
often give results close to the best possible.

• Using the observation that the sum Sn is equal to
∑n

k=0

(

n
k

)

q
Xk, where X =

ea and q = eb/n, we have, indirectly, also obtained an asymptotic expression
for the Rogers–Szegö polynomials themselves.

We will close this paper by stating that the lower and the upper bound for
the unsatisfiablitity threshold for random 3-SAT formulas are still far from the
experimentally estimated threshold value. Reducing their distance is a challenging
problem that may also lead to insights and implications not merely related to the
threshold value itself, like the ones stated above.
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